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ABSTRACT 

In a social network, individual opinions and interpersonal relationships always interact and coevolve. 

This continuously leads to self-organization of opinion clusters in the whole network. 

In this article we study how the coevolution on the two kinds of complex networks and the 

self-organization of opinion clusters are differently affected by the dynamic parameters, the structural 

parameters and the propagating parameters. It is found that the two dynamic parameters are 

homogeneous bringing about the strong and weak relations, while the two structural parameters are 

heterogeneous having equivalent relations. Moreover, the impact of the propagating parameter has 

been found only above its threshold. 

KEY WORDS 

opinion cluster, coevolution, self-organization, opinion propagation, relationship evolving 

CLASSIFICATION 
JEL: D70, D84 

PACS: 89.75.Da, 89.75.Fb

mailto:songlin_zhang@yeah.net


Impact of opinions and relationships coevolving on self-organization of opinion clusters 

311 
 

INTRODUCTION 

Opinions which individuals hold and relationships among them always interplay and interact, 

which can lead to self-organization of opinion clusters. The definition of opinion clusters has 

two: one is the sets in which individuals have the same opinion and the association among 

them [1, 2]; the other is the sets in which individuals also have the same opinion, but with or 

without association among them is no limited [3, 4]. The latter is employed in this article. 

In social systems, the formation of opinion clusters is affected by many factors, such as 

diffusional dynamic parameters, network structural parameters and different network 

characteristics. As it is very difficult to study the social systems for the complexity of them, 

many researchers recently investigated the social system by networks [5, 6]. Many real 

systems, such as social systems, ecological systems, and cellular systems, can be represented 

as networks, in which nodes denote the objects of interest and edges that connect nodes 

describe the relationships between them [7, 8]. However, current researches for opinion 

clustering detection focus more on finding algorithms that can identify opinion clusters in all 

contexts [6-8], than on the effects of different factors on opinion clustering in the same context. 

In this study, we simulate information propagation in different conditions on networks to 

result in self-organization of opinion clusters, in order to ascertain the effects of dynamic 

parameters, structural parameters and networks characteristics on it. 

THE MODEL 

Many discoveries [9-11] show that a number of large-scale complex networks, including the 

electric power grid for Southern California, the network of movie-actor collaborations, and 

the neuronal network of the worm Caenorhabditis elegans, are scale-free and small world. 

The Watts-Strogatz (WS) small world model exhibits a high degree of clustering as in the 

regular network and a small average distance between vertices as in the random network. The 

Barabási-Albert (BA) model suggests that the two main ingredients of self-organization of a 

network in a scale-free structure are growth and preferential attachment [10]. 

Let us consider opinion synchronous diffusion1 on WS and BA networks. 

OPINION MODEL 

Each of N vertices denotes an individual and each of M links denotes a relationship between 

two individuals in the network. We consider Oi possible opinions of which every individual 

must hold one, and two relationships (called +1 and –1) denote positive sentiment (friends) 

and negative sentiment (enmities), according to balance theory. Opinion model in this study 

is the majority-friends-rule model extending the majority-rule model [12, 13]. It assumes that 

individuals preferentially follow the friends instead of following the crowd (the majority-rule2) 

in their opinion update. In each step, every vertex has the same opportunity to update its 

opinion or relations by the following rules: 

1) majority friends’ preference (MFP): with probability P, the focal individual accepts the 

specific opinion held by a majority of its friends (i.e., the opinion is the one or one of that 

has the largest supporter among the friends). If the specific opinion is more than one, 

random one of them is chosen. We call this process P action, 

2) cognitive consistence (CC) [14]: with probability 1 –P, the focal individual keeps his 

opinion unchanged and updates (keeps or flips) its relationship. It will keep the sign of 

edge if the focal pair is cognitive consistence: holding the same opinion with positive (+1) 

relation or different opinions with the negative (–1) relation. On the country, an edge will 
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flip the sign if the focal pair is cognitive inconsistence: the same opinion hold by focal pair 

individuals with negative (–1) relation or vice versa. When flipping is activated, with 

likelihood Q, the focal individual will flip all of links to neighbors, or with likelihood 1 –Q, it 

will flip random one of links to neighbors. We call these processes Q action and 1 –Q action, 

3) repeating previous two steps, the system will converge to consensus state. The consensus 

state has two sub-states: one is opinion consensus sub-state; another is relation consensus 

sub-state. They respectively represents that all opinions and all relations currently hold by 

all individuals do not change over time. After reaching the two sub-states, the system can 

only reach consensus state. It also claims that the coevolution between opinions and 

relations has been completed. The particular algorithm is shown in Figure 1. 

PARAMETERS 

The two networks (BA and WS) which have same parameters and scopes of parameters. The 

total number (N) of vertices is fixed (N = 1000, Oi = 100). There are three types of variables: 

structural parameters, dynamical parameters and diffusive parameter. Structural parameters 

include average degree k  4, 6, 8, 10, as well as a proportion of negative edge Pne  0, 1. 

Dynamical parameters include the probability of opinions propagation P  (0, 1), as well as the 

likelihood of relations evolution, Q  0, 1. There is one diffusive parameter, the initial 

number of opinion clusters, Oi  100, 200, 290, 366, 433. The final number of opinion 

clusters after evolution is Of. 

1 i=1 

2 while (not opinion-consensus-substrate 

 or not-relation-consensus-substrate) 

3 foreach vertex 

 with probability P, execute MFP 

 with probability 1 –P, execute CC 

 end foreach 

4 if(i>=3) 

5 if(Signverticesi = Signverticesi–1 

 and Signverticesi = Signverticesi–2) 

 opinion-consensus-substrate  True 

 else 

 opinion-consensus-substrate  False 

6 if(Signedgesi = Signedgesi–1 

 and Signedgesi = Signedgesi–2) 

 relation-consensus-substrate  True 

 else 

 relation-consensus-substrate  False 

 end if 

7 i++ 

 end while 

Figure 1. Main algorithm of opinions diffusion and relations evolution. 
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SIMULATION RESULTS 

THE NUMBER OF OPINION CLUSTERS 

It is similar on the self-organization of opinion clusters of BA (Figs 2a) and 2c)) and WS 

network (Figs 2b) and 2d)), because scale-free networks are also small-world networks [14], 

because (i) they have clustering coefficients much larger than random networks [11] and 

(ii) their diameter increases logarithmically with the number of vertices N  [9]. 

 

Figure 2. The effects of dynamical parameters, structural parameters and network types on 

the self-organization opinion clusters during evolution, with N = 1000. In a) and b) k = 4 

and Pne = 0,5, while in c) and d) P = 0,5 and Q = 0,5. 

The two dynamical parameters are homogenous to the process (Figs 2a) and 2b)). Both the P 

and the Q promote to self-organization and deduce the number of opinion clusters with the 

increasing of them. While the effect of P is larger than that of Q for the Q action occurs on 

the condition probability of 1 –P. As is shown in equation 

 (Q) = (Q  1 –P) = (1 –P)Q. (1) 

However, the two structural parameters are heterogeneous in that the increasing of average 

degree k hinders the self-organization of opinion clusters. It is in contrast with the fact that 

increasing Pne accelerates it. That indicates that the increase of edge density is advantageous 

to the density of the opinion clusters if the increases are of opposite signs. If Pne = 1, opinion 

clustering cannot proceed, the number of opinion clusters will not cannot be inferred using the 

rule of MFP as it is almost invalidated, thus an individual in such a network has few friends. 

THE RATIO OF SURVIVAL OPINION CLUSTER 

The ratio the survival opinion cluster is denoted as RS, RS = Of/Oi where Of is the number of 

survival opinion cluster and Oi the number of initial opinion cluster. As shown in Figure 3, 

the difference of effects between BA and WS network on RS is quite obvious. Under the same 
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Figure 3. The effects of the types of networks and the number of initial opinions on the ratio 

of survival opinion cluster. 

condition, RS in WS network is larger than that in BA network. As Oi decreases, Of always 

increases both in WS and BA networks. 

If Oi  0,1N then RS will reach 1 (thus all the opinion clusters will survive) whatever other 

parameters are. 

THE SCALE OF OPINION CLUSTERS 

In this section we analyze the effects of three types of factors on the self-organization of the 

opinion clusters, measured by the top 10 of opinion clusters’ (abbr. top 10) sizes after 

coevolution. The average size of an opinion cluster is inversely proportional to the number of 

opinion clusters and is analysed further in the text. 

 
Figure 4. The effects of dynamical parameters on top 10 sizes. The rank of top 10 sizes versus 

the fraction of top 10 with a) and b) P equal to 0,1, 0,5 and 0,9 for constant Q = 0,5, c) and d) Q 

equal to 0, 0,5 and 1 for constant P = 0,5. In all graphs N = 1000, k = 4 and Pne = 0,5. 
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Figure 4 shows that top 10 sizes in BA network is always larger than that in WS network in 

most cases at the same condition. This is maybe due to that degree distribution of BA 

network is power-law and tendency to form bigger community (community is always opinion 

cluster under the rule of MFP, though not vice versa) than that of WS network which has 

average degree distribution. 

The effect of structural parameters is that the sizes of top 10 are proportional to P and Q for 

constant values of other parameters. While the effect degree of Q is smaller than that of P, as 

shown in Figure 4 (three curves in Fig. 4c) and Fig. 4d) are mutually closer than the 

corresponding curves in Fig. 4a) and Fig. 4b)). The effect indicates that the bigger the P value, 

the greater the probability that each individual supports the popular opinion (the opinion 

which most of friends holding). It is a benefit that advantageous opinion clusters (top 10) 

enlarge advantages (i.e. top 10 have more supporters). The effect of Q is similar to that of P. 

If Q increases, the probability of advantageous individuals getting more friends also 

increases. It also results in the larger sizes of top 10. Whatever the way the Q action occurs in 

the condition probability 1 –P, the effect of Q is usually smaller than that of P (except if P is 

relativelly very small and close to zero). 

It is clear that structural parameters effect on the sizes of top 10: the sizes are proportional to 

k value and inversely proportional to Pne. As k value rises, the clustering coefficients in 

BA and WS network both increase. It benefits advantageous opinion to increase supporter 

microscopically, thus larger sizes of opinion cluster form macroscopically. 

On the contrary, with the increase of Pne value, each individual will decrease its friends in 

microscopical scales, thus it also leads to advantageous opinion clusters decrease sizes in 

macroscopical scales. 

 

Figure 5. The effects of dynamical parameters on top 10 sizes. The rank of top 10 sizes versus 

the fraction of top 10 for a) and b) Pne = 0,5 and k values equal to 4, 6, 8 and 10, c) and d) k = 4 

for Pne values equal to 0, 0,5 and 1. In all graphs N = 1000, P = 0,5 and Q = 0,5. 
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CONCLUSIONS 

In this article we investigated the effects of three factors (dynamical parameters, structural 

parameters and diffusional parameter) on the number and scale of opinion clusters. We found 

that the two dynamical parameters (P, Q) are homogeneous from the direction of effect on 

opinion clusters coevolution, and strong-weak relations from the degree of effect on it. The 

two structural parameters (k, Pne) is just opposite to the two dynamical parameters: they are 

heterogeneous and equivalent. Moreover, the number of opinion clusters in final stage is 

inversely proportional to the number of opinion in initial stage when the initial number of 

opinion is larger than threshold value. But when it is less than threshold value, the 

phenomenon disappears: the number of opinion clusters no longer changes. The phenomenon 

suguests that moderate number of opinions (less than threshold) facilate to propagate than 

excessive number of opinions, because some of excessive opinions can not survive during the 

process of diffusion under the control of some dynamic rules. 

ACKNOWLEDGMENTS 

S.L. Zhang acknowledges the support from Graduate Innovation Foundation of Southwest 

Petroleum University, GIFSB0707 and X. Sun acknowledges the support from Graduate 

Innovation Foundation of Southwest Petroleum University, GIFSS0727. 

REMARKS 
1Synchronous diffusion: each vertex updates opinion at the same time in order to ensure 
1diffusion independent of the sequence of vertex. 
2Synchronous diffusion by majority preference rule finally leads to a trivial absorb state that all 
2of vertices holding the same opinion. So we employ majority friends’ preference in this study. 
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SAŽETAK 

U društvenoj mreži individualni stavovi i osobne veze stalno međudjeluju i ko-evoluiraju. Time neprestano 

dolazi do samoorganizacije grozdova stavova u cijeloj mreži. 

U radu se razmatraju ko-evolucija na dvije vrste kompleksnih mreža i samoorganizacija grozdova stavova kao 

posljedica više dinamičkih parametara, strukturalnih parametara i parametara propagacije. Uočeno je kako su 

dva dinamička parametra homogena i vode na snažne odnosno slabe relacije, dok su dva strukturalna parametra 

heterogena i vode na ekvivalentne relacije. Učinak parametara propagacije uočen je samo iznad njihovih pragova. 
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