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MODELS FOR CONTIONUOS ESTIMATION  
OF BENZENE IN REFORMATE 

Abstract 
Due to environmental regulations and production requirement the benzene content 
in fuels need to be limited. Therefore, it is necessary to continuously monitor the 
benzene content in light and heavy reformate. As the process analyzers that 
measure the benzene content in reformate, are often out of service, models of soft 
sensor are developed for the continuous estimation of benzene content. Soft 
sensors are developed using linear identification methods and global optimization 
methods. The development of Finite Impulse Response (FIR)) model and Output 
Error (OE) model are presented. To overcome the problem of selecting the best 
model order for multiple input models, by trial and error, genetic algorithms (GA) was 
used which makes the development of the soft sensors more systematic. Developed 
models show a satisfactory match with analyzer data on a validation data set. 
Models are implemented on the fractionation plant for the estimation of benzene 
content in light reformate. 
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Introduction 
One of the common problems that occur in refinery process monitoring and control 
is the impossibility of continuous measurement and analysis of key process 
parameters, in particular the composition of process streams and product 
characteristics. Cost of the implementation and maintenance of on-line analyzers 
can be very high. As an alternative, it is possible on the basis of easily measurable 
quantities to calculate the states of difficult to measure quantities by determining 
their functional connections. For this purpose, area of inferential measurement and 
control, and application of software sensors is developed. 
Development of software sensors is an area of great interest whereby, mostly on the 
basis of empirical models, the states of the process that is difficult or impossible to 
measure can be predicted. The soft sensing technique, developed in recent years, 
has become a widely used solution. It utilizes variables measurable on-line to predict 
the product quality variable through certain modeling approaches, such as 
mechanism modeling, statistical modeling, artificial intelligence modeling, etc.  
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As distributed control system (DCS) is installed in most chemical plants, many 
process variables can be measured and stored in real time (Ma et al., 2009). A 
database containing historical data enables engineers to build soft sensors with a 
goal of producing reliable estimates of unmeasured data. 
Typical soft sensor design procedure is (Fortuna et al., 2007):  

1. Selection of historical data from the plant database 
2. Outlier detection, data filtering 
3. Model structure and regressor selection 
4. Model estimation 
5. Model validation 

Differently structured models can be used to model real systems. One possible 
approach is to start with a simple model structure and gradually increase its 
complexity. Choosing the optimal model structure and regressors is crucial for soft 
sensor performance (Kadlec et al., 2009). 
In the field of industrial applications, the focus of attention is on parametric 
(polynomial) model structures. To estimate polynomial models, the model order must 
be predetermined. Model order can be defined as a number of coefficients for each 
polynomial included in the selected model structure. Dead time – given by the 
number of samples before the output corresponds to the input – must also be 
specified. Depending on the model structure, mentioned and an additional set of 
parameters may need to be adjusted. In a case of multiple input models, 
predetermining the set of parameters can become a very complex task. A 
cumbersome trial and error procedure is therefore commonly applied. To overcome 
the problem of selecting the best model order, as well as the delays of each input 
and other configurable parameters, genetic algorithms (GA) were used.  
The primary application of soft sensors developed in this case study is a temporary 
substitution of measuring equipment, either during maintenance or other periods of 
unavailability.  
In this work, Finite Impulse Response (FIR) and Output Error (OE) models were 
considered. FIR and OE models don’t require past samples of the measured output 
(variable inferred by the soft sensor) when using validation data. Hence, FIR and OE 
model can be used for back-up of measuring devices. 

Model identification 
Linear dynamical models are in many cases sufficient for real-life applications 
(Ljung, 1999). One of the most used linear parametric models is the FIR model 
which presents the linear regression over the past samples of measured input 
signals: 
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where: 

q – the time-shift operator, 
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nu – the number of system inputs, 
ŷ(t) – model output (predicted output) at time t, 
ui(t) – i-th input at time t, 
nki – the time delay for the i-th input, 
nbi - number of past input values.  
Polynomial coefficients of Bi(q) can be determined using the least-square 
optimization method or instrumental variable method. 
The block diagram shown on Figure 1 represents the FIR model structure. 
 

 
Figure 1: Block diagram of the FIR model 

A somewhat extended variant of FIR model is the OE model. 
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The OE model predictor, in shortened form, is given by: 
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where nf is the maximum number of past predicted output.  
The block diagram shown on Figure 2 represents the structure of OE model. 
 

 
 
Figure 2: Block diagram of the OE model 

Model orders (i.e. the parameters na, nb and nk) of the FIR and OE models are 
determined by GA. GA is global optimizing technique with a high potential for finding 
the global optimum of the fitness (objective) function. GA’s are implemented in a 
computer simulation in which a population of chromosomes of candidate solutions to 
an optimization problem evolves toward better solutions. The evolution starts from a 
population of randomly generated individuals. In each generation, the fitness of 
every individual is evaluated, individuals are stochastically selected from the current 
population based on their fitness and modified (recombined and mutated) to form a 
new population. The new population is used in the next iteration of the algorithm. 
The algorithm terminates when a maximum number of generations has been 
produced, or a satisfactory fitness level has been reached (Affenzeller et al., 2009).  

Process description 
70-85% of the benzene in the refinery processes is contributed by reformate from 
catalytic reforming process. The catalytic reformate is fractioned into light and heavy 
reformate and the benzene-rich fraction in splitter columns. Although benzene has a 
high octane number and high calorific values, the benzene content in light reformate 
need to be reduced to 2,7 mas.%, which is less than 2 vol %. This is due the fact 
that benzene is a precursor for the formation of cyclohexane in the process of 
isomerization, and thus an undesirable component of gasoline (low octane number). 
Also, European emission standards (such as EURO IV and EURO V) for vehicle 
exhaust emission and MSAT (Mobile Source Air Toxics) regulations limit the amount 
of benzene in gasoline, due to the hazardous environmental impact.  
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Hence, the continuous measurement of benzene content in reformate is necessary.  
Problem with continuous assessment by process analyzers is that such devices 
besides regular maintenance need also to be often maintained due to contamination 
of the sampling system and also frequent calibration is desirable. 
An overview of a fractionation reformate plant with the variables used for soft sensor 
development is given on Figure 4. Fractionation of light reformate (top product) 
takes place in column C1. Fractionation of the benzene-rich fraction (top product) 
from heavy reformate (bottom product) takes place in column C2.   

 
 

Figure 4: Fractionation reformate plant 

On the basis of consultations with the experts from the plant, and appliance of 
Pearson’s coefficients, PCA and PLS analyses, the following continuously measured 
variables have been chosen as input variables of the soft sensor for the estimation 
of benzene content in light reformate: 
C1 inlet stream temperature, TC-001; 
C1 column bottom temperature, TC-018; 
C1 column temperature, TC-003;  
C1 column pressure, PI-009 and pumparound flowrate, FC-002. 
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Soft sensor development 
Input data was obtained from the plant database over a continuous period of three 
weeks, with a sampling time of five minutes according to the process dynamics. 
Data preprocessing included detecting missing data and outlier detection and 
removal (3 sigma rule). The output data (benzene, vol. %) were taken from the 
period when the on-line analyzer was properly worked, with a sampling time of 
twenty minutes. The number of each input data (sampled every five minutes) must 
corresponds to the number of output data, thus requiring additional output data. This 
was generated by the Multivariate Adaptive Regression Splines algorithm. Data was 
also detrended (linear trend was removed from data - using the least squares 
method and subtracting these values from the measured values) and filtered by 
Loess filter (locally weighted scatterplot smoothing). After data preprocessing, the 
modeling data set for the estimation and the independent validation data set 
included 4500 samples and 1500 samples respectively. After data preprocessing, 
MATLAB System identification toolbox and Global Optimization toolbox were used 
for the development of soft sensor models. 

A. Optimizing model parameters by GA 
Since that the search space (solution space) of finding the optimal parameters 
values are very big, GA method was used. Configurable parameters (of FIR and OE 
model) and their ranges are shown in Table 1. Parameter ranges have been chosen 
based on operators’ experience of observed process dynamics and preliminary 
investigation. 
Table 1: Configurable parameters of FIR and OE model 

Parameter Parameter description Minimum  Maximum  

nb No. of past input samples (there are five nb in each 
model according to five inputs). 1 8 

nk Input delay (there are five nk according to five inputs). 0 15 
nf No. of past predicted output. 1 5 

Table 2 shows the total number of parameters which need to be determined for each 
model with five inputs. Search space, i.e. the total number of possible combinations 
of parameters nb, nk and nf is also presented. The aim of GA is to find one 
combination of parameters among the billions of possible combinations of 
parameters that will best (or as close to the best) describe the process dynamics. 
Table 2: Number of parameters in model and search space 

Model Number of parameters Search space 
FIR 5nb + 5nk = 10 85∙165 = 3,4360∙1010 

OE 5nb + 5nk + 5nf = 15 85∙165∙55 = 1,0737∙1014 
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Important GA parameters, presented in Table 3, have been chosen based on 
experience, as well as rational calculating time. In the GA evolution, each individual 
chromosome in the population represents a set of possible model orders. In the 
proposed GA, 34 individuals have been created in each generation by using a 
crossover procedure, 15 by using a mutation procedure, and 1 is an elite individual 
(i.e., with the lowest fitness function value from the previous generation). The 
algorithm terminated when 60 generations (itarations) had been produced.  

Table 3: GA parameters 

Parameter Value / property 

Population size 50 
Number of generation 60 

Function evaluation 3000 

Selection Stochastic uniform 
Crossover Scattered 

Mutation Uniform 

Mutation probability rate 0,1 
Fitness scaling Rank 

Number of elite individuals 1 

Crossover fraction 0,7 
 

B. Model evaluation criteria and Fitness Function Assignment 
Models are evaluated based on statistical measures like FIT, FPE and RMS value. 
The fitness function (FIT) of model is calculated as follows:  
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y is the measured output, ŷ is the simulated or predicted model output, and ym is the 
mean of y. 100% corresponds to a perfect FIT. Akaike's Final Prediction Error (FPE) 
criterion represents the compromise between model accuracy, expressed by the 
accuracy of estimated parameters, and model complexity. According to Akaike's 
theory, the most accurate model has the smallest FPE (Verhaegen i Verduit, 2007). 
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FPE is defined by the following equation:  

 2FPE 1  dV n ,                           (9) 

where V is the loss function, d is the number of estimated parameters, and n is the 
number of values in the estimation data set. The loss function V is defined by the 
following equation: 
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where θn represents the estimated parameters and   is output error.  
Root mean square error (RMS) as frequently used criteria for model evaluation is 
also presented in the results:  
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FIT should be as high as possible, and FPE and RMS as low as possible. 
Results also include the mean absolute error, eMAE that is given by: 
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The definition of chromosome fitness function is an important element of a GA (Dam 
i Saraf, 2007). Since preliminary investigation showed that FIT and FPE are not 
correlated, but both are frequently used criteria for model evaluation, they are 
integrated in one fitness function y, as follows: 

  100 – FIT 1000 FPE 100 RMS    y                 (13) 
The weighted sum method for multi-objective criteria is used for setting the fitness 
function. Each criterion is assigned a weighting value (estimated from the previous 
investigation), and fitness function is a linear combination of all weighted criteria 
(Venkataraman, 2009; Deb, 2009). 

Results 
Table 4 shows measurement range and basic statistical measures of input variables 
and output variable. 
Table 4: Descriptive statistics of input and output data 

 No. of 
samples Mean Median Min Max Stand. 

deviation 
Input 1, °C 6000 107,40 100,98 89,83 125,35 10,43 
Input 2, °C 6000 175,49 175,49 168,80 177,65 0,48 
Input 3, °C 6000 125,95 125,74 120,74 138,76 1,66 
Input 4, bar 6000 2,02 2,02 1,96 2,09 0,032 
Input 5, t/h 6000 41,60 41,31 28,65 62,74 4,01 

Output, vol% 6000 1,20 1,27 0,50 1,89 0,29 
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Figure 5 shows 6000 continuously measured input data and analyzer’s output data 
collected from the process history data base. All results were calculated for a new 
set of validation data, containing 1500 data. Parameters nb, nf and nk were 
estimated by minimizing the objective function (13) using the GA procedure, as was 
discussed earlier. Coefficients of polynomial Bi(q) and F(q) were estimated using the 
optimization methods integrated with the MATLAB System Identification Toolbox. 

 
Figure 5: Input and output variables 

Model order parameters of the best achieved models are presented in the vector 
form in table 5. Properties of the FIR and OE model are shown in Table 6. 

Table 5: Estimated model orders  

 FIR OE 
nb [6 7 8 8 8] [6 1 2 3 3] 
nk [5 3 15 5 15] [1 8 7 9 13] 
nf / [1 1 2 2 1] 
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Table 6: Model properties 

 FIT FPE RMS eMAE 
FIR 78,895 0,0064 0,0517 0,0391 
OE 90,267 0,0023 0,0239 0,0171 

Although FIR model has a relatively simple model structure, it gives satisfactory 
results on a validation data set. Compared to the FIR model, the OE model gives 
better results, with a lower model order (lower nb) as was expected, since the past 
predicted output values are taken. Figures 6 and 7 show the comparison between 
model and measured output for the validation data set of FIR and OE model, 
respectively. It can be seen that all model outputs match very good for the validation 
data. A graphical comparison and the corresponding FIT, FPE and RMS values 
show that analyzer and model OE data are in accurate agreement. 

 
Figure 6: Comparison between analyzer data and FIR model output data 

 
Figure 7: Comparison between analyzer data and OE model output data 
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OE model obviously gave better results, but OE model depends on past model 
output, hence, can be unstable. In the case when one input is unavailable for any 
reason or for interruption period of plant operation, it takes some time for OE to start 
to correctly calculate the output. Therefore, besides OE model, FIR model should be 
applied on-site as more reliable model with still satisfied results. 
The models are implemented on advanced application module within the distributed 
control system (DCS). Benzene content is calculated based on dynamic polynomial 
model using Honeywell Control Language program. Calculated output values are 
stored in process history database (PHD) from where they are available to plant 
operators as numeric values or trends. Currently, the validity of the applied model 
cannot be fully tested at the plant, because the benzene process analyzer (whose 
purpose now performs model) is for a long time out of service. Therefore, the results 
obtained by the model, are compared with laboratory analyzes carried out one-two 
times a day. As it can be seen from the Figure 8, implemented FIR model gave 
satisfied results to the comparison with the laboratory assays. In future, it remains to 
do the fine-tuning of the model as soon as process on-line analyzers data become 
available. 
 

 
Figure 8: Comparison between laboratory measured and FIR model output data 

Conclusion 
Linear dynamic models for the estimation of benzene content of light reformate were 
developed. To avoid a trial and error procedure, GA method was proposed for model 
order selection, which makes the development of soft sensors more systematic. 
Chosen models show a satisfactory match with experimental data, thus proving their 
usefulness as soft sensors for the on-line estimation of benzene content in light 
reformate. Using the described procedure, it was shown that GA can be satisfactorily 
applied for optimizing configurable parameters of input-output polynomial models. 
Both models can be successfully employed as the soft sensor for the on-line 
prediction of benzene content. 
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