MANAGEMENT OF THE DIFFICULT AIRWAY

Vesna Novak-Jankovič

Clinical Department of Anesthesiology and Intensive Therapy, University Medical Centre Ljubljana, Ljubljana, Slovenia

SUMMARY – Management of difficult airway is one of the most challenging tasks for anesthesiologists, and failure of securing it could have fatal consequences. We must be prepared to deal with problems in management of difficult airway at any time. Difficult intubation can either be anticipated or unanticipated. An anesthesiologist must be aware of the possibility of both situations to arise and preparations must be taken to deal with such cases and improve the safety of our patients. Practice guidelines are systematically developed recommendations that help anesthesiologists in the management of difficult airway.

Key words: Difficult airway, management, unanticipated, anticipated

Introduction

The failure to maintain a patient airway is a source of serious concern for anesthesiologists. A difficult airway is defined as the clinical situation in which a conventionally trained anesthesiologist experiences difficulty with face mask ventilation and/or difficulty with tracheal intubation. Difficult mask ventilation is defined as the inability of a trained anesthesiologist to maintain oxygen saturation >90%, using a face mask, 100% oxygen and positive pressure ventilation. Difficult intubation is defined as the need for more than three attempts for intubation of the trachea or more than 10 minutes to achieve it. The incidence of difficult mask ventilation is estimated to be 0.9%-5%, and the incidence of difficult intubation is 0.13%-13%2-7. The major complications associated with the difficult airway include death, hypoxic brain injury, cardio-pulmonary arrest, unnecessary tracheotomy, airway trauma including aspiration of gastric contents, and damage of soft tissues and teeth. In order to avoid this fatal outcome, several societies have developed guidelines for management of the difficult airway8-11.

Prediction of Difficult Airway Management

Medical history and physical examination are important tools in prediction of the difficult airway. An airway physical examination should be performed prior to the initiation of anesthetic care in all patients. Focused medical history (previous anesthesia record or anesthesia document) may detect medical, surgical and anesthetic factors that may indicate the presence of a difficult airway1. Patients with congenital syndromes (Pierre-Robin, Treacher-Collins, Klippel-Feil, etc.) and acquired diseases (acromegaly, ankylosing spondylitis, tumors, burns, hematoma, cervicofacial injuries, Madelung’s disease, etc.) are associated with the presence of a difficult airway12. An airway physical examination should be performed before anesthetic management to detect physical characteristics that may indicate the presence of a difficult airway (Table 1).
Table 1. Components of the preoperative airway physical examination

<table>
<thead>
<tr>
<th>Airway examination component</th>
<th>Findings that give cause for concern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face inspection</td>
<td>Beard, size of nose, mouth and tongue, jaw protrusion, jewelry</td>
</tr>
<tr>
<td>Patency of nares</td>
<td>Masses inside nasal cavity, deviated nasal septum</td>
</tr>
<tr>
<td>Teeth</td>
<td>Relatively long upper incisors or canines, protruding teeth, lack of teeth, an edentulous state</td>
</tr>
<tr>
<td>Relation of maxillary and mandibular incisors during normal jaw closure</td>
<td>Maxillary incisors anterior to mandibular incisors</td>
</tr>
<tr>
<td>Relation of maxillary and mandibular incisors during voluntary protrusion of lower jaw</td>
<td>Inability to protrude the lower jaw and mandibular incisors beyond the upper incisors</td>
</tr>
<tr>
<td>Temporomandibular joint movement</td>
<td>Interincisor distance less than 3 cm</td>
</tr>
<tr>
<td>Visibility of uvula</td>
<td>Not visible</td>
</tr>
<tr>
<td>Shape of palate</td>
<td>Highly arched or very narrow</td>
</tr>
<tr>
<td>Compliance of mandibular space</td>
<td>Stiff, indurated, occupied by mass</td>
</tr>
<tr>
<td>Shape of neck</td>
<td>Thick and short (sternomental distance below 12 cm)</td>
</tr>
<tr>
<td>Voice</td>
<td>Presence of hoarse voice or stridor</td>
</tr>
<tr>
<td>Scars</td>
<td>Presence of signs of previous tracheostomy</td>
</tr>
<tr>
<td>Range of motion of head and neck</td>
<td>Patient cannot touch tip of chin to chest or cannot extend neck more than 35°</td>
</tr>
<tr>
<td>Assessment of submandibular space</td>
<td>Hypomental distance less than 3 cm</td>
</tr>
<tr>
<td>Assessment of body habitus</td>
<td>Thyromental distance less than three ordinary finger breadths less than 6.5 cm</td>
</tr>
<tr>
<td></td>
<td>Pregnancy, obesity, snoring</td>
</tr>
</tbody>
</table>

Fig. 1. Classification according to the modified Mallampati test.

Class I: visualization of the soft palate, fauces, uvula, anterior and posterior pillars.
Class II: visualization of the soft palate, fauces and uvula.
Class III: visualization of the soft palate and base of uvula.
Class IV: visualization of only hard palate.
Specific Screening Test to Predict Difficult Intubation

There are a number of specific clinical assessments that have been developed to try to identify patients who will prove difficult to intubate: Mallampati test (Fig. 1), thyromental distance (normal ≥6.5 cm), sternal-mental distance (normal ≥12.5 cm), protrusion of the mandible, and radiographic assessment.13-15

Fig. 2. Classification according to Cormack and Lehane during direct laryngoscopy.

Grade 1: visualization of the entire laryngeal aperture.
Grade 2: visualization of the posterior commissure of the laryngeal aperture only.
Grade 3: visualization of the epiglottis only.
Grade 4: visualization of the soft palate only.

Direct laryngoscopy visualization of the larynx according to Cormack and Lehane is illustrated in Figure 2.16

Preparation for Anticipated Difficult Airway

Appropriate equipment must be immediately available on the portable storage unit (Fig. 3). This will include laryngoscopes with a selection of blades, a variety of endotracheal tubes, stylets, flexible bougies, oral and nasal airways, a cricothyroid puncture kit, reliable suction equipment, supraglottic ventilatory devices, video laryngoscopes, rigid optic laryngoscopes, and flexible fiberoptic bronchoscopes. Awake intubation under local anesthesia may be performed using fiberoptic flexible bronchoscope. Retrograde intubation is a technique for patients with cancrum oris.

Management of Unanticipated Difficult Airway

The British Difficult Airway Society (DAS) has developed very simple algorithms that use only a few airway devices which are available in many settings.17-19

Our national guidelines are adopted and modified DAS guidelines (Fig. 4).

The anesthesiologist should inform the patient on the airway difficulty and notification cards which we use at University Medical Centre Ljubljana are very useful (Fig. 5).
Conclusion

Difficult airway management is a major responsibility for the anesthesiologist. Identifying situations and patients at frequent risk of airway management problems is a key to optimal care. The use of guidelines is to facilitate the management of the difficult airway and to reduce the incidence of catastrophic outcomes.

References


Fig. 5. Slovenian Anesthesia Problem Card.
Sažetak

ZBRINJAVANJE OTEŽANOG DIŠNOG PUTA

V. Novak-Janković

Zbrinjavanje otežanog dišnog puta je jedan od najzahtjevnijih postupaka u anesteziologiji i neuspjeh pri tome može imati fatalne posljedice. Anesteziolog mora u svakom trenutku biti pripremljen za ovaj postupak. Teška intubacija može biti očekivana i neočekivana. Posjedovanje posebnih znanja i vještina u zbrinjavanju navedenih situacija je ključni čimbenik za sigurnost bolesnika. Na temelju iskustava i preporuka su nastale smjernice koje pomažu anesteziologu u zbrinjavanju otežanog dišnog puta.

Ključne riječi: Otežani dišni put, zbrinjavanje, neočekivani, očekivani