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One-step behaviour of a method for finding a

maximal solution of a system of linear inequalities

Helmuth Späth∗ and G.Alistair Watson†

Abstract. It has been observed empirically that a simple lineariza-
tion method applied to the problem of finding maximal solutions to sys-
tems of linear inequalities frequently terminates in one step. This is
normally a Kuhn-Tucker point, and depending on the starting point,
can be a global solution. An explanation of this phenomenon is given,
and this is illustrated by examples.
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1. Introduction

Let A ∈ Rm×n,b ∈ Rm be given and define the set

S = {x ∈ Rn : Ax ≤ b}.

If it is required to determine a maximal element of S in the sense of finding an
element of S of the largest l2 norm, then this can be expressed as

find x ∈ S to maximize ‖x‖, (1)

where the norm is the least squares norm on Rn.
This problem normally has many local solutions, and is NP-hard. It is a special

case of the global maximization of a convex function (which is equivalent to the
global minimization of a concave function) over a polyhedral set. There are many
papers devoted to this kind of problem and quite efficient global solution methods
are available, in particular when, as here, the objective function is quadratic: see
for example [3] and the references which are given there.
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A simple approach to the solution of (1) is to solve a sequence of linearized
problems of the form

find x ∈ S to maximize xT x(t), (2)

where x(0) is given, and the solution to (2) gives x(t+1). This is just a linear
programming problem, and so can be easily solved by standard methods. There is
a particular feature of the iteration process which is of interest: it has been observed
empirically that the iteration frequently terminates in one step. The point reached
is a Kuhn-Tucker point or a stationary point of the problem, which, depending on
the starting point, may be a global solution. Our intention here is to investigate
and try to understand what is happening. A similar phenomenon has been observed
in [6].
In the next section we examine the relationship between solutions of (2) and

stationary points of (1). We briefly consider the relevance of this kind of iteration
to some extensions of the main problem, including that of finding minimal solutions.
Finally, in Section 3 we illustrate the main findings by some examples.

2. One-step convergence

For any x ∈ S define the index set I(x) by

I(x) = {i : (Ax − b)i = 0}.

We can define a stationary point (or Kuhn-Tucker point) of (1) as a point satisfying
first order necessary conditions for a solution.

Theorem 1. Necessary conditions for x∗ to solve (1) are that there exist non-
negative numbers λi, i ∈ I(x∗) such that

x∗ = AT λ,

where λi = 0 if i /∈ I(x∗).
Proof. Because the constraints of (1) are linear, the Kuhn-Tucker conditions

are necessary for a solution (for example, Fletcher [2], Theorem 9.1.1 and Lemma
9.2.2.). ✷

Theorem 2. Let x∗ be a Kuhn-Tucker point of (1), and let x(t) = x∗. Then
x∗ solves (2).

Proof. Let x(t) = x∗ in (2). Then because the Kuhn-Tucker conditions are
necessary and sufficient for a solution, x is a solution of (2) if and only if there
exists λ such that

x∗ = AT λ,

λ ≥ 0, λT (b − Ax) = 0. (3)

The result follows using Theorem 1. ✷

This result shows that Kuhn-Tucker points of (1) are fixed points of the iteration
process based on (2) provided that the linear programming problem (2) has a unique
solution there. This ensures that if a Kuhn-Tucker point is reached, then the method
will terminate there.
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We now consider the question of what constitutes an effective choice of x(t) (or
x(0)). Let the rows of A be defined by

AT = [a1, . . . ,am].

Theorem 3. Let x∗ be a Kuhn-Tucker point of (1) and let I∗ = I(x∗). Let K∗

denote the convex cone generated by the vectors

{ai, i ∈ I∗},
and let x(t) ∈ K∗. Then if (2) has a unique solution, x(t+1) = x∗.

Proof. By definition
x(t) = AT λ,

for some λ satisfying the conditions (3) with x = x∗. In other words, x∗ solves (2).
The result follows from uniqueness. ✷

It follows from this Theorem that a choice of starting point x(0) in the union
of all the cones defined by the set of Kuhn-Tucker points of (1) will result in the
solution of (2) producing one of the stationary points provided only that (2) has
a unique solution. In other words, there will be convergence in one step. The
particular stationary point reached will be the one associated with the cone inside
which x(0) lies. Notice that if x(0) lies on the boundary of two of the cones, then
(2) cannot have a unique solution: one of the relevant stationary points may be
generated, but there is no guarantee of this.
If x(0) lies outside the union of the cones defined by the stationary points, it

is of course possible that the solution to (2) at x(0), which will give x(1), will lie
inside the union of the cones, in which case the method will (normally) terminate
at the next step. There is again no guarantee of this, although numerical evidence
suggests that usually there is termination at a stationary point in a few steps.
Many methods for solving (2) will terminate at a vertex of S, that is a point with

|I(x)| ≥ n. Usually equality will hold here, but the vertex may be degenerate. It is
well known that any local maximum of a strictly convex function (for example the
objective function of (1)) over a polyhedral set must occur at a vertex [5]. Therefore
a solution of (1) will normally also be a solution of (2) for some x(t).
The above analysis applies to some extensions of the main problem (1), for

example
find x ∈ S to maximize xT g(x), (4)

where g is a nonlinear function. Then we can consider the possibility of solving this
through a sequence of linear problems having the form

find x ∈ S to maximize xT g(x(t)). (5)

Analogous to Theorem 3 we have
Theorem 4. Let x∗ be a Kuhn-Tucker point of (4) and let I∗ = I(x∗). Let K∗

denote the convex cone generated by the vectors

{ai, i ∈ I∗},
and let g(x(t)) ∈ K∗. Then if (5) has a unique solution, x(t+1) = x∗.
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Therefore again a Kuhn Tucker point can be obtained in one step with a suitable
starting point. However, the algorithm may not terminate there. For the argument
of Theorem 2 to go through, we require g(x∗) ∈ K∗, and except for the case when
g(x) = x, there seems to be no guarantee of this. In addition, unless xT g(x) is
convex, then Kuhn-Tucker points need not be vertices of S.
Another modification of (1) is the corresponding minimization problem:

find x ∈ S to minimize ‖x‖, (6)

where S is defined as before. Indeed we may consider a more general problem

find x ∈ S to minimize ‖Bx − d‖, (7)

where B ∈ Rt×n, d ∈ Rt are given: the previous problem is clearly a special case
when t = n, B = I and d = 0. A suitable linearized problem for (7) is then

find x ∈ S to mimimize (Bx − d)T (Bx(t) − d) (8)

The problems (6) and (7) are convex problems and these can be treated by
modifications of standard algorithms for least squares problems (for example [4],
Chapter 23). However, the use of (8) is anyway of less value in the minimization
context for two main reasons: (i) there are no local solutions which are not global,
and so (in the case of a unique solution) only one cone inside which the initial
approximation must lie for one-step termination, and (ii) the solution may not
occur at a vertex. It is easy to find examples when the solution to (7) does not
occur at a vertex.

Example 1. In (6), let m = 1, n = 2,

A =


 −1 −2

−1 0
0 −1


 ,b =


 −6

0
0


 .

Then the solution occurs at the point x∗ = 6
5 (1, 2)

T and K∗ is the cone generated
by the single vector (1, 2)T . With x(t) ∈ K∗, it is clear that x∗ is a solution to (8).
However, the simplex method will return one of the two vertices (0, 3) or (6, 0), so
using (8) is unlikely to be useful for this problem.

3. Some examples

We now illustrate the results of the previous section by considering some problems
of the form (1). In fact, all the examples have a nonnegativity constraint on x, so
we will consider the feasible region S to be defined by

S = {x ∈ Rn : Ax ≤ b, x ≥ 0}.

This is as before if x ≥ 0 is incorporated into the other constraints Ax ≤ b by
adding −Ix ≤ 0. To motivate our computational strategy we will first illustrate
Theorem 3.
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Example 2. Let

A =



1 1
5 8
1 0
1 −1


 , b =




6
40
4
3




The feasible region Ax ≤ b, x ≥ 0 is shown in Figure 1.

Figure 1.

There are three Kuhn-Tucker points for the maximization problem in this case,
namely (0, 5), (8/3, 10/3), and (4, 2), which are indicated by arrows on the diagram.
The corresponding three cones are given by r(−1, 0)T + s(5, 8)T , r(5, 8)T + s(1, 1)T ,
and r(1, 1)T + s(1, 0)T , where r, s ≥ 0, and these are also shown in Figure 1. If x(0)

lies in one of those cones and if the corresponding linear program (2) has a unique
solution, then the method will converge to the corresponding Kuhn-Tucker point in
one step. Clearly this requirement is satisfied if x(0) lies in the interior of one of
the cones.
For actual problems of course we neither know the Kuhn-Tucker points nor the

corresponding cones. If the union of the cones contains x ≥ 0 as in the above
example, we can take M randomly generated starting values x(0) satisfying x ≥ 0
and solve (2). Clearly x(0) and αx(0), α > 0, are in the same cone and so different
values of α will change the objective function but make no difference to the solution
vector. Now there may be several termination points, and we can select the one for
which xT x is maximal. Of course, we are not certain to get the absolute maximum
in this way. It is also clear that for larger m, M has also to be increased.

Example 3. Consider the linear system of inequalities

x − 2y + z ≤ 2,
x + y − z ≤ 4,

−x + 2y + 2z ≤ 8,
−x − y ≤ 4.

Using the Fourier-Motzkin elimination method [1] we get at first

−8 + 2y + 2z
−4 − y

}
≤ x ≤

{
2 + 2y −z
4 − y +z

. (9)
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Ignoring x in these four double-sided inqualities we get

3z ≤ 10, 3y + z ≤ 12, −3y + z ≤ 6, −z ≤ 8.

Thus we have
−8 ≤ z ≤ 10/3

and
z − 6 ≤ 3y ≤ 12− z.

Inserting values z and y with these properties into (9) we will get all possible values
of x. Looking for x, y, z ≥ 0 with x2 + y2 + z2 maximized we get at first z = 10/3,
then y = (12 − z)/3 = 26/9 and finally x = 2 + 2y − z = 4 − y + z = 40/9. Thus
x∗ = 1

9 (40, 26, 30)
T is the desired global maximum. With M = 100 starting values

our method reached x∗ 97 times and x∗∗ = (0, 4, 0)T (another Kuhn-Tucker point)
3 times, always in one step.

Example 4. Let m = 3, n = 5, and

A =


 0 −1 2 −3 4

5 6 −7 8 −9
−10 11 12 13 −14


 , b =


 15
16
17


 .

Again with M = 100 the method obtained two solutions

x∗ = (1.50, 0, 0, 33.80, 29.10)T , x∗∗ = (14.93, 0, 11.19, 2.46, 0)T.

The first one (giving the likely global maximum) was obtained 82 times, the second
one 18 times. Only in one case did the method take two iterations, reflecting a
choice of x(0) not inside an appropriate cone. The total computation time on a PC
was only a few milliseconds.

Example 5. For given m and n we generated the matrix A such that each
element aij was (equally distributed) randomly chosen from [0, 1]. To guarantee
feasibility we set bi = n (i = 1, . . . , n). Then we took M randomly generated
starting values x(0) where x

(0)
i (i = 1, . . . , n) were also randomly selected from

[0, 1]. Note that those x(0) might not be within the union of the cones.
We run several examples with similar results. In the case of m = 20, n = 5,

M = 1000 we get 11 different Kuhn-Tucker points. The corresponding objective
function values OF , the number k of nonzero elements within x∗, and the percentage
p of appearance are given in Table 1.

It is most likely that the objective function value OF = 28.03 corresponds to the
absolute maximum. The number of iterations normally was one, but according to
the statements in Section 2 it also was up to three. The computing time on a PC
was about one second here and thus is neglectable.
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OF k p

17.00 2 6.2
19.63 2 9.9
20.36 2 10.6
25.52 1 11.1
26.01 1 9.1
26.14 1 6.6
26.26 2 1.8
26.29 1 15.2
26.39 2 6.5
28.01 1 11.6
28.03 1 11.4

Table 1.

4. Conclusions

The purpose of this note is to explain the empirically observed phenomenon that
the sequence (2) can frequently give one-step convergence to a stationary point of
(1). The circumstances when convergence will be obtained to the global solution of
(1) have also been identified. Of course these are theoretical rather than practical
results, and do not imply that using (2) will generally be an efficient way of finding
the global solution: more sophisticated methods such as those to be found in [3]
will clearly be necessary. On the other hand, the use of (2) with different starting
points gives a simple way of identifying a number of stationary points, from which
a good (though not necessarily optimal) solution may be obtained.
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