# On NP - polyagroups 

Janez Ušan* and Radoslav Galić ${ }^{\dagger}$


#### Abstract

In the present paper: 1) an $N P$-polyagroup is defined as a generalization of an $n$-group for $n \geq 3$; and 2) $N P$-polyagroups of the type $(s, n-1)$ is described as algebras of the type $<n, n-1, n-2>$ $[=<k \cdot s+1, k \cdot s, k \cdot s-1>; k>1, s \geq 1]$.


Key words: $\{1, n\}$-neutral operation, $n$-group, $n$-semigroup, $n$-quasigroup, $P s$-associative $n$-groupoid, $P$-polyagroup, $N P$-polyagroup

AMS subject classifications: 20N15

Received September 21, 2001
Accepted November 14, 2001

## 1. Preliminaries

Definition 1. Let $n \geq 2$ and let $(Q, A)$ be an n-groupoid. We say that $(Q, A)$ is a Dörnte n-group [ briefly: n-group ] iff it is an n-semigroup and an n-quasigroup as well.

Remark 1. A notion of an n-group was introduced by W. Dörnte in [1] as a generalization of the notion of a group. See, also [2-4].

Proposition 1 [10]. Let $n \geq 2$ and let $(Q, A)$ be an $n$-groupoid. Then the following statements are equivalent :
(i) $(Q, A)$ is an n-group;
(ii) there are mappings ${ }^{-1}$ and $\mathbf{e}$ of the sets $Q^{n-1}$ and $Q^{n-2}$, respectively, into the set $Q$ such that the following laws hold in the algebra $\left(Q,\left\{A,{ }^{-1}, \mathbf{e}\right\}\right)$ [ of the type $\langle n, n-1, n-2\rangle$ ]
(a) $\quad A\left(x_{1}^{n-2}, A\left(x_{n-1}^{2 n-2}\right), x_{2 n-1}\right)=A\left(x_{1}^{n-1}, A\left(x_{n}^{2 n-1}\right)\right)$,
(b) $\quad A\left(\mathbf{e}\left(a_{1}^{n-2}\right), a_{1}^{n-2}, x\right)=x$ and
(c) $\quad A\left(\left(a_{1}^{n-2}, a\right)^{-1}, a_{1}^{n-2}, a\right)=\mathbf{e}\left(a_{1}^{n-2}\right) ;$ and

[^0](iii) there are mappings ${ }^{-1}$ and $\mathbf{e}$ of the sets $Q^{n-1}$ and $Q^{n-2}$, respectively, into the set $Q$ such that the following laws hold in the algebra $\left(Q,\left\{A,{ }^{-1}, \mathbf{e}\right\}\right)$ [ of the type $\langle n, n-1, n-2\rangle$ ]
( $\bar{a}) \quad A\left(A\left(x_{1}^{n}\right), x_{n+1}^{2 n-1}\right)=A\left(x_{1}, A\left(x_{2}^{n+1}\right), x_{n+2}^{2 n-1}\right)$,
( $\bar{b}) \quad A\left(x, a_{1}^{n-2}, \mathbf{e}\left(a_{1}^{n-2}\right)\right)=x$
( $\bar{c}) \quad A\left(a, a_{1}^{n-2},\left(a_{1}^{n-2}, a\right)^{-1}\right)=\mathbf{e}\left(a_{1}^{n-2}\right)$.
Remark 2. e is a $\{1, n\}$-neutral operation of an n-groupoid $(Q, A)$ iff algebra $(Q,\{A, \mathbf{e}\})$ of the type $\langle n, n-2\rangle$ satisfies the laws $(b)$ and $(\bar{b})$ from Proposition 1 [: [7] ]. The notion of an $\{i, j\}$-neutral operation $(i, j \in\{1, \ldots, n\}, i<j)$ of an n-groupoid is defined in a similar way [: [7] ]. Every n-groupoid has at most one $\{i, j\}$-neutral operation [: [7] ]. In every $n$-group $(n \geq 2)$ there is an $\{1, n\}$-neutral operation [: [7] ]. There are $n$-groups without an $\{i, j\}$-neutral operation with $\{i, j\} \neq\{1, n\}[:[9]$ ]. In [9], $n$-groups with $\{i, j\}$-neutral operations, for $\{i, j\} \neq\{1, n\}$ are described. Operation ${ }^{-1}$ from Proposition $1[(c),(\bar{c})]$ is a generalization of the inverse operation in a group. In fact, if $(Q, A)$ is an $n$-group, $n \geq 2$, then for every $a \in Q$ and for every sequence $a_{1}^{n-2}$ over $Q$
$$
\left(a_{1}^{n-2}, a\right) \stackrel{-1}{\text { def }}=\mathrm{E}\left(a_{1}^{n-2}, a, a_{1}^{n-2}\right),
$$
where E is a $\{1,2 n-1\}$-neutral operation of the $(2 n-1)$-group $(Q, \stackrel{2}{A}) ;{ }_{A}^{A}\left(x_{1}^{2 n-1}\right) \stackrel{\text { def }}{=}$ $A\left(A\left(x_{1}^{n}\right), x_{n+1}^{2 n-1}\right)[:[8]]$. (For $n=2, a^{-1}=\mathrm{E}(a) ; a^{-1}$ is the inverse element of element a with respect to the neutral element $\mathbf{e}(\emptyset)$ of the group $(Q, A)$.)

Definition 2. Let $k>1, s \geq 1, n=k \cdot s+1$ and let $(Q, A)$ be an $n$-groupoid. Then, we say that $(Q, A)$ is a partiallys-associative (briefly: Ps-associative) $n$-groupoid iff for every $i, j \in\{t \cdot s+1 \mid t \in\{0,1, \ldots, k\}\}, i<j$, the following law holds

$$
A\left(x_{1}^{i-1}, A\left(x_{i}^{i+n-1}\right), x_{i+n}^{2 n-1}\right)=A\left(x_{1}^{j-1}, A\left(x_{j}^{j+n-1}\right), x_{j+n}^{2 n-1}\right)
$$

$[:\langle i, j\rangle-$ associative law ].
Remark 3. For $s=1(Q, A)$ is a $(k+1)$-semigroup; $k>1$. A notion of an $s$-associative $n$-groupoid was introduced by F.M. Sokhatsky (for example [5]).

Definition 3. Let $k>1, s \geq 1, n=k \cdot s+1$ and let $(Q, A)$ be an $n$-groupoid. Then, we say that $(Q, A)$ is a $P$-polyagroup of the type $(s, n-1)$ iff it is a $P s$-associative $n$-groupoid and an $n$-quasigroup.
A notion of a polyagroup was introduced by F.M. Sokhatsky (for example [6]).

## 2. Auxiliary propositions

Proposition 2 [10]. Let $n \geq 2$ and let $(Q, A)$ be an $n$-groupoid. Furthermore, let the $<1, n>$-associative law hold in $(Q, A)$, and let for every $a_{1}^{n} \in Q$ there be at least one $x \in Q$ and at least one $y \in Q$ such that the following equalities $A\left(a_{1}^{n-1}, x\right)=a_{n}$ and $A\left(y, a_{1}^{n-1}\right)=a_{n}$ hold. Then, there are mappings $\mathbf{e}$ and ${ }^{-1}$ respectively of the sets $Q^{n-2}$ and $Q^{n-1}$ into the set $Q$ such that the following laws

$$
\begin{gathered}
A\left(\mathbf{e}\left(a_{1}^{n-2}\right), a_{1}^{n-2}, x\right)=x, A\left(x, a_{1}^{n-2}, \mathbf{e}\left(a_{1}^{n-2}\right)\right)=x \\
A\left(\left(a_{1}^{n-2}, x\right)^{-1}, a_{1}^{n-2}, x\right)=\mathbf{e}\left(a_{1}^{n-2}\right), A\left(x, a_{1}^{n-2},\left(a_{1}^{n-2}, x\right)^{-1}\right)=\mathbf{e}\left(a_{1}^{n-2}\right)
\end{gathered}
$$

$$
\begin{gathered}
A\left(\left(a_{1}^{n-2}, a\right)^{-1}, a_{1}^{n-2}, A\left(a, a_{1}^{n-2}, x\right)\right)=x \text { and } \\
A\left(A\left(x, a_{1}^{n-2}, a\right), a_{1}^{n-2},\left(a_{1}^{n-2}, a\right)^{-1}\right)=x
\end{gathered}
$$

hold in the algebra $\left(Q,\left\{A,^{-1}, \mathbf{e}\right\}\right)$.
(See, also [11].)
Proposition 3. Let $k>1, s \geq 1, n=k \cdot s+1$ and let $(Q, A)$ be an $n-$ groupoid. Also, let
(a) the $<1, s+1>$-associative $[<(k-1) \cdot s+1, k \cdot s+1>$-associative ] law hold in the $(Q, A)$; and
(b) for every $x, y, a_{1}^{n-1} \in Q$ the following implication holds

$$
\begin{gathered}
A\left(x, a_{1}^{n-1}\right)=A\left(y, a_{1}^{n-1}\right) \Rightarrow x=y \\
{\left[A\left(a_{1}^{n-1}, x\right)=A\left(a_{1}^{n-1}, y\right) \Rightarrow x=y\right] .}
\end{gathered}
$$

Then $(Q, A)$ is a $P s$-associative $n$-groupoid.

## Sketch of the proof.

$$
\begin{aligned}
& A\left(A\left(x_{1}^{n}\right), x_{n+1}^{2 n-1}\right)=A\left(x_{1}^{s}, A\left(x_{s+1}^{s+n}\right), x_{s+n+1}^{2 n-1}\right) \Rightarrow A\left(y_{1}^{s}, A\left(A\left(x_{1}^{n}\right), x_{n+1}^{2 n-1}\right), y_{s+1}^{n-1}\right) \\
& =A\left(y_{1}^{s}, A\left(x_{1}^{s}, A\left(x_{s+1}^{s+n}\right), x_{s+n+1}^{2 n-1}\right), y_{s+1}^{n-1}\right) \Rightarrow A\left(A\left(y_{1}^{s}, A\left(x_{1}^{n}\right), x_{n+1}^{2 n-1-s}\right), x_{2 n-s}^{2 n-1}, y_{s+1}^{n-1}\right) \\
& =A\left(A\left(y_{1}^{s}, x_{1}^{s}, A\left(x_{s+1}^{s+n}\right), x_{s+n+1}^{2 n-1-s}\right), x_{2 n-s}^{2 n-1}, y_{s+1}^{n-1}\right) \Rightarrow A\left(y_{1}^{s}, A\left(x_{1}^{n}\right), x_{n+1}^{2 n-1-s}\right) \\
& =A\left(y_{1}^{s}, x_{1}^{s}, A\left(x_{s+1}^{s+n}\right), x_{s+n+1}^{2 n-1-s}\right)
\end{aligned}
$$

(See, also $[10,11]$.)

## 3. Results

Definition 4. Let $k>1, s \geq 1, n=k \cdot s+1$ and let $(Q, A)$ be a $P s$-associative $n$-groupoid. We shall say that $(Q, A)$ is a near- $\mathbf{P}$-polyagroup (briefly: NPpolyagroup) of the type $(s, n-1)$ iff for every $i \in\{t \cdot s+1 \mid t \in\{0,1, \ldots, k\}\}$ and for all $a_{1}^{n} \in Q$ there is exactly one $x_{i} \in Q$ such that the equality

$$
A\left(a_{1}^{i-1}, x_{i}, a_{i}^{n-1}\right)=a_{n}
$$

holds.
Remark 4. Every P-polyagroup of the type $(s, n-1)$ is an $N P$-polyagroup of the type $(s, n-1)$.

Example 1. Let $(Q, \cdot)$ be a group and let $\alpha$ be a mapping of the set $Q$ into the set $Q$. Let, also, for each $x_{1}^{5} \in Q$

$$
A\left(x_{1}^{5}\right) \stackrel{\text { def }}{=} x_{1} \cdot \alpha\left(x_{2}\right) \cdot x_{3} \cdot \alpha\left(x_{4}\right) \cdot x_{5}
$$

Then $(Q, A)$ is an $N P$-polyagroup of the type (2,4). Moreover, if $\alpha$ is not a permutation of the set $Q$, then $(Q, A)$ is not a 5 -quasigroup.

Theorem 1. Let $k>1, s \geq 1, n=k \cdot s+1$ and let $(Q, A)$ be an $n$-groupoid. Then, $(Q, A)$ is an $\mathbf{N P}$-polyagroup of the type $(s, n-1)$ iff there are mappings ${ }^{-1}$ and $\mathbf{e}$ respectively of the sets $Q^{n-1}$ and $Q^{n-2}$ into the set $Q$ such that the following laws hold in the algebra $\left(Q,\left\{A,^{-1}, \mathbf{e}\right\}\right)$ [ of the type $\left.<n, n-1, n-2>\right]$ :
(i) $A\left(A\left(x_{1}^{n}\right), x_{n+1}^{2 n-1}\right)=A\left(x_{1}^{s}, A\left(x_{s+1}^{s+n}\right), x_{s+n+1}^{2 n-1}\right)$,
(ii) $A\left(x, a_{1}^{n-2}, \mathbf{e}\left(a_{1}^{n-2}\right)\right)=x$ and
(iii) $A\left(a, a_{1}^{n-2},\left(a_{1}^{n-2}, a\right)^{-1}\right)=\mathbf{e}\left(a_{1}^{n-2}\right)$.
[See, also Proposition 1, Remark 2 and Theorem 2]
Proof. 1$) \Rightarrow$ : Let $(Q, A)$ be an NP-polyagroup of the type $(s, n-1)$. Then, by Proposition 2, there is an algebra $\left(Q,\left\{A,^{-1}, \mathbf{e}\right\}\right)$ of the type $<n, n-1, n-2>$ in which the laws $(i)-(i i i)$ hold.
$2) \Leftarrow$ : Let $\left(Q,\left\{A,^{-1}, \mathbf{e}\right\}\right)$ be an algebra of the type $<n, n-1, n-2>$ in which the laws $(i)-($ iii $)$ hold. We prove respectively that in that case the following statements hold:
$1^{\circ}$ For every $x, y, a_{1}^{n-1} \in Q$ the following implication holds

$$
A\left(x, a_{1}^{n-1}\right)=A\left(y, a_{1}^{n-1}\right) \Rightarrow x=y .
$$

$2^{\circ}(Q, A)$ is a $P s$-associative $n$-groupoid.
$3^{\circ}\left(\forall a_{i} \in Q\right)_{1}^{n-2}(\forall x \in Q) A\left(\mathbf{e}\left(a_{1}^{n-2}\right), a_{1}^{n-2}, x\right)=x$.
$4^{\circ}\left(\forall a_{i} \in Q\right)_{1}^{n-2}(\forall x \in Q) A\left(\left(a_{1}^{n-2}, a\right)^{-1}, a_{1}^{n-2}, a\right)=\mathbf{e}\left(a_{1}^{n-2}\right)$.
$5^{\circ}$ For every $x, y, a_{1}^{n-1} \in Q$ the following implication holds

$$
A\left(a_{1}^{n-1}, x\right)=A\left(a_{1}^{n-1}, y\right) \Rightarrow x=y
$$

$6^{\circ}$ For every $x, y, a_{1}^{n-1} \in Q$ and for all $t \in\{1, \ldots, k-1\}$ the following implication holds

$$
A\left(a_{1}^{t \cdot s}, x, a_{t \cdot s+1}^{n-1}\right)=A\left(a_{1}^{t \cdot s}, y, a_{t \cdot s+1}^{n-1}\right) \Rightarrow x=y
$$

$7^{\circ}$ For every $i \in\{t \cdot s+1 \mid t \in\{0,1, \ldots, k\}\}$ and for all $a_{1}^{n} \in Q$ there is at least one $x_{i} \in Q$ such that the following equality holds $A\left(a_{1}^{i-1}, x_{i}, a_{i}^{n-1}\right)=a_{n}$.

The proof of the statement of $1^{\circ}$ :
By $n \geq 3(: n=k \cdot s+1, k>1, s \geq 1)$, we conclude that the following series of implications holds:

$$
\begin{aligned}
& A\left(x, a_{1}^{s-1}, a, a_{s}^{n-2}\right)=A\left(y, a_{1}^{s-1}, a, a_{s}^{n-2}\right) \Rightarrow \\
& A\left(A\left(x, a_{1}^{s-1}, a, a_{s}^{n-2}\right), a_{1}^{s-1}, \mathbf{e}\left(a_{s}^{n-2}, a_{1}^{s-1}\right),{ }_{a}^{n-2-s}, \mathbf{e}\left(a_{1}^{s-1},{ }^{n-2-s+1}{ }^{n}\right)\right)= \\
& A\left(A\left(y, a_{1}^{s-1}, a, a_{s}^{n-2}\right), a_{1}^{s-1}, \mathbf{e}\left(a_{s}^{n-2}, a_{1}^{s-1}\right), \stackrel{n-2}{a}{ }^{-s}, \mathbf{e}\left(a_{1}^{s-1},{ }^{n-2-s+1} a^{n}\right)\right) \Rightarrow \\
& A\left(x, a_{1}^{s-1}, A\left(a, a_{s}^{n-2}, a_{1}^{s-1}, \mathbf{e}\left(a_{s}^{n-2}, a_{1}^{s-1}\right)\right),{ }_{a}^{n-2-s}, \mathbf{e}\left(a_{1}^{s-1},{ }^{n-2-s+1}{ }^{s}\right)\right)= \\
& A\left(y, a_{1}^{s-1}, A\left(a, a_{s}^{n-2}, a_{1}^{s-1}, \mathbf{e}\left(a_{s}^{n-2}, a_{1}^{s-1}\right)\right),{ }_{a}^{n-2-s}, \mathbf{e}\left(a_{1}^{s-1},{ }^{n-2-\frac{-}{a+1}}\right)\right) \Rightarrow \\
& A\left(x, a_{1}^{s-1}, a, \stackrel{n-2}{a}{ }^{2-s}, \mathbf{e}\left(a_{1}^{s-1},{ }^{n-2-s+1}{ }^{-1}\right)\right)= \\
& A\left(y, a_{1}^{s-1}, a, \stackrel{n-2-s}{a}, \mathbf{e}\left(a_{1}^{s-1},{ }^{n-2-s+1}\right)\right) \Rightarrow x=y \text {. }
\end{aligned}
$$

The proof of the statement of $2^{\circ}$ :
By $(i), 1^{\circ}, n \geq 3$ and by Proposition 3, we conclude that $(Q, A)$ is a $P s$-associative $n$-groupoid.

The proof of the statement of $3^{\circ}$ :
$A\left(\mathbf{e}\left(a_{1}^{n-2}\right), a_{1}^{n-2}, a\right)=b \Rightarrow A\left(A\left(\mathbf{e}\left(a_{1}^{n-2}\right), a_{1}^{n-2}, a\right), a_{1}^{n-2},\left(a_{1}^{n-2}, a\right)^{-1}\right)$
$=A\left(b, a_{1}^{n-2},\left(a_{1}^{n-2}, a\right)^{-1}\right) \Rightarrow A\left(\mathbf{e}\left(a_{1}^{n-2}\right), a_{1}^{n-2}, A\left(a, a_{1}^{n-2},\left(a_{1}^{n-2}, a\right)^{-1}\right)\right)$
$=A\left(b, a_{1}^{n-2},\left(a_{1}^{n-2}, a\right)^{-1}\right) \Rightarrow A\left(\mathbf{e}\left(a_{1}^{n-2}\right), a_{1}^{n-2}, \mathbf{e}\left(a_{1}^{n-2}\right)\right)$
$=A\left(b, a_{1}^{n-2},\left(a_{1}^{n-2}, a\right)^{-1}\right) \Rightarrow \mathbf{e}\left(a_{1}^{n-2}\right)=A\left(b, a_{1}^{n-2},\left(a_{1}^{n-2}, a\right)^{-1}\right) \Rightarrow$
$A\left(a, a_{1}^{n-2},\left(a_{1}^{n-2}, a\right)^{-1}\right)=A\left(b, a_{1}^{n-2},\left(a_{1}^{n-2}, a\right)^{-1}\right) \Rightarrow a=b$
[: $\left.2^{\circ},(i i i),(i i),(i i i), 1^{\circ}\right]$.
The proof of the proof of $4^{\circ}$ :
$A\left(\left(a_{1}^{n-2}, a\right)^{-1}, a_{1}^{n-2}, a\right)=b \Rightarrow A\left(A\left(\left(a_{1}^{n-2}, a\right)^{-1}, a_{1}^{n-2}, a\right), a_{1}^{n-2},\left(a_{1}^{n-2}, a\right)^{-1}\right)$
$=A\left(b, a_{1}^{n-2},\left(a_{1}^{n-2}, a\right)^{-1}\right) \Rightarrow A\left(\left(a_{1}^{n-2}, a\right)^{-1}, a_{1}^{n-2}, A\left(a, a_{1}^{n-2},\left(a_{1}^{n-2}, a\right)^{-1}\right)\right)$
$=A\left(b, a_{1}^{n-2},\left(a_{1}^{n-2}, a\right)^{-1}\right) \Rightarrow A\left(\left(a_{1}^{n-2}, a\right)^{-1}, a_{1}^{n-2}, \mathbf{e}\left(a_{1}^{n-2}\right)\right)$
$=A\left(b, a_{1}^{n-2},\left(a_{1}^{n-2}, a\right)^{-1}\right) \Rightarrow A\left(\mathbf{e}\left(a_{1}^{n-2}\right), a_{1}^{n-2},\left(a_{1}^{n-2}, a\right)^{-1}\right)$
$=A\left(b, a_{1}^{n-2},\left(a_{1}^{n-2}, a\right)^{-1}\right) \Rightarrow \mathbf{e}\left(a_{1}^{n-2}\right)=b$
[: $\left.2^{\circ},(i i i),(i i), 3^{\circ}, 1^{\circ}\right]$.
The proof of the statement of $5^{\circ}$ :
Since the $<1, n>-$ associative law $\left[: 2^{\circ}\right]$ as well as the statements $4^{\circ}$ and $3^{\circ}$ hold in $(Q, A)$, we conclude that for every $x, y, a \in Q$ and for every sequence $a_{1}^{n-2}$ over $Q$ the following series of implication holds:

$$
\begin{aligned}
& A\left(a, a_{1}^{n-2}, x\right)=A\left(a, a_{1}^{n-2}, y\right) \Rightarrow A\left(\left(a_{1}^{n-2}, a\right)^{-1}, a_{1}^{n-2}, A\left(a, a_{1}^{n-2}, x\right)\right) \\
& =A\left(\left(a_{1}^{n-2}, a\right)^{-1}, a_{1}^{n-2}, A\left(a, a_{1}^{n-2}, y\right)\right) \Rightarrow A\left(A\left(\left(a_{1}^{n-2}, a\right)^{-1}, a_{1}^{n-2}, a\right), a_{1}^{n-2}, x\right) \\
& =A\left(A\left(\left(a_{1}^{n-2}, a\right)^{-1}, a_{1}^{n-2}, a\right), a_{1}^{n-2}, y\right) \Rightarrow A\left(\mathbf{e}\left(a_{1}^{n-2}\right), a_{1}^{n-2}, x\right) \\
& =A\left(\mathbf{e}\left(a_{1}^{n-2}\right), a_{1}^{n-2}, y\right)=x=y .
\end{aligned}
$$

The proof of the proof of $6^{\circ}$ :

$$
\begin{aligned}
& A\left(a_{1}^{t \cdot s}, x, a_{t \cdot s+1}^{k \cdot s}\right)=A\left(a_{1}^{t \cdot s}, x, a_{t \cdot s+1}^{k \cdot s}\right) \Rightarrow A\left(b_{1}^{(k-t) \cdot s}, A\left(a_{1}^{t \cdot s}, x, a_{t \cdot s+1}^{k \cdot s}\right), b_{(k-t) \cdot s+1}^{k \cdot s}\right) \\
& =A\left(b_{1}^{(k-t) \cdot s}, A\left(a_{1}^{t \cdot s}, y, a_{t \cdot s+1}^{k \cdot s}\right), b_{(k-t) \cdot s+1}^{k \cdot s}\right) \Rightarrow \\
& \\
& A\left(A\left(b_{1}^{(k-t) \cdot s}, a_{1}^{t \cdot s}, x\right), a_{t \cdot s+1}^{k \cdot s}, b_{(k-t) \cdot s+1}^{k \cdot s}\right)=A\left(A\left(b_{1}^{(k-t) \cdot s}, a_{1}^{t \cdot s}, y\right), a_{t \cdot s+1}^{k \cdot s}, b_{(k-t) \cdot s+1}^{k \cdot s}\right) \\
& \quad \Rightarrow A\left(b_{1}^{(k-t) \cdot s}, a_{1}^{t \cdot s}, x\right)=A\left(b_{1}^{(k-t) \cdot s}, a_{1}^{t \cdot s}, y\right) \Rightarrow x=y \\
& {\left[: 2^{\circ}, 1^{\circ}, 5^{\circ}\right] .}
\end{aligned}
$$

The proof of the proof of $7^{\circ}$ :
a) $t=0: \quad A\left(x, a_{1}^{n-2}, a\right)=b \Leftrightarrow$

$$
\begin{aligned}
& A\left(A\left(x, a_{1}^{n-2}, a\right), a_{1}^{n-2},\left(a_{1}^{n-2}, a\right)^{-1}\right)=A\left(b, a_{1}^{n-2},\left(a_{1}^{n-2}, a\right)^{-1}\right) \Leftrightarrow \\
& A\left(x, a_{1}^{n-2}, A\left(a, a_{1}^{n-2},\left(a_{1}^{n-2}, a\right)^{-1}\right)\right)=A\left(b, a_{1}^{n-2},\left(a_{1}^{n-2}, a\right)^{-1}\right) \Leftrightarrow \\
& A\left(x, a_{1}^{n-2}, \mathbf{e}\left(a_{1}^{n-2}\right)\right)=A\left(b, a_{1}^{n-2},\left(a_{1}^{n-2}, a\right)^{-1}\right) \Leftrightarrow \\
& x=A\left(b, a_{1}^{n-2},\left(a_{1}^{n-2}, a\right)^{-1}\right)
\end{aligned}
$$

$\left[: 2^{\circ},(i i i),(i i)\right]$.
b) $t=k: \quad A\left(a, a_{1}^{n-2}, x\right)=b \Leftrightarrow$

$$
\begin{aligned}
& A\left(\left(a_{1}^{n-2}, a\right)^{-1}, a_{1}^{n-2}, A\left(a, a_{1}^{n-2}, x\right)\right)=A\left(\left(a_{1}^{n-2}, a\right)^{-1}, a_{1}^{n-2}, b\right) \Leftrightarrow \\
& \left.\left.A\left(A\left(a_{1}^{n-2}, a\right)^{-1}, a_{1}^{n-2}, a\right), a_{1}^{n-2}, x\right)\right)=A\left(\left(a_{1}^{n-2}, a\right)^{-1}, a_{1}^{n-2}, b\right) \Leftrightarrow \\
& A\left(\mathbf{e}\left(a_{1}^{n-2}\right), a_{1}^{n-2}, x\right)=A\left(\left(a_{1}^{n-2}, a\right)^{-1}, a_{1}^{n-2}, b\right) \Leftrightarrow \\
& x=A\left(\left(a_{1}^{n-2}, a\right)^{-1}, a_{1}^{n-2}, b\right)
\end{aligned}
$$

$\left[: 2^{\circ}, 4^{\circ}, 3^{\circ}\right]$.
c) $0<t<k: \quad A\left(a_{1}^{t \cdot s}, x, a_{t \cdot s+1}^{k \cdot s}\right)=b \Leftrightarrow A\left(b_{1}^{(k-t) \cdot s}, A\left(a_{1}^{t \cdot s}, x, a_{t \cdot s+1}^{k \cdot s}\right), b_{(k-t) \cdot s+1}^{k \cdot s}\right)$

$$
=A\left(b_{1}^{(k-t) \cdot s}, b, b_{(k-t) \cdot s+1}^{k \cdot s}\right) \Leftrightarrow
$$

$$
A\left(A\left(b_{1}^{(k-t) \cdot s}, a_{1}^{t \cdot s}, x\right), a_{t \cdot s+1}^{k \cdot s}, b_{(k-t) \cdot s+1}^{k \cdot s}\right)
$$

$$
=A\left(b_{1}^{(k-t) \cdot s}, b, b_{(k-t) \cdot s+1}^{k \cdot s}\right)
$$

[: $\left.6^{\circ}, 2^{\circ}\right]$.
By a simple imitation of the proof of Theorem 1 it is possible to prove that the following proposition holds:

Theorem 2. Let $k>1, s \geq 1, n=k \cdot s+1$ and let $(Q, A)$ be an $n$-groupoid. Then, $(Q, A)$ is an $\mathbf{N P}$-polyagroup of the type $(s, n-1)$ iff there are mappings ${ }^{-1}$ and $\mathbf{e}$ respectively of the sets $Q^{n-1}$ and $Q^{n-2}$ into the set $Q$ such that the following laws hold in the algebra $\left(Q,\left\{A,{ }^{-1}, \mathbf{e}\right\}\right)$ [ of the type $<n, n-1, n-2>$ ]:
$(\bar{i}) A\left(x_{1}^{(k-1) \cdot s}, A\left(x_{(k-1) \cdot s+1}^{(k-1) \cdot s+n}\right), x_{(k-1) \cdot s+n+1}^{2 n-1}\right)=A\left(x_{1}^{k \cdot s}, A\left(x_{k \cdot s+1}^{2 n-1}\right)\right)$,
(iii) $A\left(\mathbf{e}\left(a_{1}^{n-2}\right), a_{1}^{n-2}, x\right)=x$ and
(iii) $A\left(\left(a_{1}^{n-2}, a\right)^{-1}, a_{1}^{n-2}, a\right)=\mathbf{e}\left(a_{1}^{n-2}\right)$.

Similarly, it is possible to prove that the following proposition holds. (See, also [10,11].)

Theorem 3. Let $k>1 s \geq 1, n=k \cdot s+1$ and let $(Q, A)$ be an $n$-groupoid. Then, $(Q, A)$ is an $\mathbf{N P}$-polyagroup of the type $(s, n-1)$ iff there are mappings ${ }^{-1}$ and $\mathbf{e}$ respectively of the sets $Q^{n-1}$ and $Q^{n-2}$ into the set $Q$ such that the following laws hold in the algebra $\left(Q,\left\{A,^{-1}, \mathbf{e}\right\}\right)$ [ of the type $\left.<n, n-1, n-2>\right]$ :
(1) (i) from Theorem 1 or $(\bar{i})$ from Theorem 2;
(2) (ii) from Theorem 1; and
(3) $A\left(\left(a_{1}^{n-2}, a\right)^{-1}, a_{1}^{n-2}, A\left(a, a_{1}^{n-2}, x\right)\right)=x$.

Theorem 4. Let $k>1 s \geq 1, n=k \cdot s+1$ and let $(Q, A)$ be an $n$-groupoid. Then, $(Q, A)$ is an $\mathbf{N P}$-polyagroup of the type $(s, n-1)$ iff there are mappings ${ }^{-1}$ and $\mathbf{e}$ respectively of the sets $Q^{n-1}$ and $Q^{n-2}$ into the set $Q$ such that the following laws hold in the algebra $\left(Q,\left\{A,^{-1}, \mathbf{e}\right\}\right)$ [ of the type $\left.<n, n-1, n-2>\right]$ :
( $\overline{1}$ ) (i) from Theorem 1 or $(\bar{i})$ from Theorem 2;
( $\overline{2}$ ) ( $\overline{i i}$ ) from Theorem 2; and
( 3 ) $A\left(A\left(x, a_{1}^{n-2}, a\right), a_{1}^{n-2},\left(a_{1}^{n-2}, a\right)^{-1}\right)=x$.

## References

[1] W. DÖRNTE, Untersuchengen über einen verallgemeinerten Gruppenbegriff, Math. Z. 29(1928), 1-19.
[2] R. H. Bruck, A survey of binary systems, Springer-Verlag, Berlin-HeidelbergNew York, 1971.
[3] V. D. Belousov, n-ary quasigroups, Stiinta, Kishinev, 1972 (In Russian.)
[4] A. G. Kurosh, General algebra, (lectures 1969-1970), Nauka, Moscow, 1974 (In Russian.)
[5] F. M. Sokhatsky, On the associativity of multiplace operations, Quasigroups and Related Systems 4(1997), 51-66.
[6] F. M. Sokhatsky, O. Yurevych, Invertible elements in associates and semigroups 2, Quasigroups and Related Systems 6(1999), 61-70.
[7] J. UšAn, Neutral operations of n-groupoids, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser. 18(1988), 117-126 (In Russian.)
[8] J. Ušan, A comment on n-groups, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser. 24(1994), 281-288.
[9] J. Ušan, On n-groups with $\{i, j\}$-neutral operation for $\{i, j\} \neq\{1, n\}$, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser. 25(1995), 167-178.
[10] J. UšAN, $n$-groups as variety of type $\langle n, n-1, n-2\rangle$, in: Algebra and Model Theory, (A.G. Pinus and K.N.Ponomaryov, eds.), Novosibirsk, 1997, 182-208.
[11] J. UšAN, Note on ( $n, m$ )-groups, Math. Moravica 3(1999), 127-139.


[^0]:    *Institute of Mathematics, University of Novi Sad, Trg D. Obradovića, 21000 Novi Sad, Yugoslavia, e-mail: jus@EUnet.yu
    ${ }^{\dagger}$ Faculty of Electrical Engineering, University of Osijek, Kneza Trpimira 2B, HR-31 000 Osijek, Croatia, e-mail: Galic.Radoslav@etfos.hr

