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A generalization of the butterfly theorem from

circles to conics

Zvonko Čerin∗

Abstract. This paper presents a generalization of the Butterfly
Theorem that is true for all conic curves.
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The original Butterfly Theorem claims that whenever chords AB and CD of a
circle intersect at the midpoint S of the third chord PQ, then S is also the midpoint
of the segment formed by the intersections X and Y of the chords AD and BC with
the line PQ (see Figure 1). Moreover, S is also the midpoint of the segment UV ,
where U and V are intersections of the lines AC and BD with the line PQ.

Figure 1. The point S is the body and the triangles ADS and BCS are the wings
of the butterfly. Another butterfly with the same body has the triangles ACS and

BDS as wings.

The above theorem dates back to at least 1815 according to [3]. It appears as
an exercise in Coxeter’s book [1] and it has been the subject of several papers that
either give new proofs or propose improvements in various directions.
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The following generalization of the Butterfly Theorem has recently been pre-
sented in [6].

Butterfly Theorem for Circles. Let A, B, C, D be four points on a circle
k with the centre O and let S be the orthogonal projection of the point O onto the
given line w. If S is the midpoint of points H = w ∩AB and K = w ∩ CD, then
S is the midpoint of the points U = w ∩AC and V = w ∩BD and the midpoint of
the points X = w ∩AD and Y = w ∩BC.

The aim of this paper is to present the proof of the following improvement of
the Butterfly Theorem for Circles that could be named the Butterfly Theorem for
Conics. The idea in this generalization is to replace the circle by a conic (i. e., either
an ellipse, a hyperbola, or a parabola), to take for w any line which is perpendicular
to an axis z of the conic, and to set S = w ∩ z.

Butterfly Theorem for Conics. Let S be a point on an axis z of a conic
k and let w denote the line through S perpendicular to z. Let A, B, C, and D be
different points on k and let H, K, U , V , X, and Y denote the intersections of
the line w with the lines AB, CD, AC, BD, AD, and BC, respectively. If S is the
midpoint of one among the segments HK, UV , and XY , then it is the midpoint of
all three segments.

Figure 2. The Butterfly Theorem for the Ellipse.

Of course, the Butterfly Theorem for Circles is a special case of our Butterfly
Theorem for Conics because the line z can be any line through the centre of the
circle.

In order to prove the Butterfly Theorem for Conics, recall that if we take a
focus of k as the pole (the origin) and the main axis m as the polar axis of the polar
coordinate system, then the conic k has the equation � = p/(1 + ε cosϑ), where �
is the polar radius, ϑ is the polar angle, and p and ε are nonnegative real numbers.
Hence, in the associated rectangular coordinate system the points A, B, C, and
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D have coordinates (p cosϑ/(1 + ε cosϑ), p sinϑ/(1 + ε cosϑ)), where ϑ is α, β, γ,
and δ. We could continue using trigonometric functions but it is easier at this point
to employ universal trigonometric substitution to write

cosα =
1− a2

1 + a2
, sinα =

2 a
1 + a2

,

and similarly for the remaining three points (and their corresponding letters). We
conclude that the points A, B, C, and D have coordinates

(
p (1− t2)

ε (1− t2) + t2 + 1
,

2 p t

ε (1− t2) + t2 + 1

)

for t equal to a, b, c, and d.
Let us first prove the above theorem in the case when the line z is the main axis

m of k. The point S then has the coordinates (s, 0) for some real number s and the
line w has the equation x = s. The line AB has the equation

(a b (ε− 1) + ε+ 1)x+ (a+ b) y − p (a b+ 1) = 0,

while the other lines CD, AD, BC, BD, and AC have analogous equations. The
intersection H of the lines w and AB has the first coordinate s and the second
coordinate

s (a b− 1) + (p− ε s) (a b+ 1)
a+ b

.

We obtain this value by substituting s for x in the above equation of AB and solving
for y. The other intersections K, U , V , X , and Y have the same first coordinate
and similar second coordinates. The midpoints of the segments HK, UV , and XY
have the second coordinates equal to

P (p− ε s)− sR
2 (a+ b)(c+ d)

,
P (p− ε s)− sR
2 (a+ c)(b+ d)

,
P (p− ε s)− sR
2 (a+ d)(b + c)

,

(the arithmetic means of the second coordinates of its endpoints), where

P = a+ b+ c+ d+ a b c+ a b d+ a c d+ b c d,

R = a+ b+ c+ d− a b c− a b d− a c d− b c d.

The conclusion in the theorem for the case when z = m now follows obviously.
If k is a parabola, then the proof is complete because it has only one axis which

is its main axis.
When k is either an ellipse or a hyperbola, we must consider also the secondary

axis (the perpendicular n to m at the centre O of k) as the second (and the last, if
k is not a circle) possibility for the line z. Hence, when z = n, the point S has the
coordinates (p ε/(ε2 − 1), s) for some real number s and the line w has the equation
y = s. The intersection H of the lines w and AB has the second coordinate s and
the first coordinate

p (a b+ 1)− s (a+ b)
a b (ε− 1) + ε+ 1

.
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We obtain this value by substituting s for y in the above equation of AB and
solving for y. The other intersections K, U , V , X , and Y have the same second
coordinate and similar first coordinates. The numerator of the difference of the first
coordinates of the midpoints of the segments HK, UV , and XY and the number
p ε/(ε2 − 1) (the first coordinate of the point S) is equal to

2 [(a b c d− 1)(ε2 + 1)− 2 (a b c d+ 1) ε] p− (ε2 − 1)(P ε+R) s.

The conclusion in the theorem for this case now follows immediately.
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