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I−limit superior and limit inferior

Kamil Demirci
∗

Abstract. In this paper we extend concepts of statistical limit
superior and inferior (as introduced by Fridy and Orhan) to I−limit
superior and inferior and give some I−analogue of properties of statis-
tical limit superior and inferior for a sequence of real numbers. Also we
extend the concept of the statistical core to I−core for a complex num-
ber sequence and get necessary conditions for a summability matrix A
to yield I−core {Ax} ⊆ I−core {x} whenever x is a bounded complex
number sequence.
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1. Introduction

If K is a subset of natural numbers N, Kn will denote the set {k ∈ K : k ≤ n}
and |Kn| will denote the cardinality of Kn. Natural density of K [20], [13] is
given by δ(K) := limn

1
n |Kn| , if it exists. Fast introduced the definition of a

statistical convergence using the natural density of a set. The number sequence
x = (xk) is statistically convergent to L provided that for every ε > 0 the set
K := K(ε) := {k ∈ N : |xk − L| ≥ ε} has natural density zero [7] ,[9] . Hence x
is statistically convergent to L iff (C1χK(ε))n → 0, (as n → ∞, for ever ε > 0 ),
where C1 is the Cesáro mean of order one and χK is the characteristic function
of the set K. Properties of statistically convergent sequences have been studied in
[1] , [2] , [9] , [18] , [21].

Statistical convergence can be generalized by using a nonnegative regular sum-
mability matrix A in place of C1.

Following Freedman and Sember [8] , we say that a set K ⊆ N has A−density if
δA(K) := limn(AχK)n = limn

∑
k∈K ank exists where A = (ank) is a nonnegative

regular matrix.
The number sequence x = (xk) is A−statistically convergent to L provided that

for every ε > 0 the set K(ε) has A−density zero[2], [8] , [18].
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Fridy [10] has introduced the notions of a statistical limit point and a cluster
point. Fridy and Orhan [11] studied the idea of statistical limit superior and inferior.
Connor and Kline [4] and Demirci [6] extended these concepts to A−statistical
convergence using a nonnegative regular summability matrix A in place of C1. Also
Connor has introduced µ−statistical analogue of these concepts using a finitely
additive set function µ taking values in [0, 1] defined on a field Γ of subsets of N

such that if |A| < ∞ , then ; if A ⊂ B and µ(B) = 0 , then µ(A) = 0 ; and µ(N) = 1
[3] , [5] .

The number sequence x = (xk) is µ−statistically convergent to L provided that
µ({k ∈ N : |xk − L| ≥ ε}) = 0 for every ε > 0 [3], [5].

Kostyrko, Mačaj and Šalát [15] , [16] introduced the concepts of I−convergence,
I−limit point and I−cluster point of sequences of real numbers based on the notion
of the ideal of subsets of N.

In this paper we extend concepts of statistical limit superior and inferior to
I−limit superior and inferior and give some properties of I−limit superior and
inferior for a sequence of real numbers. We also extend the concept of a statistical
core to I−core for a complex number sequence and get necessary conditions for a
summability matrix A to yield I−core {Ax} ⊆ I−core {x} whenever x is a bounded
complex number sequence.

2. Definition and notations

We first recall the concepts of an ideal and a filter of sets.
Definition 1. Let X 
= φ. A class S ⊆ 2X of subsets of X is said to be an ideal

in X provided that S is additive and hereditary , i.e. if S satisfies the conditions:
(i) φ ∈ S,
(ii) A,B ∈ S ⇒ A ∪B ∈ S,
(iii) A ∈ S, B ⊆ A ⇒ B ∈ S

([17] ,p.34).
An ideal is called non-trivial if X /∈ S.
Definition 2. Let X 
= φ. A non-empty class � ⊆ 2X of subsets of X is said

to be a filter in X provided that:
(i) φ ∈ �,
(ii) A,B ∈ � ⇒ A ∩B ∈ �,
(iii) φ ∈ �, A ⊆ B ⇒ B ∈ �

([19] ,p.44).
The following proposition expresses a relation between the notions of an ideal

and a filter:
Proposition 1. Let S be non-trivial in X, X 
= φ. Then the class

�(S) = {M ⊆ X : ∃A ∈ S : M = X \A}

is a filter on X (we will call �(S) the filter associated with S ) [15] .
Definition 3. A non-trivial ideal S in X is called admissible if {x} ∈ S for

each x ∈ X [15].
As usual, R will denote real numbers and C complex numbers.
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Definition 4. Let I be a non-trivial ideal in N. Then
(i) A sequence x = (xn) of real numbers is said to be I−convergent to L ∈ R if

for every ε > 0 the set A(ε) = {n : |xn − L| ≥ ε} belongs to I [15] . In this case
we write I− limx = L.

(ii) An element ξ ∈ R is said to be I−limit point of the real number sequence
x = (xn) provided that there exists a set M = {m1 < m2 < ...} ⊂ N such that M /∈
I and limk xmk

= ξ [16] .
(iii) An element ξ ∈ R is said to be I−cluster point of the real number sequence

x = (xn) iff for each ε > 0 we have {k : |xk − ξ| < ε} /∈ I [16] .
Note that the set of I−cluster points of x is a closed points set in R where I is

an admissible ideal [15] .
Some results on I−convergence, I−limit point and I−cluster point may be

found in [15],[16].
Throughout the paper I will be an admissible ideal.

3. I−limit superior and inferior

In this section we study the concepts of I−limit superior and inferior for a real
number sequence.

For a real number sequence x = (xk) let Bx denote the set

Bx := {b ∈ R : {k : xk > b} /∈ I} .
Similarly,

Ax := {a ∈ R : {k : xk < a} /∈ I} .
We begin with a definition.
Definition 5. Let I be an admissible ideal and x a real number sequence. Then

the I−limit superior of x is given by

I− lim supx :=
{

supBx, if Bx 
= φ,
−∞, if Bx = φ.

Also, the I−limit inferior of x is given by

I− lim inf x :=
{

inf Ax, if Ax 
= φ,
+∞, if Ax = φ.

Note that if we define I = {K ⊆ N : δA(K) = 0} , I = {K ⊆ N : δ(K) = 0}
and I = {K ∈ Γ : µ(K) = 0} in Definition 5, then we get Definition 1 of [6], Def-
inition 1 of [11] and Connor’s definitions [5] of µ−statistical superior and inferior,
respectively. This observation suggests the following result which can be proved by
a straightforward least upper bound argument.

Theorem 1. If β = I− lim supx is finite, then for every positive number ε

{k : xk > β − ε} /∈ I and {k : xk > β + ε} ∈ I. (1)

Conversely, if (1) holds for every positive ε, then β = I− lim supx.
The dual statement for I− lim inf x is as follows.
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Theorem 2. If α = I− lim inf x is finite, then for every positive ε

{k : xk < α + ε} /∈ I and {k : xk < α− ε} ∈ I. (2)

Conversely, if (2) holds for every positive ε, then α = I− lim inf x.
Considering the definition of I−cluster point in Definition 4 we see that The-

orems 1 and 2 can be interpreted as saying that I− lim supx and I− lim inf x are
the greatest and the least I−cluster points of x.

Now we have the following
Theorem 3. For any real number sequence x,

I− lim inf x ≤ I− lim supx.

Proof. First consider the case in which I− lim supx = −∞. Hence we have
Bx = φ, so for every b in R , {k : xk > b} ∈ I which implies that {k : xk ≤ b} ∈
�(I) so for every a in R, {k : xk ≤ a} /∈ I . Hence I− lim inf x = −∞.

The case in which I− lim supx = +∞ needs no proof, so we next assume that
β = I− lim supx is finite, and α := I− lim inf x. Given ε > 0 we show that
β + ε ∈ Ax, so that α ≤ β + ε. By Theorem 1, {k : xk > β + ε} ∈ I because
β = lub Bx. This implies

{
k : xk ≤ β + ε

2

} ∈ �(I). Since
{
k : xk ≤ β + ε

2

} ⊆
{k : xk < β + ε} and �(I) is a filter on N, {k : xk < β + ε} ∈ �(I). This implies
{k : xk < β + ε} /∈ I. Hence β+ε ∈ Ax. By definition α = inf Ax, so we conclude
that α ≤ β + ε ; and since ε is arbitrary this proves that α ≤ β. ✷

From Theorem 3 and Definition 5, it is clear that

lim inf x ≤ I− lim inf x ≤ I− lim supx ≤ lim supx

for any real number sequence x.
I−limit point of a sequence x is defined in (ii) of Definition 4 as the limit of a

subsequence of x whose indices do not belong to I. We cannot say that I− lim supx
is equal to the greatest I−limit points of x. This can be seen from Example 4 in
[11] where I = {K ⊆ N : δ(K) = 0}.

Definition 6. The real number sequence x = (xk) is said to be I−bounded if
there is a number B such that {k : |xk| > B} ∈ I.

Note that I−boundedness implies that I− lim sup and I− lim inf are finite, so
properties (1) and (2) of Theorems 1and 2 hold.

Theorem 4. The I−bounded sequence x is I−convergent if and only if

I− lim inf x = I− lim supx.

Proof. Let α := I− lim inf x and β := I− lim supx. First suppose that I− lim
x = L and ε > 0. Then {k : |xk − L| ≥ ε} ∈ I, so {k : xk > L + ε} ∈ I, which
implies that β ≤ L. We also have {k : xk < L− ε} ∈ I, which yields that L ≤ α.
Therefore β ≤ α. Combining this with Theorem 3 we conclude that α = β.

Now assume α = β and define L := α. If ε > 0 then (1) and (2) of Theorem 1
and 2 imply

{
k : xk > L + ε

2

} ∈ I and
{
k : xk < L− ε

2

} ∈ I. Hence I− lim
x = L. ✷
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4. I− core

In [11] Fridy and Orhan introduced the concept of the statistical core of a real
number sequence, and proved the statistical core theorem. Those results have also
been extended to the complex case too [12] . Using the same technique as in [12], we
introduce the concept of I−core of a complex sequence and get necessary conditions
for a summability matrix A to yield I−core {Ax} ⊆ I−core {x} whenever x is a
bounded complex number sequence.

In this section x, y and z will denote complex number sequences and A =
(ank) will denote an infinite matrix of complex entries which transforms a complex
number sequence x = (xk) into the sequence Ax whose n-th term is given by
(Ax)n =

∑∞
k=1 ankxk.

In [14] the Knopp core of the sequence x is defined by

K−core {x} := ∩n∈NCn(x),

where Cn(x) is the closed convex hull of {xk}k≥n. In [22] it is shown that for every
bounded x

K−core {x} := ∩z∈CB
∗
x(z),

where B∗
x(z) := {w ∈ C : |w − z| ≤ lim supk |xk − z| } .

The next definition is an I−analogue of statistical core [12] of a sequence.
Note that, if x and y are sequences such that {k ∈ N : xk = yk} /∈ I,then we

write “xk = yk, for I− a.a. k”.
Definition 7. Let I be an admissible ideal in N. For any complex sequence x

let HI(x) be the collection of all closed half-planes that contain xk for I− a.a. k;
i.e.,

HI(x) := {H : is a closed half-plane {k ∈ N : xk /∈ H} ∈ I} ,
then the I−core of x is given by

I−core {x} := ∩H∈HI(x)H.

It is clear that I−core {x} ⊆ K−core {x} for all x. Also

I−core {x} = [I− lim inf x , I− lim supx]

for any I−bounded real number sequence.
The next theorem is an I−analogue of the Lemma of [12].
Theorem 5. Let I be an admissible ideal in N and assume that x is an

I−bounded sequence; for each z ∈ C let

Bx(z) :=
{
w ∈ C : |w − z| ≤ I− lim sup

k
|xk − z|

}
;

then I−core {x} := ∩z∈CBx(z).
Proof. From the definition of I− lim supx and Theorem 1, observe that the disk

Bx(z) is equal to the intersection of all closed disks centered at z that contain xk
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for I− a.a.k. First assume w /∈ ∩z∈CBx(z), say w /∈ ∩z∈CBx(z∗) for some z∗. Let
H be the half-plane containing Bx(z∗) whose boundary line is perpendicular to the
line containing w and z∗ and tangent to the circular boundary of Bx(z∗). Since
Bx(z∗) ⊂ H and Bx(z∗) contains xk for I− a.a.k, it follows that H ∈ HI(x). Since
w /∈ H , this implies w /∈ ∩H∈HI (x)H . Hence, I−core{x} ⊆ ∩z∈CBx(z).

Conversely, w /∈ ∩H∈HI (x)H , let H be a plane in HI(x) such that w /∈ H . Let
be the line through w that is perpendicular to the boundary of H and let p be the
mid-point of the segment to L between w and H . Let z be a point of L such that
z ∈ H and consider the disk

B(z) := {ξ ∈ C : |ξ − z| ≤ |p− z| } .

Since x is I−bounded and xk ∈ H I− a.a.k, we can choose z sufficiently far
from p so that |p− z| = I− lim supk |xk − z|. Thus B(z) is one of the Bx(z) disks,
and since w /∈ B(z), we get that w /∈ ∩z∈CBx(z). This establishes the proof. ✷

We note that Theorem 5 is not necessarily valid if x is not I−bounded. This
can be seen from Remark in [12] where I = {K ⊆ N : δ(K) = 0}.

Throughout the remainder of this paper the set of bounded complex sequences
will be denoted by *∞.

Now we give necessary conditions on matrix A so that the Knopp core of Ax is
contained in the I−core of x for every bounded complex number sequence.

Theorem 6. Let I be an admissible ideal in N. If matrix A satisfies
supn

∑∞
k=1 |ank| < ∞ and the following conditions

(i) A regular and limn

∑
k∈E |ank| = 0 whenever E ∈ I;

(ii) limn

∑∞
k=1 |ank| = 1,

then K−core {Ax} ⊆ I−core {x} for every x ∈ *∞.
Proof. Assume (i) and (ii) and let w ∈ K−core {Ax}. For any z ∈ C we have

|w − z| ≤ lim sup
n

|z − (Ax)n|

= lim sup
n

∣∣∣∣∣z −
∞∑

k=1

ankxk

∣∣∣∣∣
= lim sup

n

∣∣∣∣∣
∞∑

k=1

ank (z − xk) + z (1 −
∞∑

k=1

ank)

∣∣∣∣∣
≤ lim sup

n

∣∣∣∣∣
∞∑

k=1

ank (z − xk)

∣∣∣∣∣ + lim sup
n

|z|
∣∣∣∣∣1 −

∞∑
k=1

ank

∣∣∣∣∣
= lim sup

n

∣∣∣∣∣
∞∑

k=1

ank (z − xk)

∣∣∣∣∣ . (3)

Let r = I− lim supn |xn − z|, suppose ε > 0, and let E := {k : |zk − L| > r + ε}.
Then E ∈ I, and we have
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∣∣∣∣∣
∞∑

k=1

ank (z − xk)

∣∣∣∣∣ =

∣∣∣∣∣
∑
k∈E

ank (z − xk) +
∑
k/∈E

ank (z − xk)

∣∣∣∣∣
≤

∑
k∈E

|ank| |z − xk| +
∑
k/∈E

|ank| |z − xk|

≤ sup
k

|z − xk|
∑
k∈E

|ank| + (r + ε)
∑
k/∈E

|ank| .

Now (i) and (ii) imply that

lim sup
n

=

∣∣∣∣∣
∞∑

k=1

ank (z − xk)

∣∣∣∣∣ ≤ r + ε.

It follows from (3) that |w − z| ≤ r + ε; and since ε is arbitrary, this yields
|w − z| ≤ r. Hence,w /∈ Bx(z) so by the Theorem 5 we get w ∈ I−core {x}. Hence
the proof is completed. ✷

Since I−core {x} ⊆ K−core {x}, we have the following corollary.
Corollary 1. If matrix A satisfies supn

∑∞
k=1 |ank| < ∞ and properties (i) and

(ii) of Theorem 6, then

I−core {Ax} ⊆ I−core {x}

for every x ∈ *∞.
Note that the converse of Corollary 1 does not hold. This can be seen from

Example in [12] where I = {K ⊆ N : δ(K) = 0}.
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