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Least squares fitting with rotated paraboloids∗

Helmuth Späth
§

Abstract. In [1] the problem of estimating the parameters of a ro-
tated parabola fitted to measured points in the plane was examined. The
corresponding method, also used in [2, 3], is extended here to the case of
a rotated paraboloid. Fitting by such a surface occurs in computational
metrology e.g. when some parabolic reflector will be checked to be a good
one.
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1. The model

Fitting the given data
(xi, yi, zi), i = 1, . . . ,m (1)

with some rotated paraboloid e.g. appears in computational metrology when a
parabolic reflector is measured. A paraboloid with the z-axis as a rotation axis and
the origin as the vertex is given by

z = d(x2 + y2), |d| > 0 . (2)

To be able to consider rotations and also for our numerical method it is more
convenient to use the parametric form

x = v cosu
y = v sinu
z = dv2

(3)

that fulfills (2). Considering a translation of the origin to (a, b, c) and rotations
A(β) in the x− z plane and B(γ) in the y − z plane we finally have

 x
y
z


 =


 1 0 0

0 cos γ − sin γ
0 sin γ cos γ





 cosβ 0 − sinβ

0 1 0
sinβ 0 cosβ





 a+ v cosu
b+ v sinu
c+ dv2


 (4)
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where
0 ≤ v <∞, 0 ≤ u < 2π (5)

and the unknowns are a, b, c, d, β, γ.
Instead of rotating the translated model (2) we prefer to rotate the given data

(1). This can be done in two steps by
 xi

yi

zi


 =


 1 0 0

0 cos γ sinγ
0 − sinγ cos γ





 xi

yi

zi


 (i = 1, . . . ,m) (6)

and 
 x̃i

ỹi

z̃i


 =


 cosβ 0 sinβ

0 1 0
− sinβ 0 cosβ





 xi

yi

zi


 (i = 1, . . . ,m) . (7)

For later purposes we note that

x̃′i = − sinβ xi + cosβ zi

ỹ′i = 0
z̃′i = − cosβ xi − sinβ zi

(8)

(Here ′ means the derivative w.r.t. β.) and

x̃′i = cosβ xi − sinβ(cos γ yi + sin γ zi)
ỹ′i = − sinγ yi + cos γ zi
z̃′i = − sinβ xi − cosβ(cos γ yi + sin γ zi) .

(9)

(Here ′ means the derivative w.r.t. γ.)
Now let some point on the paraboloid, i.e. (a + vi cosui, b+ vi sinui, c + dv2i )

with unknown values (ui, vi) (i = 1, . . . ,m) correspond to each given and rotated
(so far with unknown angles β and γ) data point (x̃i, ỹi, z̃i). Then the minimization
of

S(a, b, c, d, β, γ, u1, . . . , um, v1, . . . , vm)

=
1
2

m∑
i=1

(x̃i − a− vi cosui)2 + (ỹi − b− vi sinui)2 + (z̃i − c− dv2i )2

(10)
means to minimize the (half) sum of squared orthogonal distances from the ro-
tated data to the unrotated paraboloid. The equivalent would be to minimize the
sum of squared orthogonal distances from the original data to points on the ro-
tated model (4). Anyway, we have introduced a lot of further unknowns, i.e. 2m,
namely u1, . . . , um, v1, . . . , vm. But this will simplify our numerical method to be
developed.

2. The general algorithm

At first we will discuss the algorithm for a more general case. Then we will specify
it for our problem. Let the function to be minimized be more generally

T = T (w1, . . . , wM ) ≥ C > −∞
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where the M unknowns w1, . . . , wM are numbered in some way such that there
exist N groups of variables

w1 = (w1, . . . , w�1),
w2 = (w�1+1, . . . , w�2),
...

wN = (w�N−1+1, . . . , w�N ),

of sizes �L − �L−1 (L = 1, . . . , N, �0 = 0, �N =M) with the following property: For
L = 1, . . . , N and given

w
(t+1)
1 ,w

(t+1)
2 , . . . ,w

(t+1)
L−1 ,w

(t)
L+1, . . . ,w

(t)
N

in the (t+1)-th iteration it should be possible to find a global minimum w∗
L of the

function
T (wL) = T (w(t+1)

1 , . . . ,w
(t+1)
L−1 ,wL,w

(t)
L+1, . . . ,w

(t)
N ) .

Then we set w
(t+1)
L = w∗

L and proceed. (Necessary conditions for a minimum are
∂T

∂wL
= 0, but we suppose also some means to identify a global minimum.) The

above mentioned property would imply

T (w(t)
1 ,w

(t)
2 ,w

(t)
3 , . . . ,w

(t)
N )

≥ T (w(t+1)
1 ,w

(t)
2 ,w

(t)
3 , . . . ,w

(t)
N )

≥ T (w(t+1)
1 ,w

(t+1)
2 ,w

(t)
3 , . . . ,w

(t)
N )

≥ . . .
≥ T (w(t+1)

1 ,w
(t+1)
2 ,w

(t+1)
3 , . . . ,w

(t+1)
N ) .

Thus we would have a descent when moving from t to t+1. For t = 0 starting values
have to be given. It will depend on these values to which minimum the algorithm
will converge.

Now this algorithm will be used for the special objective function S of (10). It
will turn out that due to its properties the group sizes are always one and that it
will be very easy to find global minima as desired. Just as in the general case it is
possible to choose a suitable sequence of w1, . . . ,wN in order to eventually improve
convergence.

3. The algorithm for the rotated paraboloid

Step 0: Let starting values a, b, c, d, β, γ be given ((ui, vi), i = 1, . . . ,m will not be
needed.)

Step 1: Using β and γ as given we calculate (xi, yi, zi) and (x̃i, ỹi, z̃i) (i = 1, . . . ,m)
using (6) and (7) in turn.

Step 2: For each i = 1, . . . ,m the necessary condition ∂S
∂ui

= 0 results for vi �= 0
(vi = 0 makes no sense) in

sinui(x̃i − a) − cosui(ỹi − b) = 0 . (11)
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If
∂2S

∂u2
i

= cosui(x̃i − a) + sinui(ỹi − b) > 0,

then the minimum is

ui = atan
(
ỹi − b
x̃i − a

)
, (12)

otherwise ui has to be replaced by ui + π (i = 1, . . . ,m).
Step 3: For each i = 1, . . . ,m the necessary condition ∂S

∂vi
= 0 results (using those

ui from Step 2) in

2d2v3i + (1 − 2d(z̃i − c))vi − (cos ui(x̃i − a) + sinui(ỹi − b)) = 0 . (13)

As d �= 0, this is a third degree polynomial equation in vi that has either
one real root or three real roots (see also [1]).
In the first case the root must correspond to the unique global minimum
because limvi→±∞ S(vi) = ∞. In the second case one has to select that
value out of three that minimizes the i-th term of S. (Note that S is
separable w.r.t. either ui or vi for each i = 1, . . . ,m).

Step 4: The necessary condition ∂S
∂β = 0 delivers (using (9))

H sinβ −G sinβ = 0, (14)

where

H =
n∑

i=1

xi(a+ vi cosui) + zi(c+ dv2i ) ,

G =
m∑

i=1

zi(a+ vi cosui) − xi(c+ dv2i ) .

If
∂2S

∂β2
= H cosβ +G sinβ > 0,

then

β = atan
(
G

H

)
, (15)

else β has to be replaced by β + π.
Step 5: The necessary condition ∂S

∂γ = 0 delivers (using (8))

U cos γ + V sin γ = 0, (16)

where

U =
m∑

i=1

sinβ yi(a+ vi cosui)− zi(b+ v sinui) + cosβ yi(c+ dv2i ) ,

V =
m∑

i=1

sinβ zi(a+ vi cosui)− yi(b+ vi sinui) + cosβ zi(c+ dv2i ) .
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If
∂2S

∂γ2
= −U sin γ + V cos γ > 0,

then

γ = atan
(
−U
V

)
, (17)

else γ has to be replaced by γ + π.

Step 6: Using the new values for β and γ we now calculate new values for (xi, yi, zi)
and (x̃i, ỹi, z̃i) (i = 1, . . . ,m) applying (6) and (7).

Step 7: The necessary conditions ∂S
∂a = ∂S

∂b = ∂S
∂c = 0 give in turn

a =
1
m

m∑
i=1

(x̃i − vi cosui) , (18)

b =
1
m

m∑
i=1

(ỹi − vi sinui) , (19)

c =
1
m

m∑
i=1

(z̃i − dv2i ) . (20)

These values (18), (19), and (20) correspond to global minima.

Step 8: Finally ∂S
∂d = 0 gives (using (20)) the global minimum

d =

m∑
i=1

v2i (z̃i − c)
m∑

i=1

v4i

(21)

w.r.t. d.

Step 9: Calculate the current value of S to compare it with the one in the next
iteration and compare also the values of the unknowns in two successive
iterations (e.g. relative error less than given ε). If accuracy is not sufficient,
then go back to Step 2. Otherwise calculate the residuals of the fit, i.e.

 xi

yi

zi


 −B(γ)A(β)


 a+ vi cosui

b+ vi sinui

c+ dv2i


 (i = 1, . . . ,m) , (22)

and also the translation for the original data by
 a
b
c


 := B(γ)A(β)


 a
b
c


 . (23)
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4. Numerical examples

At first we produced data points (xi, yi, zi), i = 1, . . . ,m = 20 on an unrotated
paraboloid by defining

xi = 5r1, yi = 5r2, zi = .5(x2
i + y2i ),

where r1 and r2 are different and equally distributed pseudorandom numbers in
[−1, 1] for each new i. These data were rotated by A(.5) and B(−.5) and afterwards
translated by (a, b, c) = (1, 2, 3) to give the first data set. Four further data sets
were derived similarly by adding g∗r to the new xi, yi, zi where again r ∈ [−1, 1] was
pseudo-randomly varying with each component and with each i = 1, . . . ,m = 20.
The number g was 0 for the first data set and g = .1, .25, .6, 1 for the four other
ones, respectively. The data of all five data sets were rounded to three digits after
the decimal point before using them. For a global minimum of S we thus would
expect S ≈ 0 for g = 0 and S increasing with g.

To test our algorithm we used ten different starting values for (a, b, c, d, β, γ),
namely (r1, r2, r3, r4, r5, r6), where rk (k = 1, . . . , 6) were different pseudorandom
numbers equally distributed in [0, 1], different for each of the five data sets and also
different for each of the ten sets. The results are found in Table 1.

g a b c d β γ S it ri

0 1.0002 2.0002 3.0001 .5000 .5000 -.5000 .00000124 1285 450− 2400

.1 .9774 1.9922 2.9793 .5044 .4978 -.5005 .07953690 870 700− 1200

.25 .8283 2.0519 3.0584 .4861 .4967 -.5023 .21590963 1570 975− 2300

.6 2.7480 1.9731 1.3587 .6586 .5733 -.4020 .53725064 1810 1575− 2100

1. 1.3638 1.4461 2.2132 .5974 .4831 -.5242 3.12157106 910 600− 1175

Table 1.

Astonishingly for each value of g = 0, .1, .25, .6, 1 we received for each of the ten
starting values the same value for S (thus most probably the global minimum) and
also for the unknowns a, b, c, d, β, γ, u1, . . . , um, v1, . . . , vm. The range of the num-
ber of iterations ri to get four exact digits after the decimal point for all unknowns
and also the corresponding average number it of iterations seem rather high at first
glance. But on the other hand, the overall computing time for all five data sets and
each time ten starting values was about one minute on a PC and thus remarkably
low. Considering the value of S this one normally was very fast decreasing during
the first few iterations and then it took a very large number of iterations to receive
the attended four digits accuracy.

5. Conclusions

The described algorithm to fit the measured data with a rotated paraboloid can
be implemented easily and it seems to behave well with arbitrary starting values,
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though a global minimum cannot be guaranteed. The same situation is with the
GAUSS-NEWTON (see [4]) or the NEWTON method where you need the Jacobian
and/or the Hessian matrix, too.) Our algorithm can also be realized in a similar
way e.g. for spheres [2], for ellipsoids [3], cylinders, and half cones.
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