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Introduction

The use of hydrotreating processes for meeting 
products specification in an oil refinery is now 
mandatory due to environmental constraints re-
quired. Diesel and gasoline, products which had rel-
atively loose specifications some decades ago, now-
adays have narrow ranges of production, especially 
related to sulfur content, distillation and combustion 
properties, such as cetane number for diesel and oc-
tane number for gasoline.1

Regarding low sulfur content diesel production, 
a deep hydrodesulphurization process is recom-
mended. It is usually accomplished by the reaction 
of a diesel stream and hydrogen in a fixed bed reac-
tor operating at suitable temperature and pressure 
conditions.2 During this process, many hydrogena-
tion reactions involving the existing heteroatom in 
the feed (as sulfur, nitrogen and oxygen, besides 
aromatic ring opening and hydrocracking) may oc-
cur. The extension of each reaction depends on the 
process severity, and along the reaction period an 
increase in water, hydrogen sulphide and ammonia 
concentrations in the gas stream with hydrogen par-
tial pressure reduction, caused by the hydrogen con-
sumption due to these reactions is expected.3 Gener-
ally, light cycle oil (LCO) streams arising from 

fluid catalytic cracking (FCC) units are more diffi-
cult to treat not only due the high nitrogen and sul-
fur content, but also due to high aromaticity. Re-
garding sulfur-based components, the presence of 
compounds from the benzothiophenes, particularly 
the dimethyldibenzothiophenes (DMDBT) and su-
perior, plays a key role on downstream processing 
and product quality.4

Nowadays, industry has been making use of dif-
ferent methodologies, such as hydrogen partial pres-
sure increase, addition of extra reactors and catalyst, 
reactor temperature rising and catalyst change.5–6 
However, the implementation of these changes in ex-
isting hydrotreating units, besides the usual high costs, 
could also be of difficult implementation due to space 
and time constraints.7 In order to enable a faster and 
cheaper production of ULSD, an alternative approach 
relies on performing a feed control, relieving the ne-
cessity of the deep desulphurization of refractory spe-
cies by just rejecting this species to other streams. 
Moreover, distillation endpoint controlling also helps 
to remove some nitrogen species as acridine that com-
pete with the same catalyst sites used in the hy-
drodesulphurization.8

Aimed at proper operation, a control loop requires 
adequate instrumentation. On the other hand, this may 
not exist or may have prohibitive costs. Therefore, the 
use of virtual sensors or soft sensors becomes an at-
tractive approach. Some advantages are the low cost 
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of implementation and parallel operation with on-line 
analyzers for creating monitoring systems.9 This type 
of sensor can be either based on fundamental princi-
ples10–11 or on empirical equations.12 Although extrap-
olation is not recommended when using an empiri-
cal-based soft sensor, its simplicity, easy maintenance 
and fast implementation makes it very attractive, espe-
cially for industrial applications.8

Literature reports some applications on the de-
velopment and use of soft sensor in petroleum pro-
cessing. For example, Bolf et al.13 reported the de-
velopment of a soft sensor for diesel fuel quality 
estimation using neural networks. The authors also 
reported14 the development of soft sensors for kero-
sene properties estimation and control in crude dis-
tillation unit. Fortuna et al.15 described the use of 
soft analyzers for a sulfur recovery unit and Zhou et 
al.16 presented the inferential estimation of kerosene 
dry point in refineries with varying crudes. Rogina 
et al.17 developed a soft sensor for continuous esti-
mation of light naphtha vapor pressure. Chatterjee 
and Saraf18 reported a tool for on-line estimation of 
product properties for crude distillation units, focus-
ing on the true boiling point (TBP) curve predic-
tion. Carroll et al19 reported an improved prediction 
of hydrocarbon flash points from boiling point data 

by using empirical correlations. Zendehboudi et al20 
presented the use of an artificial neural network to 
adequately predict the condensate-to-gas ratio for 
retrograde gas condensate reservoirs.

In this sense, this work reports the development 
of soft sensor for inferring the properties of LCO of an 
industrial oil refining unit, using both linear correla-
tion models and neural networks. More specifically, 
the inference of 10%, 30%, 50%, 70% and 90  % 
ASTM D-86 recovery temperature was focused.

Soft sensor development

Industrial unit

A schematic diagram of the unit used in this 
study is shown in Fig. 1. It comprises an industrial 
distillation column, which receives the product from 
the reactor (riser/separator drum) and performs the 
initial separation from the cuts for treatment or im-
provement in further processing units.

The subsystem of interest is highlighted in 
Fig. 1 and represents a sidecut where LCO stream is 
produced in the unit. In this process plant, this 
stream has two different purposes: it can be either 
used as diluent for feed oil or it can be hydrotreated 

F i g .  1 – FCC Distillation Column P&ID



J. JOUCOWSKI et al., Inferring Light-cycle-oil Stream Properties Using Soft Sensors, Chem. Biochem. Eng. Q., 27 (3) 289–296 (2013)	 291

for blending in order to obtain diesel. As the price 
difference between these two products is too high, 
the operation to transform LCO into diesel is most-
ly often chosen, since the final requirements are ful-
ly accomplished by the hydrotreaters.

Variable selection and data handling

An 18 month operating horizon was selected to 
obtain the experimental data set used in this work. 
Process data regarding flow, temperature and pressure 
were obtained from plant information software and the 
experimental ASTM D-86 curve data resulted from 
lab activities. Before using, process and lab data were 
checked for consistency. More specifically, only steady 
state operating conditions (flow, temperature and pres-
sure) were selected together with the respective lab 
analysis. During process data evaluation, a steady state 
operation was considered to exist in a set if, for flow 
and pressure measurements a standard deviation lower 
than 5% could be achieved together with a tempera-
ture standard deviation lower than 1ºC.The values of 
5% and 1ºC were obtained from PETROBRAS inter-
nal standard procedures, based on process expert 
knowledge.21

Model structuring and selection 
of regression parameters

In order to develop accurate soft sensors, two 
different approaches were considered: linear in the 
parameters correlations19 and MLP (Multi Layer 
Perceptron) neural networks.22 Concerning the lin-
ear correlations, the following models were evaluat-
ed, after preliminary analysis of the data sets cor-
relation and tendencies.

	 TX%Corr01 = a0 + a1×(TI-02) + a2×(FFI-01)	 (1)

	 TX%Corr02 = a0 + a1×(TI-02) + a2×(FFI-01) + 
	 + a3×(PY-01)	 (2)

	 TX%Corr03 = a0 + a1×(TY-01) + a2×(FFI-01)	 (3)

	 TX%Corr04 = a0 + a1×(TY-01)	 (4)

	 TX%Corr05 = a0 + a1×(TI-03) + a2×(TI-05) + 
	 + a3×(FIC-04) + a4×(FIC-06) + a5×(PY-01) + 
	 + a6×(TY-01) + a7×(FFI-01) + a9×(FFI-02)	 (5)

	 TX%Corr06 = a0 + a1×(TI-02) + a2×(FFI-01) + 
	 + S(Ti%×ai)	 (6)

	 TX%Corr07 = a0 + a1×(TY-01) + a2×(FFI-01) + 
	 + S(Ti%×ai)	 (7)

where aj are the estimated parameters; TX%Corr(i) is 
the ith correlation studied to predict the X% of the 
ASTM D-86 distillation points (X = 10;30; 50; 70; 
90); the other variables were directly extracted from 
plant data, according to Fig. 1.

It can be observed that Eq. (6) and Eq. (7) can 
be considered somehow hybrid models as they use 
not only independent process data (TY-01, FFI-01 
and TI-02), but also experimental lab results (Ti%). 
Some variables considered for model development, 
which are not shown in Fig. 1, were calculated us-
ing the equations given in Table 1. It is important to 
state that variable TY-01 (LCO Withdraw Corrected 
Temperature) was obtained with the Clausius-Clay-

Ta b l e  1  – Calculated variables

TAG Description Calculation blocks

FY-02 Reactor Stream Sum = ([FIC-18] + [FIC-19] + [FIC-20] + [FIC-21] + [FI-22] + [FIC-23] + 
  + [FIC-24] + [FIC-25] + [FIC-26] + [FY-01]) × 1000 kg × ton–1

FY-03 Rectification Stream Sum = ([FIC-01] + [FIC-11] + [FIC-18]) × 1000 kg × ton–1

FY-04 Stream Molar Flow = ([FY-02) + [FY-03)]) / 18 kg kmol–1

FY-05 Offgas Molar Flow = ([FI-15]) / 22.73 Nm³ kmol–1

FY-06 LPG Molar Flow = ([FI-16] x d20/4_LPG) / (MWLPG x 24 h × d–1)
FY-07 Cracked Naphtha Molar Flow = ([FIC-17] x d20/4_Naphtha) / (MWNaphtha x 24 h × d–1)
FY-08 HCN Molar Flow = ([FIC-07] x d20/4_HCN) / (MWHCN)
FY-09 LCO Molar Flow = ([FIC-07] x d20/4_LCO) / (MWLCO)
FY-10 LCO Molar Fraction = ([FY-10]) / ([FY-04] + [FY-05] + [FY-06] + [FY-07] + [FY-08] + [FY-09])
PY-01 LCO Sidecut Pressure [kgf/cm² / mm H2O] = [PI-01] + ([PDI-01] + [PDI-02]) × 0.0001 
TY-01 LCO Withdraw Corrected Temperature

FFI-01 LCO Volumetric Yield = [FIC-02] / ([FI-13] + [FIC-14])

FFI-02 Reflux Ratio = [FIC-08] / [FIC-12]
d20/4_i.standard density of the cut at 20 °C reference of each cut; Mw_i. molar weight of each cut; DHvapLCO.heat of vaporization of 
LCO (kJ kmol–1); Pref reference pressure (kPa); R universal gas constant.
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peron equation.19,23 All the average properties used 
in this work are presented in Table 2, which were 
obtained using historical data from the plant and 
other lab analyzes.

The parameter estimation problem used Eq.(8) 
as the objective function and the optimization prob-
lem was solved by standard methods previously re-
ported.24 Models were statistically evaluated by 
considering simultaneously the lowest value of the 
objective function, the highest value of the correla-
tion coefficient, the lowest number of parameters 
and, mainly, the lowest values of parametric vari-
ance.

In the scenario using neural networks, feedfor-
ward architecture, using MLP networks were con-
sidered. An extensive work was performed on the 
selection of input variables of the neural networks, 
by considering different number and also different 
types of variables, similarly to the linear correlation 
models (see Eq. (1) to Eq. (7)). The unitary input, 
which represents the bias from the neuron, was also 
included during training/testing steps.

For each network, the following parameters 
were evaluated: i) number of internal neurons; ii) 
the type activation function in the hidden and in the 
output layer (logistic, exponential, hyperbolic and 
identity); iii) the percentage of the data set consid-
ered for training and testing purposes. In all cases, 
training algorithm was BFGS (since networks did 
not have a large number of neurons22), with a weight 
decay set with a minimal value of 0.001 and maxi-
mum value of 0.01 for both layers (hidden and out-
put). After studying all different combinations of 
neural networks, the best one for each percentage of 
the ASTM-86 curve was chosen considering lowest 
prediction error and smallest neuron number 
achieved during training / testing procedures.

Results and discussion

All the linear models previously presented (see. 
Eq.(1) to Eq.(6)) were used for predicting 10%, 
30%, 50%, 70% and 90% recovery temperature. Ta-
ble 3 presents only the best model for each of the 
recovery temperatures, based on the value of the 
correlation coefficient (r), value of the objective 
function (FOBJ – see Eq.(7)) and the parametric vari-

ance. All models were tested for all recovery tem-
peratures. It can be observed that for 10% to 50% 
the linear models were capable of correlate the lab 
data to process measurements, presenting correla-
tion coefficients over 0.95. For all estimated param-
eters, the respective standard deviation was lower 
than the parameter value itself, indicating a statisti-
cal significance. For 70% and especially for 90% 
recovery temperature the linear model parameter 
presented an unsatisfactory correlation, even with 
using other distillation points. These results reflect 
that, as higher gets the boiling point, more specific 
components (heavier components) exist in that cut, 
and because of that, worst linear correlations will be 
obtained. Experimental normalized (0 for lowest 
value and 1 for highest) data against normalized 
model predictions are shown in Fig. 2. It can be ob-
served that for 10% to 50% model predictions are 
within the confidence range of 95%, showing that 
simple models can be successfully used as soft sen-
sors. Regarding 70% and 90% the linear correlation 
models performance is not as good as for the previ-
ous cases. Although the model predictions lie with-
in the confidence region, due to the lower correla-
tion coefficient and larger parametric variance, this 
region is larger, consequently, a larger spread of the 
plotted points is expected, reducing the soft sensor 
accuracy. Besides, it can also be observed that even 
the simpler correlations, i.e., having few parame-

Ta b l e  2  – Average Cut Properties

Cut Density at 20 °C 
(kg m–3)

Molecular Weight 
(kg kmol–1)

LPG 546.0   49.6
Cracked Naphtha 757.5   98.4
HCN 906.8 180  .
LCO 965.3 199.3

Ta b l e  3  – Parameter estimation summary for linear models

Best model T10%Corr01 = a0 + a1×(TI-02) + a2×(FFI-01)

a0 =  0.51 sa0 =  0.06 r = 0.9688

a1 =  0.54 sa1 =  0.05 FOBJ = 412.3614

a2 =  –0.48 sa2 =  0.06

Best model T30%Corr01 = a0 + a1×(TI-02) + a2×(FFI-01)

a0 =  0.54 sa0 =  0.05 r = 0.9648

a1 =  0.48 sa1 =  0.05 FOBJ = 363.8474

a2 =  –0.46 sa2 =  0.05

Best model T50%Corr04 = a0 + a1×(TY-01)

a0 =  0.11 sa0 =  0.02 r = 0.9565

a1 =  0.83 sa1 =  0.04 FOBJ = 590.5986
Best model T70%Corr04 = a0 + a1×(TY-01)

a0 =  0.13 sa0 =  0.03 r = 0.8226

a1 =  0.57 sa1 =  0.05 FOBJ = 115.0751

Best model T90%Corr06 = a0 + a1×(T10%) + a2×(T50%) + 
+ a3×(TI-02) + a4×(FFI-01)

a0 =  0.02 sa0 =  0.12 r = 0.8125

a1 =  -1.3 sa1 =  0.2 FOBJ = 247.7183

a2 =  1.8 sa2 =  0.2

a3 =  0.13 sa3 =  0.1

a4 =  0.27 sa4 =  0.1
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ters, led to satisfactory results. This is an important 
feature as although empirical, the correlations can 
have some physical meaning, for example, when 
temperature (or compensated temperature) rises, the 
temperature of that cut also rises, and when LCO 
yield increases, the cut point falls because more 

heavy cracked naphtha goes inside the column to 
LCO withdraw.

Regarding neural networks models, different 
combinations of inputs, based on process expert 
knowledge, were tested. Each test considered not 
only different percentages of training/testing data 

F i g .  2  – Linear models (a) 10%; (b) 30%; (c) 50%; (d) 70%; (e) 90%
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(50/50, 70/30, 90/10), but also different activation 
functions. Table 4 reports the set of input variables 
of the best neural networks obtained for each ASTM 
D-86 percentage. Due to the neural network fea-
tures, a larger number of inputs are necessary when 
compared to the linear models.

Table 5 presents a summary of the neural net-
works performance. It can also be noted that the 
hidden layer did not require a large number of neu-
rons, probably because of the experimental data 
correlation shown by the linear models. A careful 
analysis shows that the neural network prediction 
performance concerning the lower percentages was 
worse than the performance for 70% and 90%. This 
can also be observed from Fig. 3. Comparing Fig. 2 
to Fig. 3, for lower percentages, 10%; 30%; 50% 
the linear correlation models not only led to better 
performances, but also are simpler models, which 
can be easily updated by proper parameter re-esti-
mation. On the other hand, for 70% and 90% pro-
vided a superior performance, comparing Fig. 2d to 
Fig. 3d and Fig. 3d to Fig. 3e, respectively. It can be 
seen that the neural network predictions are closer 
to the experimental as the points in Fig. 3d and Fig. 
3e are closer to the straight line that indicates that a 
good correlation coefficient as indicated in Table 5. 

This happened due to the intrinsic nature of the neu-
ral network, which was able to handle possible non-
linear correlation features of the experimental data. 
Finally, it is important to mention that for all neural 
networks, the best training/testing percentage was 
70/30.

Conclusions

LCO cutpoint control represents an interesting 
alternative for ULSD production, providing a way 
to avoid LCO degradation to fuel oil and profitabil-
ity losses. However, for an appropriate control loop 
performance, a reliable sensor is necessary. Towards 
this, soft sensors can play a key role. In this work, 
two different approaches were used to develop soft 
sensors to predict LCO ASTM D-86 curve of indus-
trial oil refining equipment. In the first approach, 
linear correlations were developed and after param-
eter estimation, 10%; 30% and 50% of the curve 
were successfully inferred by comparison with lab 
data. For higher percentages, such as 70% and 90%, 
linear models did not present the same performance. 
Towards this, neural networks were used as an al-
ternative approach for the sensor development. Us-
ing different inputs, neural networks could be suc-
cessfully trained and used for adequate prediction 
of 70% and 90% of the ASTM D-86 curve. For all 
models, correlation coefficients between model pre-
dictions and experimental data were above 0.95. 
Based on the obtained results, the applied method-
ologies could be effectively applied as soft sensors 
for monitoring LCO cutpoint and reducing refracto-
ry species in this stream.
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Ta b l e  4  – Inputs leading to the best neural network

T10% T30% T50% T70% T90%
TI-03 TI-01 TI-01 10% 10%
TI-05 TI-06 TI-06 50% 50%

FIC-04 TI-07 TI-07 TI-02 TI-03
FIC-06 TI-09 TI-09 FFI-01 TI-05
PY-01 FIC-03 FIC-03 Bias FIC-04
TY-01 FIC-04 FIC-04 FIC-06
FFI-01 FIC-05 FIC-05 PY-01
FFI-02 FIC-06 FIC-06 TY-01

Bias FIC-10 FIC-10 FFI-01
PY-01 PY-01 FFI-02
FFI-02 FFI-02 Bias
Bias Bias

Ta b l e  5  – Summary of Network Results

Cut 
D-86 Architecture

Performance 
correlation coefficient Error Activation Function

training test training test hidden 
layer exit

10   8–4–1 0.96000 0.97282 0.00251 0.00119 Exponential Identity
30 11–4–1 0.96160 0.96263 0.00231 0.00331 Tanh Tanh
50 11–4–1 0.94043 0.97250 0.00320 0.00390 Tanh Tanh
70   4–3–1 0.98172 0.99078 0.00077 0.00042 Tanh Tanh
90 10–4–1 0.97660 0.90655 0.00082 0.00298 Tanh Identity
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