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Observations on some sequences supplied by

inequalities

Ştefan M. Şoltuz
∗

Abstract. The convergence of some sequences supplied by inequal-
ities is used in order to prove the convergence of Ishikawa and Mann
iterations. Our purpose in this note is to give some observations on
these sequences.
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1. Introduction

Four Lemmas are needed in [1], [2], [3], [4], [5], [6], [8], [9], [11], [14] for the con-
vergence of (Mann) Ishikawa iteration. In this note we will give new proofs for two
of them. Also, we will show that two Lemmas are dependent. We will give new
applications.

We need Lemma 1 from [14]. We will give a new proof for it.
Lemma 1. [14] If (an)n, (bn)n are two real nonnegative sequences satisfying

an+1 ≤ an + bn, ∀n ≥ 1, (1)
∞∑

n=1

bn < ∞,

then (an)n is convergent.
Proof. Let us denote by

Sn =
n∑

k=1

bk. (2)

We know
∑∞

n=1 bn < ∞. For a fixed ε > 0 , there exists n0 such that for all n, p ≥ 1
with p − 1 ≥ n, we have

Sn0+p−1 − Sn0+n < ε. (3)
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From (1) we know

an0+n+1 ≤ an0+n + bn0+n,

an0+n+2 ≤ an0+n+1 + bn0+n+1,

...

an0+p ≤ an0+p−1 + bn0+p−1.

Summing, one obtains

an0+p ≤ an0+n +
p−1∑

k=n

bn0+k i.e.

an0+p − an0+n ≤ Sn0+p−1 − Sn0+n < ε.

Hence (an)n is fundamental. Thus the limit of (an)n exists. ✷

In the proof from [14] lim and lim are used.
If (an)n from (1) has a subsequence which converges to zero, then (an)n will

converge to zero. Let us remark that if (an)n is decreasing, then (an)n is not
necessarry convergent to zero. Take an = 1 + 1

n , bn = 1
n2 . The assumptions of

Lemma1 are verified, but an → 1.
The following lemma can be found in [16] as Lemma 4. Also, it can be found in

[8] as Lemma 1.2, with another proof.
Lemma 2. [16], [8] Let (Ψn)n be a nonnegative real sequence satisfying

Ψn+1 ≤ (1− λn)Ψn + σn, (4)

where λn ∈ (0, 1),
∑∞

n=1 λn = ∞ and σn = o(λn). Then limn→∞ Ψn = 0.
A very useful result is the following Lemma:
Lemma 3. [6] Let (βn)n be recursively generated by

βn+1 = (1 − δn)βn + σ2
n, (5)

with n ≥ 1, β1 ≥ 0, (δn)n ⊂ (0, 1), and
∑∞

n=1 σ2
n < ∞,

∑∞
n=1 δn = ∞. Then βn ≥ 0

for n ≥ 1,and βn → 0 as n → ∞.
Lemma 1 is used for the convergence of (Mann) Ishikawa iteration in [3], [14].

Lemma2 is used in [2], [8], [9], [11]. Lemma 3 is used in [1], [4], [6].
The following result is Lemma 1 from [5], with another proof.
Proposition 1. [5] Let (an)n, (bn)n and (cn)n be three nonnegative sequences

which satisfy
an+1 ≤ (1 + bn)an + cn, (6)

where
∑∞

n=1 anbn < ∞ ,
∑∞

n=1 cn < ∞. Then there exists the limit of (an)n.
Proof. We have

an+1 ≤ an + bnan + cn

an+2 ≤ an+1 + bn+1an+1 + cn+1

...

an+p+1 ≤ an+p + bn+pan+p + cn+p
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Summing, one obtains

an+p+1 ≤ an +
n+p∑

k=n

bkak +
n+p∑

k=n

ck, i.e.

an+p+1 − an ≤
n+p∑

k=n

bkak +
n+p∑

k=n

ck.

We know
∑∞

n=1 anbn < ∞ ,
∑∞

n=1 cn < ∞. Let ε > 0 be a fixed number. There
exists n′

0 such that ∀n ≥ n′
0, we have

∑n+p
k=n bkak < ε/2. For the same ε > 0 there

exists a n0” such that ∀n ≥ n0”, we have
∑n+p

k=n ck < ε/2. We take n0 := max{n′
0,

n0”}. For all n ≥ n0 we have

an+p+1 − an ≤
n+p∑

k=n

bkak +
n+p∑

k=n

ck <
ε

2
+

ε

2
= ε. (7)

Thus (an)n is fundamental in [0,∞). Hence there exists the limit of (an)n. ✷

Proposition 4 is used in [5], for the convergence of Ishikawa iteration with errors
introduced in [15].

2. Lemma 3 implies Lemma 2

We need the following Lemma:
Lemma 4. Let (δn)n, (σ2

n)n ⊂ (0, 1).The following relation is true:

∞∑

n=1

δn = ∞,
∞∑

n=1

σ2
n < ∞ ⇒ σ2

n = o(δn). (8)

Proof. Our assumptions lead us to

σ2
n < δn, ∀n ≥ 1. (9)

Else
∑∞

n=1 σ2
n = ∞, is in contradiction with

∑∞
n=1 σ2

n < ∞.
We have two cases:
I) The case in which limn→∞ σ2

n = 0 and limn→∞ δn = 0. We fix n ≥ 1. Then
there exists εn > 0 such that σ2

n = εnδn. We have εn < δn, else εn ≥ δn, hence
σ2

n < δn ≤ εn. Thus σ2
n < δnεn, which is in contradiction with σ2

n = εnδn. If n ∈ N,
then there exists a sequence (εn)n such that εn < δn. Thus

0 ≤ lim
n→∞ εn ≤ lim

n→∞ δn = 0. (10)

Hence σ2
n = o(δn).

II) The case in which limn→∞ σ2
n = 0 and limn→∞ δn �= 0. We know σ2

n = εnδn,
∀n ≥ 1. Then limn→∞ εn = 0. Hence σ2

n = o(δn). ✷
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Remark 1. The two converses of Lemma 2 are not true.
The first converse is

σ2
n = o(δn),

∞∑

n=1

δn = ∞ ⇒
∞∑

n=1

σ2
n < ∞. (11)

A counterexample is given by: δn := 1/
√

n, σ2
n = 1/n, εn = 1/

√
n, ∀n ≥ 1.

The second converse is

σ2
n = o(δn),

∞∑

n=1

σ2
n < ∞ ⇒

∞∑

n=1

δn = ∞. (12)

A counterexample is given by: δn := 1/n2, σ2
n = 1/n3, εn = 1/n, ∀n ≥ 1. We will

prove that Lemma 3 implies Lemma 2.
Proposition 2. Let (βn)n be a nonnegative sequence which satisfies

βn+1 = (1 − δn)βn + σ2
n, (13)

where (δn)n, (σ2
n)n ⊂ (0, 1), and

∞∑

n=1

σ2
n < ∞, (14)

∞∑

n=1

δn = ∞. (15)

Then the sequence (Ψn)n which satisfies

Ψn+1 ≤ (1 − δn)Ψn + σ2
n, (16)

converges to zero and
σ2

n = o(δn). (17)

Proof. From Lemma 5, we have (4), (5) ⇒ (7). Let us consider the sequence
given by

Ψ1 = β1,

Ψn+1 ≤ (1 − δn)Ψn + σ2
n.

We have Ψ1 ≤ β1. Supposing Ψn ≤ βn, we prove Ψn+1 ≤ βn+1. Thus we have

Ψn+1 ≤ (1 − δn)Ψn + σ2
n ≤ Ψn+1 ≤ (1− δn)βn + σ2

n = βn+1. (18)

From Lemma3 we know that limn→∞ βn = 0. Thus limn→∞ Ψn = 0. ✷
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3. Applications

Proposition 3. Let (an)n be a nonnegative sequence which satisfies

an+1 ≤ (1 − αn)an + αnβn, (19)

where (αn)n ⊂ (0, 1),
∑∞

n=1 αn = ∞ and limn→∞ βn = 0. Then limn→∞ an = 0.
Proof. We denote Ψn := an, λn := αn, σn := αnβn. From σn

λn
= αnβn

αn
= βn

and from limn→∞ βn = 0, we have σn = o(λn). Lemma 2 implies limn→∞ Ψn = 0,
hence limn→∞ an = 0. ✷

If βn = ε, ∀ n ≥ 1, then we recognize Lemma 1 from [12]. The conclusion is
0 ≤ lim supn→∞ an ≤ ε.

Using Lemma2, we are able to improve Proposition 2.5 from [13]:
Proposition 4. Let (an)n be a nonnegative sequence which satisfies

an+1 ≤ (1− αn)an + αncn, (20)

where αn ∈ (0, 1), ∀n ≥ 1,
∑∞

n=1 αn = ∞, (cn)n is a nonnegative sequence and∑∞
n=1 αncn = l. Then

lim
n→∞ an = 0. (21)

Proof. Let (βn)n be the sequence given by

β1 : = a1,

βn+1 : = (1 − αn)βn + αncn, ∀n ≥ 1.

We observe that a1 ≤ β1. We suppose an ≤ βn and we prove that an+1 ≤ βn+1. We
have

an+1 ≤ (1− αn)an + αncn ≤ an+1 ≤ (1− αn)βn + αncn = βn+1. (22)

Hence an ≤ βn∀n ≥ 1. From Lemma2 with δn := αn and σ2
n := αncn, we have

limn→∞ βn = 0. Thus limn→∞ an = 0. ✷

In proposition 2.5 from[13] the conclusion is 0 ≤ limn→∞ sup an ≤ l.
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