MAGNESIUM – MORE THAN A COMMON CATION

Ivana Čepelak¹, Slavica Dodig², Ognjen Čulić³

¹ Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Croatia
² Department of Clinical Laboratory Diagnosis, Srebrnjak Children’s Hospital, Zagreb, Croatia
³ Faculty of Pharmacy and Biochemistry, University of Zagreb, Croatia

Summary
Magnesium is an essential biological cation, participating in whole spectrum of biological functions. It is an irreplaceable factor for more than 300 enzymatic reactions, including those that use ATP as chemical energy source. Only about 1% of whole body magnesium is present in plasma. Normal plasma concentrations are in a range: 0.75-1.00 mmol/L. Concentrations lower or higher than in this interval are called hypomagnesemia and hypermagnesemia, respectively. Those are life threatening conditions. Hypomagnesemia requires quick i.v. supplementation with magnesium cation. In addition to hypoamgnesemia, we are nowadays aware of a common “invisible” deficit of magnesium in tissues. This is a result of changing nutrition habits causing an insufficient recommended daily uptake (>300mg daily). Large clinical studies have shown that magnesium status is negatively correlated with incidence and severity of diabetes type 2, metabolic syndrome, hypertension and some arrhythmias. Therefore, food supplementation with magnesium is one of positive therapeutic or prevention options. Future larger clinical studies are expected to provide information on usefulness of supplementation in some other common diseases and syndromes (e.g. migraine, fibromyalgia, coronary artery disease, chronic fatigue syndrome).

Keywords: magnesium; hypomgnesemia; hypermagnesemia; therapeutic applications of magnesium.

INTRODUCTION
The fact that magnesium (Mg) is essential for life was for the first time described in animals by Leroy in 1926 [1] and Kruse et al. in 1933 [2], while the first description of clinical depletion of Mg in humans was reported in 1934 by Hirschfelder & Haury [3]. However, studies of Mg began to gain increased attention only since 1950, after
descriptions of various pathological conditions related to Mg deficiency [4]. Such studies were additionally facilitated by advances in technology, i.e. the development of ever more sensitive and specific methods for determining Mg concentrations in different samples so that more and more information has become available on regulation and biological functions of Mg at molecular level.

SOURCES, RECOMMENDED ALLOWANCES AND MAGNESIUM DISTRIBUTION IN THE BODY

Intake of Mg in the body occurs via drinking water (approximately 30 mg/L in hard water) and food. Mg is abundant in green leafy vegetables (chlorophyll rich and containing Mg), seeds, leguminous plants, cereals, hazelnuts [5,6]. Fruit, vegetables, meat and fish contain small amounts of Mg, while this mineral is least present in dairy food [7]. Mg is reduced by as much as 85% in refined or processed food [8], which accounts for a high prevalence of low Mg intake in the body.

It is well known that the entire quantity of ingested Mg is not absorbed in the body but only, on average, 30-50% [9]. To maintain serum Mg concentration within the reference interval (0.75-1.0 mmol/L) – which is the basis of Mg biological functions, Recommended Dietary Allowance (RDA) values established in 1997 [10] for daily Mg intake are >300 mg (310-360 mg for women and 400-420 mg for men) and they have been adjusted for age, gender and nutritional status (Table 1).

Table 1. Recommended dietary allowances (USA 1997) and reference intakes (Germany, Austria, Switzerland, 2000) for magnesium (mg/day) (reprinted from ref. 10)

<table>
<thead>
<tr>
<th>Age</th>
<th>Women (mg/day)</th>
<th>Men (mg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>4-8</td>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td>9-13</td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td>14-18</td>
<td>360</td>
<td>410</td>
</tr>
<tr>
<td>19-30</td>
<td>310</td>
<td>400</td>
</tr>
<tr>
<td>31-50</td>
<td>320</td>
<td>420</td>
</tr>
<tr>
<td>51-70</td>
<td>320</td>
<td>420</td>
</tr>
<tr>
<td>>70</td>
<td>320</td>
<td>420</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>+40</td>
<td></td>
</tr>
<tr>
<td>Lactation</td>
<td>+40</td>
<td></td>
</tr>
</tbody>
</table>
Mg absorption occurs mostly in the small intestine, i.e. in the jejunum and ileum and significantly less in the colon [6]. Considering numerous factors that affect the process of absorption, the absorbed proportion of Mg is as stated above, commonly from 30% to 50% or 24-75% depending on body stores and food content [11]. The absorbed Mg is then distributed mostly to various tissue cells and to a lesser extent extracellularly. It is excreted through stool and through the kidneys.

Regarding its presence in the body, Mg is the fourth most frequent cation (following calcium, sodium, and potassium) [12,13]. From average 25 g (or 1120 mmol) of Mg in the body of an adult individual, the highest proportion of Mg can be found in bones, followed by muscles and other soft tissue cells [5,13]. One portion (20-30%) of Mg in bones is replaceable and buffers acute changes in serum Mg concentration but this quantity is significantly reduced with years [14,15]. Extracellularly, <1.0% Mg is found in three different forms: free ionized Mg, Mg complexed with different ligands, and as protein-bound Mg (Table 2).

Table 2. Distribution and/or concentrations of magnesium in a healthy adult (modified according to ref. 10).

<table>
<thead>
<tr>
<th>Tissue</th>
<th>% total body magnesium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone</td>
<td>60-65</td>
</tr>
<tr>
<td>Muscle</td>
<td>27</td>
</tr>
<tr>
<td>Other cells</td>
<td>6-7</td>
</tr>
<tr>
<td>Extracellular</td>
<td><1</td>
</tr>
<tr>
<td>Serum</td>
<td>0.75-1.1 mmol/L (55% free; 13% complexes with citrate, phosphate, etc; 32% bound to proteins, primarily to albumin)</td>
</tr>
<tr>
<td>Cerebrospinal fluid</td>
<td>1.25 mmol/L (55% free, 45% complexed)</td>
</tr>
<tr>
<td>Sweat</td>
<td>0.3 mmol/L (in warm environment)</td>
</tr>
</tbody>
</table>

PHYSIOLOGICAL FUNCTIONS OF MAGNESIUM

Magnesium is, after calcium, the second most frequent cation in cells [12]. 90% Mg in cells is bound to different ligands (e.g., nucleic acids, adenosine triphosphate, ATP, ADP, citrates, negatively charged phospholipids, proteins, etc.), while 10% Mg is in a free form. A significant amount of Mg is found in mitochondria (they are considered the major intracellular repository for Mg), then in the nucleus, ribosomes and endoplasmic reticulum [10]. In cells, Mg has structural and dynamic roles as, for instance, stabilization of protein structure, of phosphate groups in lipids of cellular membranes, of negatively charged phosphates of nucleic acids, and acti-
vation or inhibition of many enzymes [12,16,17]. Magnesium is actually important for the catalytic activity of more than 300 enzymes (e.g., ATP-ase, phosphofructokinase, enolase, adenylate cyclase, creatine kinase, 5-phosphoribosyl pyrophosphate synthetase, DNA polymerase, etc.), particularly of those that catalyze energy metabolism reactions. These reactions involve the process of glycolysis, Krebs cycle, respiratory chains, pentose phosphate pathway, gluconeogenesis, urea cycle, etc. In regulating enzyme activity, Mg can act as an allosteric modulator or as a co-factor, most frequently in the form of the Mg-ATP2- complex [13,18]. Generation of a complex with ATP4- is important to facilitate transphosphorylation reactions which are decisive for cell activation/deactivation. The complex is also involved in regulating the activity of ion channels that are significant for the transport of other electrolytes, e.g. potassium and calcium [19].

The biological role of Mg is rather heterogeneous. In addition to the above-mentioned structural and dynamic function, Mg – due to its relatively small atomic radius – easily competes with other divalent cations (particularly calcium) for specific binding sites on proteins [18,20]. As an endogenous calcium antagonist, Mg is involved in, e.g., blockage of N-methyl-D aspartate (NMDA) receptor, inhibition of excitatory neurotransmitter release, blockage of Ca channels, and relaxation of vascular smooth muscle cells [21]. This characteristic, and that of binding to various ligands – particularly to ATP4-, – is the basis for different physiological functions of Mg. Among other uses, Mg is essentially necessary for maintenance of normal neurological function and neurotransmitter release [6,8,13,22,23], muscular contractions/relaxations [6,9,24,25], regulation of vascular tonus and blood pressure [26,27,28], of cardiac rhythm, [29,30,31], insulin signal transmission [32,33,34], parathormone secretion and activity [13,19,35], modulation of immunological functions [36,37], etc. It is therefore evident that tight regulation of Mg levels in blood/serum and Mg distribution to individual cell types are of vital importance.

MAGNESIUM HOMEOSTASIS

Although the importance of Mg in different physiological and biochemical processes is well known, direct hormonal control of Mg homeostasis has not been clearly described [38,39]. This is accounted for by Mg abundance in food during human evolution [10]. Indirect activity of hormones is mostly described at the level of intestinal absorption or renal tubular reabsorption. It is, actually, not known if hormone concentrations are under the influence of Mg status, which is the case when real hormonal control is present. The hormones in question are, e.g., calciotropic hormones (parathyreoid hormone, PTH, calcitonin and vitamin D) and, more rarely, insulin, glucagon, prostaglandins, epinephrine, aldosteron, etc. [40,41,42,43,44]. Mg
Magnesium – more than a common cation

is, for instance, critical for maintenance of calcium homeostasis as it regulates PTH production and secretion, maintains adequate sensitivity of target tissues to PTH, is a cofactor of 1-alpha hydroxylase, an enzyme that participates in 1,25(OH)$_2$D$_3$ production, and also many calcium channels are dependent on Mg [45]. Besides its effect on calcium levels, Mg helps in regulation of other electrolytes (copper, zinc, potassium, sodium, etc.) so that the understanding of Mg homeostasis is important not only to understand disturbances in Mg levels but also for understanding and treatment of abnormalities of other electrolytes.

Magnesium homeostasis is controlled by dynamic interrelationships between intestinal absorption and by exchange with bones, but mostly by renal excretion [6,39,46].

Magnesium absorption

Mg absorption in the small intestine occurs primarily via non-saturable (passive) paracellular, and to a lesser extent by saturable (active) transcellular mechanisms [6,9,46,47,48].

The paracellular, passive mechanism involves absorption through small permeable spaces between epithelial cells (tight junction), and is responsible for 80-90% of Mg uptake in the body. This transport mechanism also includes some proteins from the claudin family (e.g., pracellin-1 or claudin-16) whose role is still at research stage [9,49]. Transcellular active transport to blood through the interior of intestinal epithelial cells is subject to tight regulation because ions must pass through apical and basolateral membrane. This mechanism includes specific channels (transient receptor potential channel melastatin - 6 and 7; TRPM-6 and 7) that are expressed on apical/luminal membrane of enterocytes [9,49,50,51]. It seems that the transport on basolateral membranes is associated with sodium gradient and corresponding activity of Na$^+$, K$^+$-ATPase [9].

Magnesium absorption in the intestines is generally dependent on the factors like the following: fiber rich food – phytates, organic acids, pH, Mg quantity, intestinal passage, meal volume and viscosity, vitamin D, calcium, phosphorus, polyphenols, oxalates, zinc, etc. [52,53,54,55,56].

Magnesium excretion

As serum Mg concentration is primarily controlled through urinary excretion, kidneys are considered the major regulators of Mg homeostasis. They have the ability to reduce Mg excretion to 0.5% of the filtered quantity in case of decreased serum concentrations, and to increase Mg excretion to 80% in case of elevated serum Mg concentrations [57,58].
Magnesium is filtered in glomerules (approximately 2400 mg/day), 90-95% of the filtered quantity is immediately reabsorbed, and only 3-5% is excreted, i.e. 100 mg/day [9,48]. To a lesser extent, reabsorption occurs via passive transport in proximal tubules (10-25%) [9], a significant proportion of 50-70% is reabsorbed in the thick ascending limb of the Henle’s loop, and about 10% is reabsorbed in the distal part [6, 9, 59]. Magnesium reabsorption in the thick ascending limb of the Henle’s loop occurs via passive paracellular pathway because of the electrochemical gradient that results in potassium exit through channels (renal outer medulla potassium channel, ROMK) in the apical cell membrane of the above-mentioned segment of the Henle’s loop [60]. Reabsorption is at this stage further facilitated by claudin-16 (paracellin-1) and claudin-19 [50,61,62].

Ca$^{2+}$/Mg$^{2+}$-sensing receptor, CASR, that activates or inhibits Na$^+$/K$^+$/2Cl$^-$ co-transporter and ROMK channel on the apical side in conditions of hypomagnesemia or hypermagnesemia [63,64], is located on the basolateral cell membrane of the thick ascending limb of the Henle’s loop and of the distal tubules.

Reabsorption in distal tubules is utilized to determine the final quantity of Mg that is to be excreted by urine. Reabsorption occurs via transcellular active mechanism that involves Mg entry into cells through the TRPM6 channel on the apical membrane (the role of TRPM7 channel is still investigated). It has been assumed that Mg exit from the cell on the basolateral membrane is facilitated, against concentration gradient, by the Na$^+$/Mg$^{2+}$-dependent mechanism of exchange and/or Mg-ATPaze activity [64,65].

The processes of absorption and reabsorption are controlled by different regulatory factors. Thus, for instance, Mg intake through food and changes in TRPM6 expression play a role in regulating intestinal absorption [9]. Stimulation of absorption in the intestines with 1,25-dihydroxy vitamin D$_3$ ((1,25(OH)$_2$D$_3$) was also described [66]. A regulatory factor of Mg reabsorption in kidneys is, e.g., epidermal growth factor (EGF) which regulates the activity of TRPM6 [67] whose expression is stimulated by estrogens [68].

Examination of Mg homeostasis at the level of cells themselves, i.e. Mg entry and exit from cells and its transport between cellular organelles via various pathways, carriers and exchangers, is in the focus of numerous studies that are currently underway. A reader is referred to an excellent review article by A.M Romani [12].

DISORDERS OF SERUM MAGNESIUM CONCENTRATIONS

Changes in serum Mg concentrations, related to reduced or increased levels outside the lower or upper limit of the reference interval (0.7-1.0 mmol/L), are termed hypomagnesemia and hypermagnesemia, respectively.
The occurrence of hypomagnesemia is more frequent, with the prevalence of 6.9% in general population and 7-11% among hospitalized patients [5, 69]. Hypomagnesemia in intensive care units ranges from 20% to 65% [70] and very frequently remains undetected. Some reports indicate a correlation between severe hypomagnesemia and increased mortality [71] so that it is recommended to monitor Mg concentration in severe patients.

Data on the prevalence of hypermagnesemia differ considerably and vary from 5.7% to 9.3% [13, 72]. Clinical findings related to serum Mg concentrations outside the reference interval are presented in Table 3.

Table 3. Clinical reports associated with altered magnesium concentrations (ref. 39).

<table>
<thead>
<tr>
<th>Total Mg (mmol/L)</th>
<th>Report</th>
</tr>
</thead>
<tbody>
<tr>
<td><0.5</td>
<td>Tetany, convulsions, arrhythmias</td>
</tr>
<tr>
<td>0.5-0.7</td>
<td>Neuromuscular irritability</td>
</tr>
<tr>
<td>0.7-1.0</td>
<td>Reference interval</td>
</tr>
<tr>
<td>1.0-2.1</td>
<td>Typically without symptoms</td>
</tr>
<tr>
<td>2.1-2.9</td>
<td>Lethargy/listlessness, sleepiness, redness, nausea and vomiting, weakened reflexes of deep tendons</td>
</tr>
<tr>
<td>2.9-5.0</td>
<td>Drowsiness, weakened reflexes of deep tendons, hypotension, ECG changes</td>
</tr>
<tr>
<td>>5.0</td>
<td>Complete heart blockage, cardiac arrest, apnea, paralysis, coma</td>
</tr>
</tbody>
</table>

Symptoms of acute hypo- and hypermagnesemia partially overlap so that serum Mg concentration must be determined [6].

a) Hypomagnesemia

Hypomagnesemia and Mg deficiency in the body are the terms that are equally often used in practice, mostly referring to decreased serum Mg concentration. However, depletion of the total body Mg may be present with serum Mg concentrations being within the reference interval while, on the other hand, significant hypomagnesemia is possible without body Mg deficiency. In fact, the determination of the total serum Mg concentration is not the best method to evaluate Mg status in the body as there is very weak correlation between the levels of total serum Mg and total Mg status in the body.

Hypomagnesemia may be the consequence of decreased Mg intake, of Mg redistribution, and the consequence of extrarenal, renal and hereditary factors. Etiological factors of hypomagnesemia are summarily presented in Table 4.
Table 4. Etiology of hypomagnesemia (modified according to ref. 64)

<table>
<thead>
<tr>
<th>Reduced Mg intake through food</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased Mg loss via gastrointestinal tract: diarrhea, malabsorption, steatorrhea, small bowel bypass</td>
</tr>
</tbody>
</table>

| Increased Mg excretion by kidneys: extracellular volume expansion, hypercalcemia, renal diseases, drugs (e.g. diuretics - thiazides, furosemide; amino glycoside antibiotics; cyclosporine; cisplatin inhibitors of proton pump, beta-adrenergic agonists, immunosuppressants, amphotericin B, foscarnet, etc.) |

<table>
<thead>
<tr>
<th>Hereditary causes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Intestinal and renal: hypomagnesemia with secondary hypocalcemia (TRPM-6 mutations)</td>
</tr>
<tr>
<td>- Renal: Bartter syndrome, Gitelman syndrome, familial hypomagnesemia with hypercalciiuria and nephrocalcinose; autosomal dominant hypomagnesemia with hypercalciiuria; isolated recessive hypomagnesemia, autosomal dominant hypocalcemia</td>
</tr>
</tbody>
</table>

| Other etiologies: acute pancreatitis, alcohol induced tubular dysfunction, hungry bones syndrome, diabetes mellitus, enhanced sweating, increased requirements (pregnancy, growth) |

Individuals with hypomagnesemia are often asymptomatic as Mg deficiency is usually secondary to other disease processes or drugs so that primary disease disguises Mg deficiency.

The signs and symptoms of hypomagnesemia depend more on the rapidity of decline in Mg levels than on serum Mg concentration itself [13], and they are usually not observed until serum Mg level drops below 0.5 mmol/L or lower. Clinical and biochemical manifestations of hypomagnesemia include the most frequent disorders of other electrolytes, disorders of cardiovascular, neuromuscular and central nervous system, complications due to Mg deficiency like hypertension, osteoporosis, glucose homeostasis disorder, atherosclerotic vascular disease and, e.g., migraine, asthma, etc.

Development of hypocalcemia in hypomagnesemia is associated with the role of Mg in the synthesis, secretion, and activity of parathormones on target tissues, and with the activity of 1,25(OH)_{2}D_{3} [73]. A significant proportion of individuals (40-60%) with hypomagnesemia also have hypopotassemia [72], and the mechanism involves the following: a) concurrent loss of Mg and potassium due to diarrhea or application of diuretics, and b) decline in the activity of Na\(^+\) K\(^-\)-ATPase, that is, increase in the number of open potassium channels in the cells of the thick limb of the Henle’s loop and collecting tubules [74, 75]. The hypopotassemia associated with hypomagnesemia is often refractory to potassium treatment so that Mg deficiency should also be corrected. Due to impaired electrical activity, myocardial
contractility and vascular tonus, cardiovascular disorders include, for instance, hypertension, dysrhythmias, ECG changes (e.g., prolonged QT interval, prolonged PR interval), atherogenic dyslipidemia, oxidative stress, impaired coagulation process, aggravated inflammatory problems, etc. [76,77,78].

Neuromuscular disorders, or neuromuscular hyperexcitability, are frequent in individuals with hypomagnesemia and involve, e.g., tetany, spontaneous carpal-pedal spasm, vertigo, ataxia, muscular weakness, convulsions, nystagmus, and psychiatric disorders like depression and psychosis, etc. [77,79]. The mechanism of the development of neuromuscular disorders is related to decreased axon stimulation threshold and increase in nerve conduction velocity due to reduced Mg concentration. Besides, as Mg participates in neurotransmitter (glutamate) release at neuromuscular junctions [80] and thus inhibits the calcium entry into presynaptic nerve terminals, enhanced calcium entry occurs in the situation of Mg deficiency and consequently of increased neurotransmitter release, which results in enhanced neuromuscular activity. Hypocalcemia is often concurrent with hypomagnesemia and it further contributes to neurological signs.

In case of inherited types of hypomagnesemia, whose molecular mechanisms have been discovered during the past ten years, they involve gene mutations for different proteins - channels, carriers, transporters [9,48,49], some of which are presented in Table 5.

Table 5. Some proteins of molecular magnesium homeostasis are related to hereditary hypomagnesemia.

<table>
<thead>
<tr>
<th>Protein (ili paracellin-1)</th>
<th>Gene</th>
<th>Function</th>
<th>Comorbidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Claudin-16</td>
<td>CLDN16</td>
<td>Allowability of paracellular permeability</td>
<td>Familial hypomagnesemia with hypercalciuria and nephrocalcinosis</td>
</tr>
<tr>
<td>Claudin-19</td>
<td>CLDN19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCCT</td>
<td>SLC12A3</td>
<td>(Na⁺Cl⁻ cotransporter)</td>
<td>Gitelman syndrome</td>
</tr>
<tr>
<td>TRPM-6</td>
<td>TRPM6</td>
<td>Selective Mg channel</td>
<td>Hypomagnesemia with secondary hypocalcemia</td>
</tr>
<tr>
<td>Na⁺, K⁺-ATPase gamma subunit</td>
<td>FXYD2</td>
<td>Altered kinetics of Na⁺ i K⁺ exchange</td>
<td>Isolated dominant hypomagnesemia with hypocalciuria</td>
</tr>
<tr>
<td>EGF</td>
<td>EGF</td>
<td>Enhanced TRPM-6 activity</td>
<td>Isolated recessive hypomagnesemia</td>
</tr>
<tr>
<td>NKCC, Barttin, CIC Kb, ROMK</td>
<td>SLC12A1, BSND, CLCNKB, KCNJ1</td>
<td>Na⁺, K⁺ -cotransporter, Barttin, CIC-Kb-channel, ROMK-K-channel</td>
<td>Bartter syndrome</td>
</tr>
</tbody>
</table>
Hypomagnesemia therapy includes oral Mg replacement in food or food supplements in mild cases [39, 81] while intravenous replacement is applied in severe hypomagnesemia, most frequently in the form of Mg-sulfate [8, 82].

b) Hypermagnesemia

Hypermagnesemia is a condition where serum Mg concentration is >1.0 mmol/L. Mild hypermagnesemia is quite common in hospitalized patients and is usually not associated with clinical symptoms. Significant hypermagnesemia is related to different neuromuscular and cardiovascular disorders, and very severe hypermagnesemia may result in a coma.

One of the causes of hypermagnesemia is increased oral, rectal or parenteral intake of high Mg doses as, e.g., Mg supplementation in the form of magnesium salts or Mg-containing drugs (antacides, laxatives, purgatives), in some therapeutic approaches involving intravenous Mg application (e.g., torsade de pointes therapy of specific types of arrhythmia or convulsions in patients with eclampsia). Another cause is renal function impairment (acute and chronic diseases, rhabdomyolysis) because kidneys are the main organ that maintains Mg homeostasis (normal Mg concentration is maintained until glomerular filtration rate drops below 30 mL/min [13]. In such cases, renal compensatory mechanisms to maintain Mg homeostasis become inadequate and hypermagnesemia develops. Other causes include Mg redistribution to cells and, e.g., lithium therapy, familial hypocalciuric hypercalcemia, theophylline toxicity, etc. [39,83,84].

Signs and symptoms of hypermagnesemia occur at different Mg concentrations but they usually occur when serum concentrations are >2.0 mmol/L [13]. However, cases with very high serum Mg concentrations, i.e. 13.0 mmol/L [85], 17.0 mmol/L [86], 21.5 and 22.5 mmol/L, have been described in the literature [87].

Clinical manifestations of hypermagnesemia include the most frequent neuromuscular and cardiovascular disorders (Mg is cardiotoxic in serum concentrations >3 mmol/L), nausea, and vomiting (Table 6).

Table 6. Clinical manifestations of hypermagnesemia (reprinted from ref.13)

| Neuromuscular manifestations: confusion, lethargy, respiratory depression, absent tendon reflexes, paralytic ileus, bladder paralysis, muscle weakness/paralysis |
| Cardiovascular manifestations: hypotension, bradycardia, inhibition of AV and intraventricular conduction, heart block, cardiac arrest |
| Others: nausea, vomiting |
With regard to biochemistry disorders, hyperpotassemia and hypocalcemia also occur in addition to hypermagnesemia [13,39].

Hypermagnesemia therapy involves discontinued Mg application and Ca-gluconate administration, while severe types of hypermagnesemia may even require hemodialysis [7].

CLINICAL ASPECTS

Physiological function of Mg in the body are numerous and varied (modulation of transport functions, of enzymatic activities, energy metabolism, synthesis of proteins and nucleic acids, etc.). It is, therefore, not surprising that Mg deficiency is involved in pathogenesis of a large number of pathological conditions (*Table 7*), with concurrent accumulation of data on the benefits of supplementing Mg as a pharmacological compound.

Table 7. Literature review of some pathological conditions related to magnesium deficiency

<table>
<thead>
<tr>
<th>Pathological condition</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes mellitus</td>
<td>24, 28, 88, 89,90,91,</td>
</tr>
<tr>
<td>Metabolic syndrome</td>
<td>92,93,94,95,</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>10, 24, 48, 77, 96,97,</td>
</tr>
<tr>
<td>Arrhythmias</td>
<td>98, 99, 100, 101,</td>
</tr>
<tr>
<td>Hypertension</td>
<td>28, 98, 102, 103, 104, 105, 106,</td>
</tr>
<tr>
<td>Acute myocardial infarction</td>
<td>13,98, 107,108,109,</td>
</tr>
<tr>
<td>Atherosclerosis</td>
<td>13, 98, 110,111</td>
</tr>
<tr>
<td>Cerebrovascular disorders</td>
<td>71, 112,113,114,115,116,117,118</td>
</tr>
<tr>
<td>Headache (migraine)</td>
<td>119,120,121</td>
</tr>
<tr>
<td>Neuromuscular disorders</td>
<td>6,13,77,122,123,124,</td>
</tr>
<tr>
<td>Osteoporosis</td>
<td>13, 125,126,127,128</td>
</tr>
<tr>
<td>Asthma</td>
<td>13,77,129,130,131,</td>
</tr>
<tr>
<td>Preeclampsia/eclampsia</td>
<td>6,77, 132,133,134,135,</td>
</tr>
<tr>
<td>Malignant diseases</td>
<td>6,71,136,137,</td>
</tr>
<tr>
<td>Fibromyalgia</td>
<td>138,139</td>
</tr>
<tr>
<td>Cataract</td>
<td>140,141,</td>
</tr>
<tr>
<td>Pheochromocytoma</td>
<td>142,143,</td>
</tr>
<tr>
<td>Allergies</td>
<td>8, 144, 145, 146, 147,148,</td>
</tr>
<tr>
<td>Oxidative stress</td>
<td>149,150,</td>
</tr>
<tr>
<td>Drug application</td>
<td>6, 151,152,153,154,155,156</td>
</tr>
</tbody>
</table>
Early recognition of disorders of Mg metabolism (and its consideration with changes in other electrolytes) and their correction are necessary to avoid complications related to cardiac arrhythmia, hypocalcemia, etc. It is therefore necessary to frequently determine Mg in serum and possibly start Mg supplementation. Currently, different methodological approaches are available to estimate Mg status: methods for determination of total serum Mg concentration [6, 13, 77, 157], of ionized Mg form in whole blood, serum or plasma [13, 48, 158], methods for Mg determination in erythrocytes [159], leukocytes [160], and skeletal muscle cells [25, 77, 161]. Magnesium may also be measured in urine, saliva, hair, and teeth [6, 159]. In some clinical conditions, physiological tests are used as, e.g., Mg balance test, Mg excretion in 24-h urine, Mg loading test, Mg tolerance test [13, 162]. Recently, dry chemistry methods have also been developed for determination of ionized Mg for point-of-care testing [163]. Furthermore, for determination of ionized Mg concentration in the cell cytosol, the procedures with different metalochromatic or fluorescent dyes are used, as well as Mg-selective electrodes, and nuclear magnetic resonance and isotope testing [13, 48] which are mostly limited to scientific investigations.

Regarding therapy, Mg is usually administered in case of constipation [164] and dyspepsia [82]. According to reports by Guerera MP, et al. [82] and Geiger H, et al. [98] from 2012, indications for therapeutic applications of Mg (it has shown to be highly effective when applied intravenously) are primary reduction of the risk for eclampsia in preeclamptic women, arrhythmias (torsade de pointes in patients with long QT syndrome and digoxin induced arrhythmia), and severe asthma and migraine attacks.

Favorable effects of Mg have been observed in the control of glycemia in type 2 diabetes, improved efficacy of antihypertensive therapy, reduction in the frequency of muscular cramps, favorable effects on some risk factors of atherosclerosis, prevention of osteoporosis, of renal stone recurrence, of stroke, etc.

Although oral Mg supplementation is generally well tolerated, the following side-effects have been observed: nausea, vomiting, diarrhea, whereas large amounts of magnesium may result in hypotension, muscular weakness and coma. Mg must not be administered as therapy to patients with any type of renal dysfunction.

CONCLUSION

It is well known that Mg is the essential element for human health. However, due to increasing intake of Mg-deficient processed food, Mg deficiency may be expected to develop into a significant public health problem. It is not uncommon that hypomagnesemia is already a relatively frequent disorder which is, moreover,
often not recognized/not diagnosed because Mg concentration is seldom routinely determined. Actually, the evaluation of the Mg status is made difficult by the fact that most Mg is stored in tissues so that serum Mg levels are not representative. Generally accepted attitude is, however, that physicians should request Mg concentration measurement regardless of this difficulty, particularly in patients with the risk of possible hypomagnesemia.

As the low Mg intake may result in various, even severe, diseases, or contribute to complications that accompany different illnesses, it is necessary that researchers have thorough knowledge of those conditions in order to be able to assess symptoms related to Mg deficiency. In this regard, the application of novel analytical procedures in determining total and ionized Mg in different body fluids and cells, numerous clinical observations, and molecular genetic studies will certainly contribute to elucidation of the Mg role in terms of physiology and pathophysiology and particularly with regard to Mg deficiency treatment.

References

[38] Zopf JM, Murray PT. Hypomagnesemia and hypermagnesemia. Rev Endoc Metab Disord. 2003;4:195-206
[40] Bailly C, Roinel N, Amiel C. Stimulation by glucagon and PTH Ca and Mg reabsorption in the superficial distal tubule of the rat kidney. Pflugers Arch. 1985;403:28-34.

Magnesium – more than a common cation

Magnezij – više od običnog kationa

Magnezij je kation koji je vrlo bitan, nezamjenjiv, za brojne aspekte biologije stanice. Ta se tvrdnja najbolje zrcali u činjenici da je nezamjenjiv kofaktor za više od 300 enzimskih reakcija, uključujući najveći broj onih koje upotrebljavaju ATP kao izvor energije. Samo oko 1% ukupnog magnezija u organizmu čovjeka nalazi se u plazmi. Normalne koncentracije kreću se od 0.75 do 1.00 mmol/L.

Smanjena, odnosno povećana, koncentracija magnezija u plazmi naziva se hipomagnezijemija, odnosno hipermagnezijemija. Hipomagnezijemija može biti za život opasno stanje koje treba brzo sanirati povećanim (i.v.) unosom magnezija. Danas je poznato da, uz kliničku hipomagnezijemiju, vrlo često postoji i „nevidljiv“ deficit magnezija u tkivima. Najčešće se javlja kao posljedica moderne prehrane, koja često ne zadovoljava dnevne preporučene doze (> 300mg dnevno). Kliničke studije pokazuju da su bolesti poput metaboličkog sindroma, dijabetesa tipa 2, nekih aritmija te hipertenzije, u pogledu pojavnosti i težine obolijevanja, u obrnutoj korelaciji s magnezijskim statusom organizma. Stoga je dođavanje magnezija prehrani jedna od mogućnosti pozitivnog utjecaja na spomenute bolesti. Od budućih kliničkih studija očekuje se jasna procjena opravdanosti magnezija kao dodatka prehrani i u nekim drugim bolestima i sindromima (migrena, fibromijalgija, bolest koronarnih arterija, kronični sindrom umora).

Kljucićne rijeći: magnezij; hipomagnezijemija; hipermagnezijemija; terapijske aplikacije magnezija.

Corresponding author:
Ivana Čepelak
E-mail: ivcepelak@gmail.com