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In the paper two types of speed, torque and flux estimators are described. The Sliding Mode Observer (SMO)
and the Model Reference Adaptive System (MRAS) type estimators are applied in the sensorless Direct Torque
Control with Space Vector Modulation algorithm (DTC-SVM) of Induction Motor (IM) drive. Dynamical perfor-
mance of the drive and the estimator properties in field weakening and low speed regions for traction drive system
are presented.
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Bezsenzorski pogon za vuču s estimatorima u kliznom režimu i MRASCC-u koristeći izravno upravljanje
momentom. U članku su opisana dva tipa estimatora brzine, momenta i toka – observer u kliznom režimu (SMO) i
adaptivni sustav reference modela (MRAS). Oba tipa estimatora su primijenjena u bezsenzorskom izravnom upravl-
janju momentom s modulacijom prostornih vektora (DTC-SVM) na pogonu s asinkronim motorom (IM). Prikazane
su dinamičke karakteristike pogona i estimatora u režimima slabog polja i male brzine za slijedni sustav.

Ključne riječi: asinkroni motor, DTC-SVM, bezsenzorsko upravljanje, vuča, SMO, MRAS

1 INTRODUCTION

The Direct Torque Control with Space Vector Mod-
ulation (DTC-SVM) is one of the most popular control
algorithms for the Induction Motor (IM) drives [1], [2].
The main advantage of this method is very fast torque re-
sponse to load torque changes. The main disadvantage of
the classical approach (DTC-ST), the switching table, is
eliminated using the Space Vector Modulation (SVM) [1].

Information about stator flux vector, motor torque and
speed is necessary for proper work of this control algo-
rithm [3], [4]. The stator flux can be estimated using dif-
ferent algorithmic methods, e.g. using the Sliding Mode
Observer (SMO) [5], Model Reference Adaptive System
(MRAS) type estimators [6], neural networks or Kalman
Filters [3], [4]. Motor speed and torque can be also esti-
mated using these methods, or measured directly. How-
ever, elimination of the speed and torque sensors mini-
mizes the cost of the drive, decreases driven motor di-
mensions, reduces cabling and increases system reliability
[3], [4], [7], [8]. These advantages cause that the speed-
sensorless drives are applied in traction drive systems [9].
Thus, developing and application of robust solutions for
IM state variables estimation is an important task.

Traction drive systems must operate in a wide refer-
ence speed range, in the constant-flux region, for very low
speeds and in the field weakening region with maximal
possible torque [10], [11]. Information about the rotor
speed is necessary at zero or low speed operation, to re-
alize properly the electrical braking.

During the start up to the nominal speed with nomi-
nal (or bigger) load torque, as well as during the breaking
operation, electromagnetic torque must be controlled per-
fectly [2]. In traction drive systems without speed control
loop, information about the rotor speed must be used in the
field weakening algorithm [11], [15] and in the diagnostic
process.

Well known voltage simulator, based on stator currents
and voltages can be used in the estimation process [4]. Al-
though this algorithm does not require information about
the rotor speed, it cannot be applied in drives working with
low speeds. Only more complicated algorithms can guar-
antee stable work in a wide speed range.

The applied estimator must be robust to motor param-
eter changes or extended with on-line parameter updating
procedures. Sensorless drive system should be stable when
starting from the standstill, for low speed region and in the
regenerating mode [4],[6]-[8],[12].
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The main goal of this paper is to present and com-
pare two estimators which enable proper operation of the
DTC-SVM sensorless IM drive in a wide speed range.
The MRASCC [6] estimator and the SMO [5] are used for
speed, torque and flux reconstruction. Dynamical prop-
erties of the sensorless drive are widely examined under
simulation and experimental test.

2 MODEL OF THE INDUCTION MOTOR AND DI-
RECT TORQUE CONTROL ALGORITHM
Direct Torque Control with Space Vector Modulation

algorithm (DTC-SVM) [1] without any outer speed control
loop can be applied in the traction drive systems. The gen-
eral scheme of this control structure is presented in Fig. 1.

Fig. 1. Sensorless DTC-SVM structure with SMO or
MRASCC estimators.

In this scheme motor torque and stator vector ampli-
tude are controlled by PI regulators in the synchronous
reference frame. The essential stator flux angle informa-
tion, necessary for the coordinate transformation, is ob-
tained from the speed and flux observers. The estimated
speed signal is used in the field-weakening algorithm and
in the diagnostic process of the traction drive (Fig. 1). In-
formation about the rotor speed, stator flux vector, electro-
magnetic torque, DC bus voltage, signals from the inverter
and stator currents are used in the diagnostic process of the
traction drive system. When these signals become bigger
than the safety values, the drive should be stopped. Espe-
cially in an extremely low speed region these values must
be observed. Any oscillations and abnormal transients are
not allowed, too.

The observers, considered in this paper, are based di-
rectly on the IM mathematical model (1)–(4). This model

can be derived using the commonly-known assumptions
and can be expressed in the stator-stationary frame, using
per unit system [4]:
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magnetic and load torques, and mechanical time constant,
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fsN – motor nominal frequency.

3 SMO AND MRASCC SPEED AND FLUX ESTI-
MATORS

In this section the mathematical models of the SMO
and MRASCC type speed and flux estimator are presented.

The rotor speed can be calculated by the SMO as fol-
lows [5]:

ωem = ω0 sign sω (5)

where: ω0 – positive constant.

The auxiliary variable µ can be introduced in order to
reduce the stator flux steady-state error [5]:

µ = µ0 sign sµ (6)

where µ0 – positive constant.

The switching functions are obtained by the following
equations:

sω =
(
isβ − iesβ

)
Ψe
rα − (isα − iesα) Ψe

rβ

sµ = (isα − iesα) Ψe
rα +

(
isβ − iesβ

)
Ψe
rβ

(7)

Thus the rotor flux vector can be estimated from:
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and the stator current:
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Fig. 2. Block diagram of the sliding-mode speed observer
(SMO) (a) and MRASCC estimator (b).

The general scheme of the SMO is presented in Fig. 2a.
It can be noticed that the high-frequency speed signal is
used directly in the observer. To apply it in the diagnostic
system and field-weakening algorithm, the low-pass filter
must be used (Fig. 2a).

The MRASCC estimator was presented in detail in [6].
This estimator is based on two well-known flux simulators
[4] (voltage model and current model of the rotor flux).
They are rearranged to obtain the stator current estimator.
Rotor flux is estimated by the current model.

Stator current estimator used in the MRASCC is ob-
tained by the equation:
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Rotor flux can be calculated from the equation:

d
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Both stator current model (10) and rotor flux model (11)
are adjusted by the estimated rotor speed [6]:

ωem = KP
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rβ − eisβΨi
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+
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where eisα,β = isα,β− i esα,β – error between the estimated
and measured stator current vector components.

The general scheme of the MRASCC estimator is pre-
sented in Fig. 2b.

Stator flux vector can be calculated using the estimated
rotor flux and the measured stator current vectors, from:

Ψe
s =

xm
xr

Ψe
r + xsσis (13)

The main advantage of those estimators is low sensitiv-
ity to the motor parameter changes [6], [13], [14].

4 SIMULATION AND EXPERIMENTAL RESULTS

Described estimation algorithms were tested using
MATLAB SIMULINK software and experimentally on a
laboratory set-up with dSPACE DS1103 processor. The
schematic diagram of the experimental test bench is shown
in Fig. 3.

Fig. 3. Schematic diagram of the laboratory test bench and
the photo of the traction drive system.

The experimental set-up is composed of the 50 kW IM
(fed from the voltage source inverter (VSI)) and a load ma-
chine (IM supplied from an AC inverter). The speed and
position of the drive are measured by the incremental en-
coder (100 imp./rev.), only for comparison with the esti-
mated speed in the sensorless drive system.
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Fig. 4. Start-up operation of the DTC-SVM drive under bigger than nominal load torque with MRASCC (a) and SMO (b)
estimators; (experimental tests).

Fig. 5. Breaking operation of the DTC-SVM drive under nominal load torque with MRASCC (a) and SMO (b) estimators
(experimental tests).
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Fig. 6. Start-up operation of the DTC-SVM drive under active nominal load torque with MRASCC (a) and SMO (b)
estimators.

In Fig. 4 – Fig. 6 chosen simulation results of the
sensorless DTC drive without speed control loop, with
MRASCC and SMO are presented. The drive was tested
for different load torque conditions, typical for traction
systems. Estimated speed was used only in the field weak-
ening algorithm and to adjust the flux estimators.

In Fig. 4 the start-up operation under bigger than nom-
inal load torque is presented, for both estimators. Dur-
ing the start-up operation reference and electromagnetic
torques are bigger than the load torque. Later the refer-
ence torque becomes identical as the load torque. Mea-
sured and estimated speeds are equal during this process.
Both estimators work properly, but the sensorless drives
with MRAS type speed estimator can work with much big-
ger load than the drive with SMO.

Start-up and breaking to the zero operations are pre-
sented in Fig. 5. Drive works stable in wide speed range, as
well as for zero speed operation with nominal load torque.

Next in Fig. 6 the start up operation with active load
torque is presented (sliding down the small slope). At
t = 0 s the drive is loaded and the motor speed starts de-
creasing. The electromagnetic torque is lower than the load
torque until t = 0.18 s. After this time the electromagnetic
and load torques become equal and the speed remains con-
stant. Measured and estimated speed values are equal.

Next chosen experimental results of the sensorless
DTC with SMO and MRASCC estimator are presented
in Fig. 7 – Fig. 10, for step changes of the load torque.
In Fig. 7 transients of the sensorless DTC-SVM with
MRASCC and SMO estimator (for very low speed re-
gion are presented. In the low speed region both estima-
tors work correctly, error between measured and estimated
speed oscillates around zero. In case of the SMO, high
frequency oscillations, introduced by the chattering phe-
nomenon, are visible.

The DTC–SVM works also properly for cyclic reverse
operation of the reference torque. In Fig. 7 experimental

results for mref = ±0.2mLN are presented in the case of
both estimators.

In both cases the estimated speed is almost the same
like the measured value. Small errors in the dynamical
states are visible. Drive is stable during the reverse and for
zero speed operation. However in the case of SMO, speed
estimation error is slightly bigger than for the MRASCC

estimator.
Sensorless control structure works also correctly in the

field-weakening region. In Fig. 8 results for start up opera-
tion with nominal load torque to the field weakening region
are presented in the case of the drive system with SMO and
MRASCC estimator.

During the field weakening operation (Fig. 9) the esti-
mated electromagnetic torque is exactly the same like ref-
erence value. In both cases speeds are estimated corectly.
Small speed error in SMO during the start up operation is
visible. Oscillations in the estimated speed is noticaeble.

Field weakening operation of the system with the SMO
estimator and with MRASCC are presented in Fig. 9. Mo-
tor speed is estimated properly, however small dynamical
error is visible. Both estimators work correctly for the field
weakening operations. Some oscillations on the estimated
speed (for SMO) are visible.

For extremally low speeds the MRASCC estimator
works better than SMO (Fig. 10), during the field-
weakening operation the SMO estimates the motor speed
with bigger osscillations than MRASCC. In both cases (es-
pecially for MRASCC) in the field-weakening region the
additional magnetizing reactance estimator in the control
structure should be added.

5 CONCLUSION

Sensorless DTC-SVM drive works correctly in the
whole reference torque changes with the SMO and the
MRASCC estimators. Stator flux and torque are estimated
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a)

b)

Fig. 7. Experimental transients of the DTC-SVM drive with
with MRASCC (a) and SMO (b) estimators for mref =
±0.2mLN .

and used directly in the control structure. Estimated speed
is used in the field-weakening and in diagnostic algorithms.

The described estimators were tested in simulations
and experimentally as well. Both estimators work stable
for low speeds and for the field-weakening region and can
be applied in the traction drive system without information
about speed from any sensor.

In the sensorless drive system, operating in wide speed
range, the estimators (especially MRASCC) should be ex-
tended with the magnetizing reactance estimator. Proposed
solutions can be implemented in simple microprocessor
systems.
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