CERTAIN CLASSES OF POLYGONS IN R^{2} AND AREAS OF POLYGONS

Mirko Radić, Rene Sušanj and Nenad Trinajstić

In this article we consider certain classes of polygons in R^{2} and areas of polygons. The classes are connected with definitions like the following.

Let $A_{1} \ldots A_{n}$ be a polygon in R^{2} and let k be a positive integer such that $1<k<n$. A polygon $P_{1} \ldots P_{n}$ (if such exists) will be called k-outscribed polygon to the polygon $A_{1} \ldots A_{n}$ if it holds

$$
P_{i}+\ldots+P_{i+k-1}=k A_{i}, \quad i=1, \ldots, n
$$

First we prove the following theorem.
THEOREM 1. Let h, k, n be positive integers such that

$$
\begin{equation*}
h k=n-2, \quad G C D(k, n)=2 \tag{1}
\end{equation*}
$$

and let $A_{1} \ldots A_{n}$ be any given polygon in R^{2} such that (1) is satisfied and that

$$
\begin{equation*}
\sum_{i=1}^{n}(-1)^{i} A_{i}=0 \tag{2}
\end{equation*}
$$

Then for every point $P_{1} \in R^{2}$ there are points P_{2}, \ldots, P_{n} in R^{2} such that

$$
\begin{equation*}
P_{i}+\ldots+P_{i+k-1}=k A_{i}, \quad i=1, \ldots, n \tag{3}
\end{equation*}
$$

and that area of the polygon $P_{1} \ldots P_{n}$ is a constant, that is, does not depend of P_{1} and is given by

$$
\begin{align*}
& 2 \text { area of } P_{1} \ldots P_{n}=\left|U_{1}, \sum_{i=2}^{n}(-1)^{i} U_{i}\right|+\left|U_{2}, \sum_{i=3}^{n}(-1)^{i+1} U_{i}\right|+ \\
& \tag{4}\\
& |\quad| U_{3}, \sum_{i=4}^{n}(-1)^{i} U_{i}\left|+\left|U_{4}, \sum_{i=5}^{n}(-1)^{1+i} U_{i}\right|+\ldots+\left|U_{n-1}, U_{n}\right|\right.
\end{align*}
$$

[^0]where $U_{i}=P_{i}+P_{i+1}$ and $P_{i}+P_{i+1}$ for each $i=1, \ldots, n$ is given by
\[

$$
\begin{align*}
P_{i}+P_{i+1} & =2 A_{i}-(k-2) A_{i+2}+2 A_{i+4}+2 A_{i+6}+\ldots+2 A_{i+k}- \\
& (k-2) A_{i+2+k}+2 A_{i+4+k}+2 A_{i+6+k}+\ldots+2 A_{i+2 k}- \\
& (k-2) A_{i+2+2 k}+2 A_{i+4+2 k}+2 A_{i+6+2 k}+\ldots+2 A_{i+3 k}- \tag{5}\\
& \ldots \\
& (k-2) A_{i+2+(h-1) k}+2 A_{i+4+(h-1) k}+2 A_{i+6+(h-1) k}+\ldots+2 A_{i+h k}
\end{align*}
$$
\]

Here let us remark that by $|K, L|$ is denoted determinant $\left|\begin{array}{ll}x_{1} & x_{2} \\ y_{1} & y_{2}\end{array}\right|$, where $K\left(x_{1}, y_{1}\right)$, $L\left(x_{2}, y_{2}\right)$.

Proof. The proof that holds (5) is as follows. First let $n=14$ and $k=6$. Thus, in this case, $h=2$. Supposing that

$$
\begin{equation*}
P_{i}+\ldots+P_{i+5}=6 A_{i}, \quad i=1, \ldots, 14 \tag{6}
\end{equation*}
$$

we can write the following equations

$$
\begin{equation*}
P_{i}-P_{i+6}=6\left(A_{i}-A_{i+1}\right), \quad i=1, \ldots, 14 \tag{7}
\end{equation*}
$$

from which follows

$$
\begin{aligned}
P_{7} & =P_{1}-6\left(A_{1}-A_{2}\right), \\
P_{13} & =P_{1}-6\left(A_{1}-A_{2}\right)-6\left(A_{7}-A_{8}\right), \\
P_{5} & =P_{1}-6\left(A_{1}-A_{2}\right)-6\left(A_{7}-A_{8}\right)-6\left(A_{13}-A_{14}\right), \\
P_{11} & =P_{1}-6\left(A_{1}-A_{2}\right)-6\left(A_{7}-A_{8}\right)-6\left(A_{13}-A_{14}\right)-6\left(A_{5}-A_{6}\right), \\
P_{3}= & P_{1}-6\left(A_{1}-A_{2}\right)-6\left(A_{7}-A_{8}\right)-6\left(A_{13}-A_{14}\right)-6\left(A_{5}-A_{6}\right)-6\left(A_{11}-A_{12}\right), \\
P_{9}= & P_{1}-6\left(A_{1}-A_{2}\right)-6\left(A_{7}-A_{8}\right)-6\left(A_{13}-A_{14}\right) \\
& \quad-6\left(A_{5}-A_{6}\right)-6\left(A_{11}-A_{12}\right)-6\left(A_{3}-A_{4}\right) .
\end{aligned}
$$

Here let us remark that $P_{13}=P_{7+6}, P_{5}=P_{13+6}=P_{7+2.6}$ and so on.
Analogously we have

$$
P_{8}=P_{2}-6\left(A_{2}-A_{3}\right), \quad P_{14}=P_{2}-6\left(A_{2}-A_{3}\right)-6\left(A_{8}-A_{9}\right)
$$

and so on.
Let us remark that in expressions of $P_{8}, P_{14}, \ldots, P_{10}$, in relation to expressions of $P_{7}, P_{13}, \ldots, P_{9}$, each index grow up to 1 .

From (6) we see that $P_{9}-P_{1}=6\left(A_{9}-A_{10}\right)$, and from the expression of P_{9} we see that

$$
P_{9}-P_{1}=-6\left(A_{1}-A_{2}+A_{3}-A_{4}+A_{5}-A_{6}+A_{7}-A_{8}+A_{11}-A_{12}+A_{13}-A_{14}\right) .
$$

Thus, the system (6) will be consistent iff $\sum_{i=1}^{14}(-1)^{i} A_{i}=0$.

In the same way can be seen that the system (3) will be consistent iff holds (2).
Using, for example, the equation $P_{1}+P_{2}+P_{3}+P_{4}+P_{5}+P_{6}=6 A_{1}$ and expressions of $P_{3}, P_{4}, P_{5}, P_{6}$ we find that

$$
P_{1}+P_{2}=2 A_{1}-4 A_{3}+2 A_{5}+2 A_{7}-4 A_{9}+2 A_{11}+2 A_{13} .
$$

Since each equation of the system (6) can be used, it holds

$$
P_{i}+P_{i+1}=2 A_{i}-4 A_{i+2}+2 A_{i+4}+2 A_{i+6}-4 A_{i+8}+2 A_{i+10}+2 A_{i+12}, \quad i=1, \ldots, 14 .
$$

Now, in relation to (5), let us remark that on the right side of (5) there are h negative terms and that between two negative terms there are $\frac{k-2}{2}$ positive terms. Thus, it holds

$$
1+h+h \cdot \frac{k-2}{2}=\frac{n}{2} \quad \text { or } \quad h k+2=n
$$

If right side of (5) is denoted by U_{i}, then

$$
\begin{align*}
& P_{2}=-P_{1}+U_{1} \\
& P_{3}=-P_{2}+U_{2}=P_{1}-U_{1}+U_{2} \tag{8}\\
& \ldots \\
& P_{n}=-P_{n-1}+U_{n-1}=-P_{1}+U_{1}-U_{2}+\ldots+U_{n-1}
\end{align*}
$$

where P_{1} can be taken arbitrary. Hence

$$
\begin{gathered}
P_{1}+\ldots+P_{k}=U_{1}+U_{3}+\ldots+U_{k-1} \\
P_{2}+\ldots+P_{k+1}=U_{2}+U_{4}+\ldots+U_{k} \\
\ldots \\
P_{n}+\ldots+P_{k-1}=U_{n}+U_{2}+\ldots+U_{k-2} .
\end{gathered}
$$

Thus, we have to prove that

$$
\begin{equation*}
U_{i}+U_{i+2}+\ldots+U_{i+k-2}=k A_{i}, \quad i=1, \ldots, n \tag{9}
\end{equation*}
$$

First let us consider the case where $n=14$ and $k=6$. In this case we have

$$
\begin{align*}
& P_{1}+P_{2}=U_{1}=2 A_{1}-4 A_{3}+2 A_{5}+2 A_{7}-4 A_{9}+2 A_{11}+2 A_{13}, \\
& P_{3}+P_{4}=U_{3}=2 A_{3}-4 A_{5}+2 A_{7}+2 A_{9}-4 A_{11}+2 A_{13}+2 A_{1}, \tag{10}\\
& P_{5}+P_{6}=U_{5}=2 A_{5}-4 A_{7}+2 A_{9}+2 A_{11}-4 A_{13}+2 A_{1}+2 A_{3},
\end{align*}
$$

from which, by adding, we get

$$
P_{1}+P_{2}+P_{3}+P_{4}+P_{5}+P_{6}=U_{1}+U_{3}+U_{5}=6 A_{1} .
$$

Since analogously holds for $i=2, \ldots, 14$, also we have

$$
P_{2}+P_{3}+P_{4}+P_{5}+P_{6}+P_{7}=U_{2}+U_{4}+U_{6}=6 A_{2} \quad \text { and so on. }
$$

It is not difficult to see that analogously holds generally for the case where positive integers h, k, n are such that $n-2=h k$. To see this, it is important to see that

$$
\begin{gathered}
-(k-2) A_{i} \\
2 A_{i}-(k-2) A_{i+2} \\
. \\
\vdots \\
2 A_{i}+\ldots-(k-2) A_{i+k-2}
\end{gathered}
$$

and $-(k-2) A_{i}+\frac{k-2}{2} \cdot 2 A_{i}=0$.
Concerning area of the polygon $P_{1} \ldots P_{n}$, first let us remark that, as it is known, area of a polygon $A_{1} \ldots A_{n}$ in R^{2} is given by

$$
2 \text { area of } A_{1} \ldots A_{n}=\sum_{i=1}^{n}\left|A_{i}, A_{i+1}\right|
$$

Using expressions for P_{2}, \ldots, P_{n} given by (8) it can be found that holds (4).
This completes the proof of Theorem 1.
In the following theorem will be shown that area of the polygon $P_{1} \ldots P_{n}$ can be written in a much simpler and interesting form. For this purpose will be used determinant of rectangular matrix. In short about this.

In [1] the following definition of a determinant of rectangular matrix is given: The determinant of a $m \times n$ matrix A with columns A_{1}, \ldots, A_{n} and $m \leqslant n$, is the sum

$$
\sum_{1 \leqslant j_{1}<j_{2}<\ldots<j_{m} \leqslant n}(-1)^{r+s}\left|A_{j_{1}}, \ldots, A_{j_{m}}\right|,
$$

where $r=1+\ldots+m, s=j_{1}+\ldots+j_{m}$.
This determinant is a skew-symmetric multilinear functional with respect to the rows and therefore has many well known standard properties, for example, the general Laplace's expansion along rows.

In particular, if $m=2$, then

$$
\begin{equation*}
\left|A_{1}, \ldots, A_{n}\right|=\sum_{1 \leqslant i<j \leqslant n}(-1)^{3+i+j}\left|A_{i}, A_{j}\right| . \tag{11}
\end{equation*}
$$

In [2] the following theorem (Theorem 3) is proved.
Let $A_{1} \ldots A_{n}$ be any given polygon in R^{2}. Then

$$
\begin{equation*}
2 \text { area of } A_{1} \ldots A_{n}=\left|A_{1}+A_{2}, A_{2}+A_{3}, \ldots, A_{n}+A_{1}\right| . \tag{12}
\end{equation*}
$$

It is easy to see that, according to (11), relation (4) can be written as

$$
\sum_{i=1}^{n}\left|P_{i}, P_{i+1}\right|=\sum_{1 \leqslant i<j \leqslant n}(-1)^{3+i+j}\left|U_{i}, U_{j}\right|
$$

In the following theorem we shall use the following two theorems given in [2].

Theorem 7. Let $A_{1} \ldots A_{n}$ be a polygon in R^{2} with even n and let $\sum_{i=1}^{n}(-1)^{i} A_{i}=0$. Then for every point $X \in R^{2}$ it holds

$$
\begin{equation*}
\left|A_{1}+X, \ldots, A_{n}+X\right|=\left|A_{1}, \ldots, A_{n}\right| . \tag{13}
\end{equation*}
$$

Theorem 8. Let $A_{1} \ldots A_{n}$ be as in Theorem 7. Then for each $i=1, \ldots, n$ it holds

$$
\begin{equation*}
\left|A_{i+1}, \ldots, A_{n}, A_{1}, \ldots, A_{i}\right|=\left|A_{1}, A_{2}, \ldots, A_{n}\right| . \tag{14}
\end{equation*}
$$

Now we can prove the following theorem.
THEOREM 2. Let $P_{1} \ldots P_{n}$ be polygon as in Theorem 1. If $k=2$, then

$$
\begin{equation*}
2 \text { area of } P_{1} \ldots P_{n}=4\left|A_{1}, \ldots, A_{n}\right| \text {, } \tag{15}
\end{equation*}
$$

and if $k>2$, then

$$
\begin{equation*}
2 \text { area of } P_{1} \ldots P_{n}=k^{2}\left|V_{1}, \ldots, V_{n}\right|, \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
V_{i}=A_{i}+A_{i+k}+\ldots+A_{i+(h-1) k}, \quad i=1, \ldots, n . \tag{17}
\end{equation*}
$$

Proof. If $k=2$, then from (5) can be seen that $P_{i}+P_{i+1}=2 A_{i}$. Since determinant has two rows, it holds

$$
\left|2 A_{1}, \ldots, 2 A_{n}\right|=4\left|A_{1}, \ldots, A_{n}\right| .
$$

The proof that holds (16) if $k>2$ is as follows. Since $U_{i}=P_{i}+P_{i+1}$, it is easy to see that $\sum_{i=1}^{n}(-1)^{i} U_{i}=0$. Thus, we can use Theorem 7 given in [2] and take

$$
X=-2\left(A_{1}+A_{3}+\ldots+A_{n-1}\right) \quad \text { or } \quad X=-2\left(A_{2}+A_{4}+\ldots+A_{n}\right) .
$$

Here let us remark that from (2) follows $A_{1}+A_{3}+\ldots+A_{n-1}=A_{2}+A_{4}+\ldots+A_{n}$. Thus, relation

$$
2 \text { area of } P_{1} \ldots P_{n}=\left|U_{1}, \ldots, U_{n}\right|
$$

can be written as

$$
2 \text { area of } P_{1} \ldots P_{n}=\left|U_{1}-X, \ldots, U_{n}-X\right|
$$

or

$$
\begin{equation*}
2 \text { area of } P_{1} \ldots P_{n}=\left|-k V_{1}+2 S, \ldots,-k V_{n}+2 S\right|, \tag{18}
\end{equation*}
$$

where $S=\sum_{i=1}^{n} A_{i}$. Now, according to the properties expressed by (13) and (14), the relation (18) can be written as (16).

For example, let $n=14$ and $k=6$. Then, as can be seen from the considered example (see (10)), it holds
$P_{1}+P_{2}-2 S=-6 A_{3}-6 A_{9}, \quad P_{2}+P_{3}-2 S=-6 A_{4}-6 A_{10}, \ldots$,
$P_{13}+P_{14}-2 S=-6 A_{1}-6 A_{7}, P_{14}+P_{1}-2 S=-6 A_{2}-6 A_{8}$, $\left|-6 A_{3}-6 A_{9},-6 A_{4}-6 A_{10}, \ldots,-6 A_{1}-6 A_{7},-6 A_{2}-6 A_{8}\right|=6^{2}\left|A_{1}+A_{7}, \ldots, A_{14}+A_{6}\right|$.

This proves Theorem 2.
The proof that holds (16) seems to be far from to be easy without using properties of determinant given by (11).

REFERENCES

[1] M. Radić, A Definition of Determinant of Rectangular Matrix, Glasnik Matematički 1 (21), (1966), 17-22.
[2] M. RADIĆ, About a Determinant of Rectangular $2 \times n$ matrix and its Geometric Interpretation, Contribution to Algebra and Geometry (appeared Vol.6, 2005).

Mirko Radić, Rene Sušanj, Nenad Trinajstić, University of Rijeka, Department of Mathematics, 51000 Rijeka, Omladinska 14, Croatia

[^0]: Mathematics subject classification (2000): 51M04.
 Keywords and phrases: polygon, area, determinant of rectangular matrix.
 (Accepted May 30, 2006)

