ORTHIC AXIS, LEMOINE LINE AND
 LONGCHAMPS' LINE OF THE TRIANGLE IN I_{2}

V. Volenec, J. Beban-Brkić, R. Kolar-Šuper
and Z. Kolar-Begović

Abstract

The concepts of the orthic axis, Lemoine line and Longchamps' line of the triangle in an isotropic plane are defined. Some relationships between the introduced concepts and other elements of the triangle in an isotropic plane are also studied.

Let $A B C$ be any allowable triangle in an isotropic plane, i.e. such a triangle that none of the three lines $B C, C A, A B$ is isotropic. With the suitable choice of the coordinate system it can be achieved that the circumscribed circle of the triangle $A B C$ has the equation $y=x^{2}$ and the vertices of the triangle are of the form

$$
\begin{equation*}
A=\left(a, a^{2}\right), \quad B=\left(b, b^{2}\right), \quad C=\left(c, c^{2}\right) \tag{1}
\end{equation*}
$$

where $a+b+c=0$ (see [4]). Then we shall say that the triangle $A B C$ is in the standard position. Then the sides $B C, C A, A B$ of the triangle have the equations

$$
\begin{equation*}
y=-a x-b c, \quad y=-b x-c a, \quad y=-c x-a b . \tag{2}
\end{equation*}
$$

The altitudes of the triangle $A B C$ are the isotropic lines through the points A, B, C. They have in sequence these equations $x=a, x=b, x=c$ and they intersect the corresponding sides (2) in the points with the ordinates $-a^{2}-b c,-b^{2}-c a,-c^{2}-a b$. If we introduce the abbreviations

$$
q=b c+c a+a b, \quad p=a b c,
$$

then because of $a+b+c=0$ these equalities

$$
\begin{equation*}
q=b c-a^{2}, \quad q=c a-b^{2}, \quad q=a b-c^{2} \tag{3}
\end{equation*}
$$

follow, so the previous ordinates can be written in the form $q-2 b c, q-2 c a, q-2 a b$. We get the feet of the altitudes

$$
\begin{equation*}
A_{h}=(a, q-2 b c), \quad B_{h}=(b, q-2 c a), \quad C_{h}=(c, q-2 a b), \tag{4}
\end{equation*}
$$

Mathematics subject classification (2000): 51N25.
Keywords and phrases: isotropic plane, triangle, standard triangle, orthic axis, Lemoine line, Longchamps' line.
(Accepted January 16, 2006)
which form the triangle $A_{h} B_{h} C_{h}$, the so called orthic triangle of the triangle $A B C$.
In [4] it is shown that the corresponding sides of the triangle $A B C$ and its orthic triangle $A_{h} B_{h} C_{h}$ intersect in three points on the line \mathscr{H} with the equation $y=-\frac{q}{3}$ the so called orthic axis of the triangle ABC (Figure 1). In [1] it is shown that the orthic axis of the triangle is the potential axis of one pencil of circles, in which there are some important circles of that triangle.

Figure 1.
The altitude $A A_{h}$ intersects the orthic axis \mathscr{H} in the point $A^{\prime}=\left(a,-\frac{q}{3}\right)$. Because of the first equality (3) we have the equality $2 a^{2}+q-2 b c=-q$, which proves that for the point A^{\prime} and the points A and A_{h} from (1) and (4) the equality $2 A+A_{h}=3 A^{\prime}$, i.e.

$$
\overrightarrow{A^{\prime} A_{h}}=A_{h}-A^{\prime}=-2\left(A-A^{\prime}\right)=-2 \overrightarrow{A^{\prime} A}
$$

is valid. Because of that the dilatation χ with the axis \mathscr{H} and the coefficient -2 in isotropic direction maps the point A to the point A_{h}, and in the same way it maps the points B and C to the points B_{h} and C_{h}. That dilatation χ will be called orthodilatation of the triangle $A B C$. So, we have

TEOREM 1. The orthodilatation of a triangle maps that triangle to its orthic triangle.

The midpoints A_{m}, B_{m}, C_{m} of the sides $B C, C A, A B$ of the triangle $A B C$ make its complementary triangle $A_{m} B_{m} C_{m}$. In [4] it is shown that its vertices have the form

$$
\begin{equation*}
A_{m}=\left(-\frac{a}{2},-\frac{q}{2}-\frac{b c}{2}\right), \quad B_{m}=\left(-\frac{b}{2},-\frac{q}{2}-\frac{c a}{2}\right), \quad C_{m}=\left(-\frac{c}{2},-\frac{q}{2}-\frac{a b}{2}\right) \tag{5}
\end{equation*}
$$

The tangents of the circumscribed circle of the triangle $A B C$ in its vertices A, B, C form the so called tangential triangle $A_{t} B_{t} C_{t}$ of the triangle $A B C$, for whose vertices there is, by [1], this presentation

$$
\begin{equation*}
A_{t}=\left(-\frac{a}{2}, b c\right), \quad B_{t}=\left(-\frac{b}{2}, c a\right), \quad C_{t}=\left(-\frac{c}{2}, a b\right) \tag{6}
\end{equation*}
$$

Because of

$$
\frac{1}{2}(b+c)=-\frac{a}{2}, \quad \frac{1}{2}(q-2 c a+q-2 a b)=\frac{1}{2} \cdot 2 b c=b c
$$

the points B_{h} and C_{h} from (4) have the midpoint A_{t} from (6), and similarly the points B_{t} and C_{t} are the midpoints of the segments $C_{h} A_{h}$ and $A_{h} B_{h}$. So the following theorem is valid.

TEOREM 2. The tangential triangle of the given triangle is the complementary triangle of its orthic triangle.

From Theorems 1 and 2 it follows that orthodilatation of the triangle maps its complementary triangle to its tangential triangle. Since the associated lines of the dilatation intersect on its axis we have the following theorem.

TEOREM 3. The intersections of the corresponding sides of the complementary and the tangential triangle of the given triangle lie on its orthic axis (Figure 1).

In [6] Neuberg gives the statement of Theorem 3 in Euclidean geometry.
In [1] (Theorem 2 and its proof) it is shown that the corresponding sides of the triangles $A B C$ and $A_{t} B_{t} C_{t}$ intersect in three points D, E, F which lie on one line \mathscr{L}, Lemoine line of the triangle $A B C$ (Figure 2). For the triangle $A B C$ in the standard position the line \mathscr{L} has the equation

$$
\begin{equation*}
y=\frac{3 p}{q} x+\frac{q}{3} \tag{7}
\end{equation*}
$$

and we have for example

$$
\begin{equation*}
D=\left(-\frac{q}{3 a}, \frac{q}{3}-b c\right) \tag{8}
\end{equation*}
$$

The relationship between the Lemoine line and the orthic axis of the triangle is given by the following theorem.

TEOREM 4. If the Lemoine line of the triangle $A B C$ intersects the lines $B C, C A$, $A B$ in the points D, E, F then the midpoints of the segments $\overline{A D}, \overline{B E}, \overline{C F}$ lie on the orthic axis of that triangle (Figure 2). (In Euclidean plane the statement is given by FARJON [2]).

Proof. The points $A(a, b c-q)$ and D from (8) have the midpoint with the ordinate $-\frac{q}{3}$.

Figure 2.

The fact from Theorem 4 can be stated in this way too.
COrollary 1. The orthic axis of the triangle is Newton-Gauss line of the quadrilateral, which is formed by the sides and Lemoine line of that triangle. (Goormaghtigh [3] has the Euclidean version).

TEOREM 5. For the points D, E, F from Theorem 4 the following equalities

$$
\begin{gather*}
A D=\frac{B C \cdot C A \cdot A B}{A B^{2}-C A^{2}}, \quad B E=\frac{B C \cdot C A \cdot A B}{B C^{2}-A B^{2}}, \quad C F=\frac{B C \cdot C A \cdot A B}{C A^{2}-B C^{2}}, \tag{9}\\
A D \cdot E F=B E \cdot F D=C F \cdot D E
\end{gather*}
$$

are valid.
Proof. For the point D from (8) we get

$$
\begin{align*}
A D & =-\frac{q}{3 a}-a=-\frac{1}{3 a}\left(q+3 a^{2}\right)=-\frac{1}{3 a}(3 b c-2 q) \\
& =\frac{1}{3 a}(c-a)(a-b)=\frac{1}{3 a} \cdot C A \cdot A B \tag{10}
\end{align*}
$$

because of

$$
(c-a)(a-b)=-a^{2}-b c+c a+a b=-(b c-q)-2 b c+q=2 q-3 b c
$$

and as we have

$$
A B^{2}-C A^{2}=(a-b)^{2}-(c-a)^{2}=(2 a-b-c)(c-b)=3 a \cdot B C
$$

the first equality (9) follows. The points E and F which are analogous to the point D from (8) have the abscissas $-\frac{q}{3 b}$ and $-\frac{q}{3 c}$, and therefore

$$
E F=-\frac{q}{3 c}+\frac{q}{3 b}=\frac{q}{3 b c} \cdot(c-b)=\frac{q}{3 b c} \cdot B C
$$

which together with (10) gives

$$
A D \cdot E F=\frac{q}{9 p} B C \cdot C A \cdot A B
$$

COROLLARY 2. With the previous labels the equality

$$
\frac{1}{A D}+\frac{1}{B E}+\frac{1}{C F}=0
$$

is also valid.
THIE [7] has the statement of Theorem 5 and Corollary 2 in Euclidean plane.
TEOREM 6. If the Lemoine line of the triangle $A B C$ intersects the perpendicular bisectors of the segments $B C, C A, A B$ in the points L, M, N, then the lines $A L, B M$, CN pass through one point T, which lies on Brocard's diameter of the triangle $A B C$ (Figure 2) (MINEUR [5] has the Euclidean version), i.e. it is parallel to the symmedian center of that triangle.

Proof. With $x=-\frac{a}{2}$ from (7)

$$
y=-\frac{3 a p}{2 q}+\frac{q}{3}=\frac{2 q^{2}-9 a p}{6 q}
$$

follows, so we get

$$
L=\left(-\frac{a}{2}, \frac{1}{6 q}\left(2 q^{2}-9 a p\right)\right)
$$

The line having the equation

$$
9 a q y=\left(9 a p+6 b c q-8 q^{2}\right) x+3 p q-9 a^{2} p-a q^{2}
$$

passes through the point $A=\left(a, a^{2}\right)$ and through the point L that can be seen from

$$
\begin{gathered}
\left(9 a p+6 b c q-8 q^{2}\right) a+3 p q-9 a^{2} p-a q^{2}=9 p q-9 a q^{2}=9 a q(b c-q)=9 a q \cdot a^{2} \\
\left(9 a p+6 b c q-8 q^{2}\right)\left(-\frac{a}{2}\right)+3 p q-9 a^{2} p-a q^{2}=-\frac{27}{2} a^{2} p+3 a q^{2}=9 a q \cdot \frac{1}{6 q}\left(2 q^{2}-9 a p\right) .
\end{gathered}
$$

That line passes also through the point

$$
\begin{equation*}
T=\left(\frac{3 p}{2 q}, \frac{1}{18 q^{2}}\left(27 p^{2}-2 q^{3}\right)\right) \tag{11}
\end{equation*}
$$

because of

$$
\left(9 a p+6 b c q-8 q^{2}\right) \frac{3 p}{2 q}+3 p q-9(b c-q) p-a q^{2}=\frac{27 a p^{2}}{2 q}-a q^{2}=\frac{a}{2 q}\left(27 p^{2}-2 q^{3}\right)
$$

Analogously lines $B M$ and $C N$ pass through the point T. In [1] it is shown that the symmedian center K of the triangle $A B C$ has the form

$$
K=\left(\frac{3 p}{2 q},-\frac{q}{3}\right) .
$$

It is parallel to the point T from (11), i.e. both points lie on the line with the equation $x=\frac{3 p}{2 q}$, according to [1] Brocard's diameter of the triangle $A B C$.

TEOREM 7. The spans of the point T of Theorem 6 from the lines $B C, C A, A B$ are proportional to $B C^{3}, C A^{3}, A B^{3}$.

Proof. The span of the point T of (11) from the line $B C$ of (2) is equal to

$$
\begin{aligned}
\frac{1}{18 q^{2}}\left(27 p^{2}-2 q^{3}\right)+a & \cdot \frac{3 p}{2 q}+b c=\frac{1}{18 q^{2}}\left(27 p^{2}-2 q^{3}+27 a p q+18 b c q^{2}\right) \\
& =\frac{1}{18 q^{2}}\left[27 b^{2} c^{2}(b c-q)-2 q^{3}+27 b c q(b c-q)+18 b c q^{2}\right] \\
& =\frac{1}{18 q^{2}}\left(27 b^{3} c^{3}-9 b c q^{2}-2 q^{3}\right)=\frac{1}{18 q^{2}}(3 b c+q)^{2}(3 b c-2 q) \\
& =-\frac{1}{18 q^{2}}(b-c)^{4}(c-a)(a-b) \\
& =B C^{3} \cdot \frac{1}{18 q^{2}}(b-c)(c-a)(a-b)
\end{aligned}
$$

because of $3 b c-2 q=-(c-a)(a-b)$, according to the proof of Theorem 5. Apart from that we have

$$
(b-c)^{2}=(b+c)^{2}-4 b c=a^{2}-4 b c=b c-q-4 b c=-(q+3 b c)
$$

If G is the centroid of the triangle $A B C$, then the homothecy $\left(G,-\frac{1}{2}\right)$ maps each points to its complementary point and each line to its complementary line with respect to the triangle $A B C$. Conversely, the homothecy $(G,-2)$ maps each point to its anticomplementary point, and each line to its anticomplementary line with respect to the triangle $A B C$.

To the orthic axis with the equation $y=-\frac{q}{3}$ the line with the equation $y=-\frac{4}{3} q$ is anticomplementary line, which can be called, by the analogy with the Euclidean case, Longchamps' line of the triangle $A B C$ in the standard position.

REFERENCES

[1] J. Beban-Brkić, R. Kolar-Šuper, Z. Kolar-Begović, V. Volenec, On Feuerbach's Theorem and a Pencil of Circles in the Isotropic Plane, Journal for Geometry and Graphics $\mathbf{1 0}$ (2006), 125-132.
[2] F. Farjon, Question 1602, Nouv. Ann. Math. (3)10(1891), 5.
[3] R. Goormaghtigh, Sur l'axe orthique d'un triangle, Mathesis 48(1934), 387-391.
[4] R. Kolar-Šuper, Z. Kolar-Begović, V. Volenec, J. Beban-Brkić, Metrical relationships in a standard triangle in an isotropic plane, Mathematical Communications 10(2005), 149-157.
[5] A. Mineur, Note sur Question 2224, Mathesis 39(1925), 425-428.
[6] J. Neuberg, Question 972, Mathesis (2)4(1894), 216; (2)5(1896), 96-97.
[7] ThiÉ, Agrégation des sciences mathématiques (concòurs de 1913), Nouv. Ann. Math. (4)14(1914), 81-89.
V. Volenec, Department of Mathematics, University of Zagreb, Bijenička c. 30, HR-10 000 Zagreb, Croatia e-mail: volenec@math.hr
J. Beban-Brkić, Department of Geomatics, Faculty of Geodesy, Kačićeva 26, University of Zagreb, HR-10 000 Zagreb, Croatia
e-mail: jbeban@geof. hr
R. Kolar-Šuper, Faculty of Teacher Education, University of Osijek, Lorenza Jägera 9, HR-31 000 Osijek, Croatia
e-mail: rkolar@ufos.hr
Z. Kolar-Begović, Department of Mathematics, University of Osijek, Gajev trg 6, HR-31 000 Osijek, Croatia e-mail: zkolar@mathos.hr

