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HERMITE–HADAMARD TYPE INEQUALITIES

FOR STOLARSKY AND RELATED MEANS

J. PEČARIĆ, I. PERIĆ AND M. RODIĆ LIPANOVIĆ

Abstract. Some theorems of the Jensen type for certain classes of means are given in [7]. Some
further generalizations and further applications of these results are presented here.

1. Introduction

In [14] H.-J. Seiffert developed an inequality related to the Jensen inequalities for
convex and concave functions, which for a certain class of functions, connects the mean
of an integral over an interval [a,b] (a,b > 0) to the integrand evaluated at, so called,
the identric mean I(a,b) of the end points, which is defined by

I(a,b) =

⎧

⎨

⎩

1
e

(
bb

aa

) 1
b−a

, a �= b,

a , a = b.
(1.1)

Seiffert’s result provides the following:

THEOREM 1.1. If f is a strictly increasing continuous function on [a,b] , 0<a<b,
having a logarithmically convex inverse function, then

1
b−a

∫ b

a
f (x)dx � f (I(a,b)), (1.2)

while the inequality in (1.2) is reversed if f is strictly decreasing.

A positive function g on [a,b] is logarithmically convex or, simply, logconvex if
for every x,y ∈ [a,b] and r,s � 0,r+ s = 1 holds that

(g(x))r(g(y))s � g(rx+ sy), (1.3)

while g is logarithmically concave (logconcave) if (1.3) holds with the inequality re-
versed.
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An analogous result is given by H.Alzer ([1]), that is

f (L(a,b)) � 1
b−a

∫ b

a
f (x)dx (1.4)

if f ∈ C ([a,b]) is strictly increasing, 1/ f−1 is convex and L(a,b) is the logarithmic
mean defined by

L(a,b) =

{
b−a

lnb−lna , a �= b,

a , a = b,
(1.5)

while the inequality in (1.4) is reversed if f is strictly decreasing.
The identric and the logarithmic means are rather special cases of the generalized

logarithmic mean defined by

Lr(a,b) =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
br+1−ar+1

(r+1)(b−a)

] 1
r

, r �= −1,0 , a �= b;
b−a

lnb−lna , r = −1, a �= b;

1
e

(
bb

aa

) 1
b−a

, r = 0, a �= b;

a , a = b.

(1.6)

In [7] authors gave the analogous result for this generalized logarithmic mean ([7],
Theorem 2.1.):

THEOREM 1.2. Let a,b be the positive numbers and f : [a,b]→ R a real-valued

function. If r �= 0 and k(x) = f
(

x
1
r

)

is convex function, or r = 0 and k(x) = f (ex) is

convex, then

f (Lr(a,b)) � 1
b−a

∫ b

a
f (t)dt. (1.7)

If r �= 0 and k(x) = f
(

x
1
r

)

is concave, or r = 0 and k(x) = f (ex) is concave,

then (1.7) holds with the inequality reversed.

This result is the generalization of Seiffert’s and Alzer’s result, what can be easily
seen by a short calculation.

In the same paper ([7]) authors gave the generalizations for the Pittenger multidi-
mensional logarithmic mean.

Let En−1 denote the (n−1)-dimensional Euclidean simplex given by

En−1 = {(u1,u2, . . . ,un−1) : ui � 0, 1 � i � n−1,
n−1

∑
i=1

ui � 1},

and set un = 1−∑n−1
i=1 ui , u = (u1,u2, ...,un) . For an n− tuple x = (x1, ...,xn) of the

positive real numbers, A.O.Pittenger in [13] defined the multidimensional logarithmic
mean by

L(x1, ...,xn) =
[

(n−1)!
∫

En−1

(x ·u)−1 du1 · · ·dun−1

]−1

.
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In the same paper he also gave its generalization — the multidimensional generalized
logarithmic mean:

Lr(x) =

⎧

⎨

⎩

(
∫

En−1
(x ·u)r dμ(u)

) 1
r

, r �= 0;

exp(
∫

En−1
ln(x ·u)dμ(u)), r = 0;

(1.8)

where μ denotes the probability measure such that dμ(u) = (n−1)!du1 · · ·dun−1 .
In [7] the following result is also given ([7], Theorem 3.1.):

THEOREM 1.3. Let x1, ...,xn be the positive numbers belonging to some interval

I and let f : I → R be a real-valued function. If r �= 0 and k(x) = f
(

x
1
r

)

is convex,

or r = 0 and k(x) = f (ex) is convex, then

f (Lr(x)) �
∫

En−1

f (x ·u)dμ(u). (1.9)

If r �= 0 and k(x) = f
(

x
1
r

)

is concave, or r = 0 and k(x) = f (ex) is concave, then

(1.9) holds with the inequality reversed.

In the same paper [7, Theorem 4.1.] the analogous result for the integral power
means is also given.

In this paper we give further generalizations of these results.

2. Main results

Let Ω⊆ R
n be a convex set equipped with a probability measure μ . For a strictly

monotone continuous function h , the quasi-arithmetic mean Mh(g;μ) is defined as
follows:

Mh(g;μ) = h−1
(∫

Ω
(h ◦ g)(u)dμ(u)

)

.

In this paper we suppose, without further comment, that all involved integrals exist.

THEOREM 2.1. Let g : Ω → R be a continuous function, h strictly monotone
continuous function defined on the image of g and f a real-valued function defined on
the image of g. If k(x) = f

(

h−1(x)
)

is convex function, then

f (Mh(g;μ)) �
∫

Ω
f (g(u))dμ(u) (2.1)

is valid.
If the function g is bounded and its minimum and maximum value, m and M , are not
equal, then we also have that
∫

Ω
f (g(u))dμ(u) � h(M)−h(Mh(g;μ))

h(M)−h(m)
· f (m)+

h(Mh(g;μ))−h(m)
h(M)−h(m)

· f (M). (2.2)

If k(x) = f
(

h−1(x)
)

is concave, then (2.1) and (2.2) hold with the inequalities reversed.
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Proof. If k(x) = f
(

h−1(x)
)

is convex, then by the Jensen inequality it follows:

f (Mh(g;μ)) = f

[

h−1
(∫

Ω
(h ◦ g)(u)dμ(u)

)]

= k

(∫

Ω
(h ◦ g)(u)dμ(u)

)

�
∫

Ω
(k ◦ h)(g(u))dμ(u) =

∫

Ω
f (g(u))dμ(u),

and (2.1) is proved.
For the second inequality, we use the following result from Beesack and Pečarić

[2] (see also [11], page 98). For a convex function Φ on the interval I = [m1,M1]
(m1 < M1) and an isotonic linear functional A , they proved that the following inequality
is valid:

A(Φ(g)) � M1 −A(g)
M1−m1

Φ(m1)+
A(g)−m1

M1−m1
Φ(M1).

If we apply this result on our convex function k(x) = f
(

h−1(x)
)

, and A is an integral
over Ω with the probability measure μ , and then instead of the function g we consider
the function h ◦ g , then we get the following:
∫

Ω
f (g(u))dμ(u)

� M1 −
∫

Ω(h ◦ g)(u)dμ(u)
M1 −m1

· f
(

h−1(m1)
)

+
∫

Ω(h ◦ g)(u)dμ(u)−m1

M1 −m1
· f
(

h−1(M1)
)

=
M1 −h(Mh(g;μ))

M1 −m1
· f
(

h−1(m1)
)

+
h(Mh(g;μ))−m1

M1−m1
· f
(

h−1(M1)
)

,

where m1 and M1 (m1 < M1) are, respectively, the minimum and the maximum value
of the function h◦g , i.e. m1 � (h◦g)(u)� M1 , for all u . If we suppose that h is strictly
increasing and denote m1 = h(m),M1 = h(M) , then m � g(u) � M and m < M , and
we get (2.2). Analogously, supposing that h is strictly decreasing we get the same.

For k concave function, we get the reverse inequalities in (2.1) and (2.2).

REMARK 2.1 For the functions f ,g,h defined as in the Theorem 2.1, the inequalities
(2.1) and (2.2) (resp. the reverse inequalities) hold if any of the following cases occurs:

(i) f is strictly increasing, h strictly increasing and h ◦ f−1 concave (convex)

(ii) f is strictly increasing, h strictly decreasing and h ◦ f−1 convex (concave)

(iii) f is strictly decreasing, h strictly increasing and h ◦ f−1 convex (concave)

(iv) f is strictly decreasing, h strictly decreasing and h ◦ f−1 concave (convex).

3. Applications

From the results in the previous section we can derive the results from [7] and
many others.

72



Rad Hrvat. akad. znan. umjet. 503. Matematičke znanosti 16 (2009), str. 69–86
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3.1. Integral power means

Let Ω ⊆ R
n be a convex set equipped with a probability measure μ . For r ∈ R

and g :Ω→ R
+ , the integral For power mean is defined as follows:

Mr(g;μ) =

{

[
∫

Ω(g(u))rdμ(u)]
1
r , r �= 0

exp(
∫

Ω ln(g(u))dμ(u)), r = 0.

Now we have

THEOREM 3.1. Let the functions f ,g be defined as in the Theorem 2.1. If r �= 0

and k(x) = f
(

x
1
r

)

is convex function, or r = 0 and k(x) = f (ex) is convex, then

f (Mr(g;μ)) �
∫

Ω
f (g(u))dμ(u) (3.1)

is valid.
If the function g is also bounded, and its minimum and maximum value, m and

M , are not equal, then we also have

∫

Ω
f (g(u))dμ(u) �

{
Mr−Mr

r (g;μ)
Mr−mr · f (m)+ Mr

r (g;μ)−mr

Mr−mr · f (M), for r �= 0
lnM−lnM0(g;μ)

lnM−lnm · f (m)+ lnM0(g;μ)−lnm
lnM−lnm · f (M), for r = 0.

(3.2)

If r �= 0 and k(x) = f
(

x
1
r

)

is a concave function, or r = 0 and k(x) = f (ex) is

concave, then (3.1) and (3.2) hold with the inequalities reversed.

Proof. The statement of the Theorem follows directly from the Theorem 2.1 by
setting the function h as

h(x) =

{

xr,r �= 0

lnx,r = 0.

REMARK 3.1 For the functions f and g , defined as in the Theorem 2.1, the inequal-
ities (3.1) and (3.2) (resp. the reverse inequalities) hold if any of the following cases
occurs:

(i) f is strictly increasing, r > 0 and
(

f−1
)r

concave (convex)

(ii) f is strictly increasing, r < 0 and
(

f−1
)r

convex (concave)

(iii) f is strictly decreasing, r > 0 and
(

f−1
)r

convex (concave)

(iv) f is strictly decreasing, r < 0 and
(

f−1
)r

concave (convex)

(v) f is strictly increasing, r = 0 and f−1 logconcave (logconvex)

(vi) f is strictly decreasing, r = 0 and f−1 logconvex (logconcave).

REMARK 3.2 We can, naturally, apply these results on different means which can be
obtained from previously mentioned means (the integral power means).
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3.1.1. Tobey mean

Let En−1 represent the (n−1)-dimensional Euclidean simplex given by

En−1 = {(u1,u2, . . . ,un−1) : ui � 0, 1 � i � n−1,
n−1

∑
i=1

ui � 1}

and set un = 1− n−1
∑
i=1

ui . With u = (u1, ...,un) , let μ(u) be a probability measure on

En−1 .
The power mean of order p ( p ∈ R) of the positive n-tuple x = (x1, ...,xn) ∈ R

n
+

with the weights u = (u1, ...,un) , is defined by

Mp(x,u) =

⎧

⎪⎨

⎪⎩

(
n
∑
i=1

uix
p
i )

1
p , p �= 0

n
∏
i=1

xui
i , p = 0.

Then, the Tobey mean Lp,r(x,μ) is defined by

Lp,r(x,μ) = Mr(Mp(x,u);μ),

where Mr(g;μ) denotes the integral power mean in which Ω is the (n−1)-dimensional
Euclidean simplex En−1 .

The following result is valid:

THEOREM 3.2. Let I be an interval containing all xi (i = 1, ...,n) and let f :I→R

be a real-valued function. If r �= 0 and k(x) = f
(

x
1
r

)

is a convex function, or r = 0

and k(x) = f (ex) is convex, then

f (Lp,r(x,μ)) �
∫

En−1

f (Mp(x,u))dμ(u). (3.3)

If not all xi (i = 1, ...,n) are equal then we also have

∫

En−1

f (Mp(x,u))dμ(u)

�
{

Mr−Lr
p,r(x,μ)

Mr−mr · f (m)+
Lr

p,r(x,μ)−mr

Mr−mr · f (M), for r �= 0
lnM−lnLp,0(x,μ)

lnM−lnm · f (m)+ lnLp,0(x,μ)−lnm
lnM−lnm · f (M), for r = 0

(3.4)

where m and M are, respectively, the minimum and the maximum value of xi (i =
1, ...,n) .
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If r �= 0 and k(x) = f
(

x
1
r

)

is a concave function, or r = 0 and k(x) = f (ex) is

concave, then (3.3) and (3.4) hold with the inequalities reversed.

Proof. Note that as Mp(x,u) is a mean, we have that

m � Mp(x,u) � M

where m and M are, respectively, the minimum and the maximum value of xi (i =
1, ...,n) . If not all xi (i = 1, ...,n) are equal, then m < M . Now setting the function g
as g(u) = Mp(x,u) , from (3.1) we get (3.3) and from (3.2) we get (3.4).

REMARK 3.3 For strictly monotone function f : I → R on the interval I , the inequal-
ities (3.3) and (3.4) (resp. the reverse inequalities) hold if any of the cases (i)− (vi)
from the Remark 3.1 occurs.

3.1.2. Stolarsky-Tobey mean

The Stolarsky-Tobey mean Ep,q(x,μ) is defined (in [12]) as follows:

Ep,q(x,μ) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[

∫

En−1

(
n
∑
i=1

uix
p
i

) q−p
p

dμ(u)

] 1
q−p

, p(q− p) �= 0,

exp

(
∫

En−1
ln(

n
∑
i=1

uix
p
i )

1
p dμ(u)

)

, p = q �= 0,

[
∫

En−1

(
n
∏
i=1

xui
i

)q

dμ(u)
] 1

q

, p = 0,q �= 0,

exp

(
∫

En−1
ln(

n
∏
i=1

xui
i )dμ(u)

)

, p = q = 0,

(3.5)

or, in other words,

Ep,q(x,μ) = Lp,q−p(x,μ) = Mq−p(Mp(x,u);μ),

where Lp,r(x,μ) is the Tobey mean.
Therefore, from Theorem 3.2 we have:

THEOREM 3.3. Let I be an interval containing xi (i = 1, ...,n) and let f : I → R

be a real-valued function. If q− p �= 0 and k(x) = f
(

x
1

q−p

)

is convex, or q− p = 0

and k(x) = f (ex) is convex, then

f (Ep,q(x,μ)) �
∫

En−1

f (Mp(x,u))dμ(u). (3.6)
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If not all xi (i = 1, ...,n) are equal then we also have
∫

En−1

f (Mp(x,u))dμ(u)

�
{

Mq−p−E
q−p
p,q (x,μ)

Mq−p−mq−p · f (m)+ E
q−p
p,q (x,μ)−mq−p

Mq−p−mq−p · f (M), for q− p �= 0
lnM−lnEp,p(x,μ)

lnM−lnm · f (m)+ lnEp,p(x,μ)−lnm
lnM−lnm · f (M), for q− p = 0

(3.7)

where m and M are, respectively, the minimum and the maximum value of xi (i =
1, ...,n) .

If q− p �= 0 and k(x) = f
(

x
1

q−p

)

is concave, or q− p = 0 and k(x) = f (ex) is

concave, then (3.6) and (3.7) hold with the inequalities reversed.

REMARK 3.4 For strictly monotone function f : I →R , the inequalities (3.6) and (3.7)
(resp. the reverse inequalities) hold if any of the following cases occurs:

(i) f is strictly increasing, q− p > 0 and
(

f−1
)q−p

concave (convex)

(ii) f is strictly increasing, q− p < 0 and
(

f−1
)q−p

convex (concave)

(iii) f is strictly decreasing, q− p > 0 and
(

f−1
)q−p

convex (concave)

(iv) f is strictly decreasing, q− p < 0 and
(

f−1
)q−p

concave (convex)

(v) f is strictly increasing, q− p = 0 and f−1 logconcave (logconvex)

(vi) f is strictly decreasing, q− p = 0 and f−1 logconvex (logconcave).

From this, as a special case, follows Theorem 1.3 ([7, Theorem 3.1.]) for the
Pittenger multidimensional generalized logarithmic mean.

As Lr(x,μ) = E1,r+1(x,μ) , it follows:

THEOREM 3.4. Let I be an interval containing xi (i = 1, ...,n) and let f : I → R

be a real-valued function. If r �= 0 and k(x) = f
(

x
1
r

)

is convex, or r = 0 and k(x) =
f (ex) is convex, then

f (Lr(x,μ)) �
∫

En−1

f (x ·u)dμ(u). (3.8)

If not all xi (i = 1, ...,n) are equal then we also have

∫

En−1

f (x ·u)dμ(u) �
{

Mr−Lr
r(x,μ)

Mr−mr · f (m)+ Lr
r(x,μ)−mr

Mr−mr · f (M), for r �= 0
lnM−lnL0(x,μ)

lnM−lnm · f (m)+ lnL0(x,μ)−lnm
lnM−lnm · f (M), for r = 0

(3.9)

where m and M are, respectively, the minimum and the maximum value of xi (i =
1, ...,n) .

If r �= 0 and k(x) = f
(

x
1
r

)

is concave, or r = 0 and k(x) = f (ex) is concave,

then (3.8) and (3.9) hold with the inequalities reversed.
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REMARK 3.5 For strictly monotone function f : I → R on the interval I , the inequal-
ities (3.8) and (3.9) (resp. the reverse inequalities) hold if any of the cases (i)− (vi)
from the Remark 3.1 occurs.

REMARK 3.6 If μ is the probability measure such that dμ(u) = (n−1)!du1 · · ·dun−1 ,
Lr(x,μ) is equal to the Pittenger multidimensional generalized logarithmic mean Lr(x)
defined in the Introduction. So, in this case we have the Theorem 1.3 ([7, Theorem
3.1.]).

REMARK 3.7 In [12] an explicit form of the Stolarsky-Tobey mean in n−variables is
given (for distinct positive xi , i = 1, ...n ), when μ is the probability measure such that
dμ(u) = (n−1)!du1 · · ·dun−1 .

For p,q ∈ R , x = (x1, ...,xn) ∈ R
n
+ and xi �= x j (for i �= j ) we have:

(i) Ep,q(x) =

⎡

⎢
⎢
⎣

(n−1)!pn−1

q(q+p)...(q+(n−2)p)

n
∑
i=1

x
q+(n−2)p
i

n
∏
j=1
j �=i

(xp
i −xp

j )

⎤

⎥
⎥
⎦

1
q−p

,

for p �= 0, q �= −kp, −1 � k � n−2;

(ii) Ep,−kp(x) =

⎡

⎢
⎢
⎣
(−1)k(k+1)

(n−1
k+1

) n
∑
i=1

x(n−k−2)p
i ln(xi)

n
∏
j=1
j �=i

(xp
i −xp

j )

⎤

⎥
⎥
⎦

− 1
(k+1)p

,

for p �= 0, 0 � k � n−2;

(iii) E0,q(x) =

⎡

⎢
⎢
⎣

(n−1)!
qn−1

n
∑
i=1

xq
i

n
∏
j=1
j �=i

ln( xi
x j

)

⎤

⎥
⎥
⎦

1
q

, for q �= 0 ;

(iv) Ep,p(x) = exp

⎛

⎜
⎜
⎝

1
p

n
∑
i=1

xp(n−1)
i

(

lnxp
i −

n−1
∑

k=1

1
k

)

n
∏
j=1
j �=i

(xp
i −xp

j )

⎞

⎟
⎟
⎠

, for p �= 0;

(v) E0,0(x) =
(

n
∏
i=1

xi

) 1
n

.

Pittenger in [13] gave the explicit form for Lr(x) only when the index r is a
negative integer, −n � r � 0. Using the fact that Lr(x) = E1,r+1(x) we get the explicit
form for Lr(x) for all possible r :
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For r ∈ R and xi ( i = 1, ...,n ) distinct positive real numbers, we have the follow-
ing:

Lr(x1, ...,xn) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎝

(−1)−r−1 · (−r) · (n−1
−r

) ·
n
∑
i=1

xn+r−1
i lnxi
n
∏
j=1
j �=i

(xi−x j)

⎞

⎟
⎟
⎠

1
r

, if −r ∈ N, −n < r < 0;

exp

⎛

⎜
⎜
⎝

n
∑
i=1

xn−1
i

(

lnxi−
n−1
∑

k=1

1
k

)

n
∏
j=1
j �=i

(xi−x j)

⎞

⎟
⎟
⎠

, if r = 0;

⎛

⎜
⎜
⎝

(n−1)!
(r+1)(r+2)...(r+n−1)

n
∑
i=1

xr+n−1
i

n
∏
j=1
j �=i

(xi−x j)

⎞

⎟
⎟
⎠

1
r

, in all other cases.

REMARK 3.8 An extension of the result (1.4) given by Alzer in [1] is the following
inequality:

f (L(a,b)) � 1
b−a

∫ b

a
f (x)dx � b f (b)−a f (a)

b−a
−ab

f (b)− f (a)
b−a

1
L(a,b)

(3.10)

where 0 < a < b .

REMARK 3.9 An extension of the result (1.2) given by Seiffert in [14] is the following
inequality:

f (I(a,b)) � 1
b−a

∫ b

a
f (x)dx � lnb− lnI(a,b)

lnb− lna
· f (a)+

ln I(a,b)− lna
lnb− lna

· f (b) (3.11)

where 0 < a < b .

3.2. Functional Stolarsky means

For strictly monotone continuous functions h and g , the functional Stolarsky
means are defined by ([9]):

mh,g(x;μ) = h−1
(∫

En−1

(h ◦ g−1)(u ·g)dμ(u)
)

where g = (g(x1), ...,g(xn)) and μ is a probability measure on En−1 .
In the same way as we developed results for the quasi-arithmetic means, we can

get analogous results for the functional Stolarsky means using Ω = En−1 .
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THEOREM 3.5. Let I be an interval containing xi (i = 1, ...,n) , g,h : I → R

strictly monotone continuous functions and f : I → R a real-valued function. If k(x) =
f
(

h−1(x)
)

is convex, then

f
(

mh,g(x;μ)
)

�
∫

En−1

f (g−1(u ·g))dμ(u). (3.12)

If not all xi (i = 1, ...,n) are equal then we also have
∫

En−1

f (g−1(u ·g))dμ(u) � h(M)−h(mh,g(x;μ))
h(M)−h(m)

· f (m)+
h(mh,g(x;μ))−h(m)

h(M)−h(m)
· f (M),

(3.13)

where m and M are, respectively, the minimum and the maximum value of xi , (i =
1, ...,n) .
If k(x) = f

(

h−1(x)
)

is concave, then (3.12) and (3.12) hold with the inequalities re-
versed.

Proof. The proof is analogous to that of the Theorem 2.1; we just consider the
function g−1(u ·g) instead of the function g(u) .

REMARK 3.10 For strictly monotone function f : I →R on the interval I , the inequal-
ities (3.12) and (3.13) (resp. the reverse inequalities) hold if any of the cases (i)− (iv)
from the Remark 2.1 occurs.

3.3. Symmetric means

3.3.1. Complete symmetric polynomial mean

The r− th complete symmetric polynomial mean (or, simply, the complete sym-
metric mean) of the positive real n− tuple x , is defined by ([3])

Q[r]
n (x) =

(

q[r]
n (x)

) 1
r
=

(

c[r]
n (x)
(n+r−1

r

)

) 1
r

,

where
c[0]
n = 1 and c[r]

n =∑
(

∏x
i j
i

)

and the sum is taken over all
(n+r−1

r

)

non-negative integer n -tuples (i1, ..., in) with
∑n

j=1 i j = r , r �= 0.
The complete symmetric polynomial mean can also be written in an integral form

as follows:

Q[r]
n (x) =

(
∫

En−1

(
n

∑
i=1

xiui)rdμ(u)

) 1
r

where μ represents the probability measure such that dμ(u) = (n−1)!du1 · · ·dun−1 .
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J. Pečarić, I. Perić and M. Rodić Lipanović Hermite-Hadamard inequalities for means

As we can see, this is a special case of the integral power mean Mr(g;μ) where
g(u) =∑n

i=1 xiui , μ is the probability measure such that dμ(u) = (n−1)!du1 · · ·dun−1

and Ω is the (n−1)-dimensional simplex En−1 .
We have the following theorem:

THEOREM 3.6. Let I be an interval containing all xi (i = 1, ...,n) and let f :I→R

be a real-valued function. If k(x) = f
(

x
1
r

)

(r �= 0 ) is a convex function, then

f
(

Q[r]
n (x)

)

�
∫

En−1

f (
n

∑
i=1

xiui)dμ(u). (3.14)

If not all xi (i = 1, ...,n) are equal then we also have

∫

En−1

f (
n

∑
i=1

xiui)dμ(u) �
Mr −

(

Q[r]
n (x)

)r

Mr −mr · f (m)+

(

Q[r]
n (x)

)r −mr

Mr −mr · f (M) (3.15)

where m and M are, respectively, the minimum and the maximum value of xi (i =
1, ...,n) .

If k(x) = f
(

x
1
r

)

, (r �= 0 ) is a concave function, then (3.14) and (3.15) hold with

the inequalities reversed.

REMARK 3.11 For strictly monotone function f : I →R on the interval I , the inequal-
ities (3.14) and (3.15) (resp. the reverse inequalities) hold if any of the cases (i)− (iv)
from the Remark 3.1 occurs.

REMARK 3.12 The generalization of the complete symmetric polynomial means are
so called the Whiteley means (see [3]).

3.3.2. Whiteley means and the generalization

Let x be a positive real n− tuple, s ∈ R,s �= 0 and r ∈ N . Then the s− th func-

tion of degree r , the Whiteley symmetric function t [r,s]n (x) , is defined by the following
generating function (see [3]):

∞

∑
r=0

t [r,s]n (x)tr =

{

∏n
i=1(1+ xit)s, if s > 0,

∏n
i=1(1− xit)s, if s < 0.

The Whiteley mean is now defined by

W
[r,s]

n (x) =
(

w[r,s]
n (x)

) 1
r

=

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

(

t
[r,s]
n (x)
(ns

r )

) 1
r

, s > 0,

(

t
[r,s]
n (x)

(−1)r(ns
r )

) 1
r

, s < 0.
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REMARK 3.13 If s < 0 then (−1)r
(ns

r

)

=
(−ns+r−1

r

)

.

REMARK 3.14 An alternative definition of t [r,s]n (x) is given by:

t [r,s]n (x) =∑
(

n

∏
j=1

λi j x
i j
j

)

where

λi =

{(s
i

)

, s > 0,

(−1)i
(s

i

)

, s < 0,

and the summation is over all non-negative integer n -tuples (i1, ..., in) with ∑n
j=1 i j = r .

REMARK 3.15 For s =−1 the Whiteley mean becomes the complete symmetric poly-
nomial mean.

For s < 0 the Whiteley symmetric function can be further generalized if we slightly

change its definition and define h[r,σ ]
n (x) as follows:

∞

∑
r=0

h[r,σ ]
n (x)tr =

n

∏
i=1

1
(1− xit)σi

where σ = (σ1, ...,σn) , σi ∈ R+ ( i = 1, ...,n ).
Now the following generalization of the Whiteley mean for s < 0 is defined by

(see [10])

H
[r,σ ]

n (x) =
(

H [r,σ ]
n (x)

) 1
r =

⎛

⎜
⎝

h[r,σ ]
n (x)

(
n
∑

i=1
σi+r−1

r

)

⎞

⎟
⎠

1
r

.

REMARK 3.16 The previous definition can be written as

H
[r,σ ]

n (x) =
(

H [r,σ ]
n (x)

) 1
r =

⎛

⎜
⎝

h[r,σ ]
n (x)

(−1)r
(−

n
∑
i=1

σi

r

)

⎞

⎟
⎠

1
r

.

REMARK 3.17 If we put

σ1 = ... = σn = −s, (s < 0)

we get the s− th function of degree r , (that is, the Whiteley symmetric function t [r,s]n (x)),
and the Whiteley mean W

[r,s]
n (x) .
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REMARK 3.18 In [10] the mean H [r,σ ]
n (x) is considered, some useful results there were

given, including its integral representation.

H
[r,σ ]

n (x) is normalized as it is H
[r,σ ]

n (x) = x , when x = (x,x, ...,x) .
Further, if we denote with μ the measure on the simplex En−1 such that

dμ(u) =
Γ(∑n

i=1σi)
∏n

i=1Γ(σi)

n

∏
i=1

uσi−1
i du1 . . .dun−1,

then we have that μ is a probability measure and we can also write the mean H
[r,σ ]

n (x)
in an integral form as follows

H
[r,σ ]

n (x) =

(
∫

En−1

(
n

∑
i=1

xiui

)r

dμ(u)

) 1
r

.

Now we can develop the analogous result as we did in the previous section.

THEOREM 3.7. Let I be an interval containing xi (i = 1, ...,n) and let f : I → R

be a real-valued function.

If k(x) = f
(

x
1
r

)

(r �= 0 ) is convex, then

f
(

H
[r,σ ]

n (x)
)

�
∫

En−1

f

(
n

∑
i=1

xiui

)

dμ(u). (3.16)

If not all xi (i = 1, ...,n) are equal then we also have

∫

En−1

f

(
n

∑
i=1

xiui

)

dμ(u) �
Mr −

(

H
[r,σ ]

n (x)
)r

Mr −mr · f (m)+

(

H
[r,σ ]

n (x)
)r −mr

Mr −mr · f (M)

(3.17)

where m and M are, respectively, the minimum and the maximum value of xi (i =
1, ...,n) .

If k(x) = f
(

x
1
r

)

(r �= 0 ) is concave, then (3.16) and (3.17) hold with the inequal-

ities reversed.

Proof. As μ is a probability measure, for the convex function k by the Jensen
inequality we get the following:

f

⎡

⎣

(
∫

En−1

(
n

∑
i=1

xiui

)r

dμ(u)

) 1
r
⎤

⎦= k

(
∫

En−1

(
n

∑
i=1

xiui

)r

dμ(u)

)

�
∫

En−1

k

((
n

∑
i=1

xiui

)r)

dμ(u) =
∫

En−1

f

(
n

∑
i=1

xiui

)

dμ(u)
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and this proves the inequality in (3.16).
For the second inequality we use the same reasoning as we did in the proof of

the Theorem 2.1. For the convex function k(x) = f (x
1
r ) (as Φ(x)) and the function

(
n
∑
i=1

xiui

)r

(as g(u)) we get the following:

∫

En−1

f

(
n

∑
i=1

xiui

)

dμ(u)

�
M1 −

∫

En−1

(
n
∑
i=1

xiui

)r

dμ(u)

M1 −m1
· f (m

1
r
1 )+

∫

En−1

(
n
∑
i=1

xiui

)r

dμ(u)−m1

M1−m1
· f (M

1
r
1 )

=
M1 −

(

H
[r,σ ]

n (x)
)r

M1 −m1
· f (m

1
r
1 )+

(

H
[r,σ ]

n (x)
)r −m1

M1−m1
· f (M

1
r
1 )

where m1 and M1 are, respectively, the minimum and the maximum value of the func-

tion

(
n
∑
i=1

xiui

)r

, i.e. m1 �
(

n
∑
i=1

xiui

)r

� M1 , for all u , and m1 < M1 . If we denote

m1 = mr,M1 = Mr , then m �
n
∑
i=1

xiui � M and m < M . Now we get the inequality

(3.17) where m and M are, respectively, the minimum and the maximum value of xi

(i = 1, ...,n) .
For k concave, we get the reverse inequalities.

REMARK 3.19 For strictly monotone function f : I → R on the interval I , the in-
equalities (3.16) and (3.17) (resp. the reverse inequalities) hold if any one of the cases
(i)− (iv) from the Remark 3.1 occurs.

3.4. Inequalities for divided differences

In the next theorem we connect our main results, applied on the Pittenger multidi-
mensional logarithmic mean, with the divided differences.

Let now x = (x1, ...,xn) be a n− tuple of distinct positive real numbers.

THEOREM 3.8. Let f be a real function such that it has continuous (n− 1)− th

derivative. If r �= 0 and k(x) = f (n−1)
(

x
1
r

)

is a convex function, or r = 0 and k(x) =

f (n−1) (ex) is convex, then

f (n−1) (Lr(x)) � (n−1)! · [x1, ...,xn] f

�
{

Mr−Lr
r(x)

Mr−mr · f (n−1)(m)+ Lr
r(x)−mr

Mr−mr · f (n−1)(M), for r �= 0
lnM−lnL0(x)

lnM−lnm · f (n−1)(m)+ lnL0(x)−lnm
lnM−lnm · f (n−1)(M), for r = 0

(3.18)
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where m and M are, respectively, the minimum and the maximum value of xi (i =
1, ...,n) , and [x1, ...,xn] f represents the (n− 1)− th divided difference of the function
f .

If r �= 0 and k(x) = f (n−1)
(

x
1
r

)

is concave, or r = 0 and k(x) = f (n−1) (ex) is

concave, then (3.18) holds with the inequalities reversed.

Proof. The divided difference of the function f in the distinct points x1, ...,xn can
be written in the integral form as:

[x1, ...,xn] f =
∫

En−1

f (n−1)(
n

∑
i=1

xiui)du1...dun−1.

Now the statement of our Theorem follows immediately from the Theorem 3.4, for the
probability measure μ such that dμ(u) = (n−1)!du1...dun−1 .

REMARK 3.20 For real function f such that its continuous (n− 1)− th derivative is
strictly monotone function, the inequalities (3.18) (resp. the reverse inequalities) hold
if any of the following occurs:

(i) f (n−1) is strictly increasing, r > 0 and

((

f (n−1)
)−1
)r

concave (convex)

(ii) f (n−1) is strictly increasing, r < 0 and

((

f (n−1)
)−1
)r

convex (concave)

(iii) f (n−1) is strictly decreasing, r > 0 and

((

f (n−1)
)−1
)r

convex (concave)

(iv) f (n−1) is strictly decreasing, r < 0 and

((

f (n−1)
)−1
)r

concave (convex)

(v) f (n−1) is strictly increasing, r = 0 and
(

f (n−1)
)−1

logconcave (logconvex)

(vi) f (n−1) is strictly decreasing, r = 0 and
(

f (n−1)
)−1

logconvex (logconcave).

In [5] the following result is given (with the slightly changed notation):

THEOREM 3.9. For the function f ∈Cn−1(I) , ( I open interval, n ∈ N ) with the
(n−1)− th derivative strictly positive, the next inequality is valid

[x1, ...,xn] f �
n

∏
i=1

⎛

⎝

⎡

⎣xi, ...,xi
︸ ︷︷ ︸

n−times

⎤

⎦ f

⎞

⎠

1
n

(3.19)

if the function c(x) =
(

1
f (n−1)(x)

) 1
n

is convex.

If the function c is concave, the inequality is reversed.
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Here we give a generalization of this result.

THEOREM 3.10. Let I and J be open intervals in R , f ∈Cn−1(I) , H ∈Cn−1(J)
such that R( f (n−1)) ⊆ R(H(n−1)) and let H(n−1) be monotonous function. Define

c : I → R by c(x) =
(

H(n−1)
)−1(

f (n−1)(x)
)

. If

(i) c is convex and H(n−1) increasing, or

(ii) c is concave and H(n−1) decreasing,

then

[x1, ...,xn] f �
[(

H(n−1)
)−1(

f (n−1)(x1)
)

, ...,
(

H(n−1)
)−1(

f (n−1)(xn)
)]

H.

If:

(i) c is concave and H(n−1) increasing, or

(ii) c is convex and H(n−1) decreasing,

then the reverse inequality is valid.

Proof. Suppose c is convex and H(n−1) increasing (case (i)). Then by the Jensen
inequality we have:

[x1, ...,xn] f =
∫

En−1

f (n−1)(x ·u)du1...dun−1

=
∫

En−1

H(n−1)

(

c

(
n

∑
i=1

uixi

))

du1...dun−1

�
∫

En−1

H(n−1)

(
n

∑
i=1

uic(xi)

)

du1...dun−1

= [c(x1), ...,c(xn)]H

=
[(

H(n−1)
)−1(

f (n−1)(x1)
)

, ...,
(

H(n−1)
)−1(

f (n−1)(xn)
)]

H.

The proof is similar for all other cases.

REMARK 3.21 Consider the function H(t)= (−1)n−1

(n−1)!
1
t , t > 0, n∈N . Then H(n−1)(t)=

1
tn is decreasing function. Now applying the previous theorem and the simple fact that
in this case [x1, . . . ,xn]H = 1

(n−1)!
1

x1···xn
, we get the quoted result (3.19) from [5]. More-

over, setting f (x) = expx we get the result from [4] (Appendix 1):

[x1, ...,xn]exp � 1
(n−1)!

exp

(
x1 + ...+ xn

n

)

.
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J. Pečarić, I. Perić and M. Rodić Lipanović Hermite-Hadamard inequalities for means

RE F ER EN CE S

[1] H. ALZER, On an integral inequality, Anal. Numér. Théor. Approx., 184 (1985) 101–103.
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Croatia

e-mail: pecaric@hazu.hr
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