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Original scientific paper 
The basic equations of the Mindlin thick plate theory are specified as starting point for 

the development of a new thick plate theory in which total deflection and rotations are split 
into pure bending deflection and shear deflection with bending angles of rotation, and in-
plane shear angles. The equilibrium equations of the former displacement field are condensed 
into one partial differential equation for flexural vibrations. In the latter case two differential 
equations for in-plane shear vibrations are obtained and they are similar to the well-known 
membrane equations. Physical background of the derived equations is analysed in case of a 
simply supported square plate. Rectangular shear locking-free finite element for flexural 
vibrations is developed. For in-plane shear vibrations ordinary membrane finite elements can 
be used. Natural modes of plate layers in in-plane shear vibrations are the same as membrane 
modes, while natural frequencies have to be transformed. Application of the presented theory 
is illustrated in a case of simply supported and clamped square plate. Problems are solved 
analytically and by FEM. The obtained results, compared with the relevant ones available in 
literature, are discussed. 
 Keywords: finite element method, flexural vibrations, Mindlin theory, shear 
locking, shear vibrations, thick plate  
 
Formulacija konačnih elemenata za analizu vibracija debele ploče 
bez smične blokade 

Izvorni znanstveni rad 
Navedeni su osnovni izrazi Mindlinove teorije debele ploče, kao polazna točka za 

razvoj nove teorije, u kojoj su ukupni progib i zakreti rastavljeni u progib čistoga savijanja i 
poprečnoga smicanja s kutovima zakreta savijanja i kutovima ravninskoga smicanja. 
Jednadžbe ravnoteže unutarnjih i izvanjskih sila prvoga polja pomaka reducirane su na jednu 
parcijalnu diferencijalnu jednadžbu fleksijskih vibracija. Za drugo polje pomaka dobivene su 
dvije diferencijalne jednadžbe za ravninsko smično vibriranje. Dinamičko ponašanje ploče 
opisano izvedenim jednadžbama analizirano je u slučaju slobodno oslonjene kvadratne ploče. 
Izveden je pravokutni konačni element za fleksijske vibracije ploče bez smične blokade. Za 
ravninsko smično vibriranje ploče korištena je analogija s membranskim vibracijama. Njihovi 
prirodni oblici su isti, dok se prirodne frekvencije membrane prenose na ploču pomoću 
jednostavnog izraza. Primjena razvijene teorije ilustrirana je na primjeru slobodno oslonjene i 
upete kvadratne ploče. Problem je riješen analitički i numerički metodom konačnih 
elemenata. Dobiveni rezultati uspoređeni su s objavljenim rezultatima, koji su određeni 
nekom drugom metodom na osnovi Mindlinove teorije. 
 Ključne riječi: debela ploča, fleksijske vibracije, metoda konačnih elemenata, 
Mindlinova teorija, smična blokada, smične vibracije  
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1 Introduction 
 

Thick plate is a structural element in many engineering structures. Double bottom, 
double skin and transverse bulkheads in ordinary ships, tankers and container ships, 
respectively, can be considered as an orthotropic thick plate. Also, thick plate is used as 
engine foundation, elements of reinforced concrete bridges, floating structures (airports, 
artificial recreating islands, pontoons), ice floe etc. 

The first works on the thick plate theory are those of Reissner and Mindlin from 1945 
and 1951, [1] and [2], respectively. This challenging problem has been a subject of 
investigation by many researchers, both mathematicians and engineers. A very large number 
of concepts have been worked out during that long period [3]. Analytical and numerical 
methods have been applied. When the finite element method (FEM) came into use, thanks to 
the development of computers, is was also applied for thick plate static and dynamic analysis 
[4]. 

In the Mindlin thick plate theory shear deformations are taken into account, and 
application of ordinary low-order finite element is not capable to reproduce the pure bending 
modes in the limit case of thin plate. This shear locking problem arises due to inadequate 
dependence among transverse deflection and two rotations. In order to overcome this 
problem, quite a large number of procedures have been developed in recent years. Most of 
them utilize a mixed formulation, by linking plate deflection field to the angles of rotations [5, 
6, 7]. These formulations are rather complex and time consuming. Another method is the 
Assumed Natural Strain (ANS) in which shear strains at discrete collocation points are 
determined from the displacements and interpolated over the element surface with specific 
shape functions [8, 9, 10]. The Discrete Shear Gap method (DSG) is similar to the ANS since 
the course of certain strains is modified within the finite element [11]. The lack of collocation 
points makes application of DSG independent of the order and form of the finite elements as 
the main difference from the ANS. The DSG method has been recently used in combination 
with the Edge-Based Smoothed FE Method (ES-FEM) [12], as a particular meshless method 
[13]. 

The developed finite elements are ordinary based on direct application of the Mindlin 
plate theory, which deals with plate deflection and angles of rotation as three basic variables. 
In this paper a new thick plate theory is proposed, representing an extension of the issue 
elaborated in [14]. The main idea is to split deflection and angles of rotation in their 
constitutive parts, i.e. pure bending deflection and shear deflection with bending angles, and 
in-plane shear angles, respectively. In that way the problem is decomposed into flexural 
(bending and transverse shear) vibrations and in-plane shear vibrations, which can be 
analysed separately. Formulation of finite elements for both flexural and in-plane shear 
vibrations, using the standard FE procedure, is presented. 

 
2 Basic equations of Mindlin plate theory 

 

The Mindlin theory deals with three general displacements, i.e. plate deflection , and 
angles of cross-section rotation about  and 

w
y x  axis, xψ  and yψ , respectively. The following 

relations between sectional forces, i.e. bending moments, xM  and yM , torsional moments, 

xyM  and yxM , and transverse shear forces, xQ  and , and displacements via deformations are 
specified, [1] and [2] 
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is plate flexural rigidity and shear rigidity, respectively, h  is plate thickness, k  is shear 
coefficient,  and E ( )(2 1G E ν= +  are Young’s and shear modulus, respectively, while ν  is 
Poisson’s ratio. 

The plate is loaded with transverse inertia load and distributed inertia moments 
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where m hρ=  and  are plate specific mass per unit area and its moment of 
inertia, respectively, and 

3 /12J hρ=
ρ  is mass density. 

Equilibrium of sectional and inertia forces, i.e. moment about y  and x  axis and 
transverse forces read 
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By substituting Eqs. (1) and (3) into (4) one arrives at three differential equations of 
motion 
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where ( ) ( ) ( )2 2

2

. .
. 2x y

∂ ∂
Δ = +

∂ ∂
 is the Laplace differential operator. 

Eqs. (5), (6) and (7) are the well-known Mindlin equations of motion [2] and represent 
a starting point for further development of the Mindlin theory and its variants, with their 
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advantages and shortcomings such as the well-known shear locking in FEM formulation. That 
state-of-the-art motivates further investigation of this challenging problem. 

 
3 Development of new thick plate theory 

 

The main idea is to split general displacements w , xψ  and yψ , Figure 1a, into their 
constitutive parts, as shown in Figure 1, b, c and d. Total deflection consists of bending 
deflection and contribution of transverse shear, while the angles of plate cross-section slope 
are a result of rotation due to pure bending and shearing 

 , ,b
b s x x y y

ww w w
x y

.bwψ ϑ ψ ϑ∂ ∂
= + = − + = − +

∂ ∂
     (8) 

By introducing (8) into Eqs. (5), (6) and (7), it is possible to separate variables of two 
different displacement fields 
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Figure 1 Thick plate displacements, a – total deflection and rotation , xw ψ , b – pure bending deflection and rotation 

,b xw ϕ , c - transverse shear deflection sw , d – in-plane shear angle xϑ  

Slika 1 Pomaci debele ploče, a – ukupni progib i kut zakreta , xw ψ , b – progib čistog savijanja i kut zakreta ,b xw ϕ , c 

– progib poprečnog smicanja sw , d – kut ravninskog smicanja xϑ  
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Eqs. (9) and (10) can be presented in the form 
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and their integrals per x  and  read y ( )1 1d ,F g x f y t G= + =∫  and ( )2 2d ,F g y f x t G= + =∫  

respectively. That implies the identity of functions  and , which is not possible due to 
structure of  and  in (9) and (10). The reasonable solution is that both the functions  
and are set to zero. Consequently, 

1G 2G

1g 2g 1g

2g F x∂ ∂  and F y∂ ∂  are also zero and their integrals 

( ),F f y t=  and  have to be the same, i.e. ( , )F f x t= ( ) ( ) (, , )f y t f x t f t= = . Since ( )f t  
represents rigid body motion it can be ignored in vibration analysis. 

As a result of the above consideration, the following relation from Eqs. (9) and (10) is 
obtained 

 
2

2
b

s b
wD Jw w

S S
∂

= − Δ +
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Furthermore, by substituting Eq. (13) into (11) one arrives at differential equation for flexural 
vibrations 
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Once  is determined, the total deflection reads, according to Eqs. (8) and (13), bw
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In addition, since functions 1 0G =  and 2 0G = , the right-hand sides of Eqs. (9) and 
(10) represent the system of two differential equations for in-plane shear vibrations 
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In that way the system of equations with three general variables , w xψ  and yψ  is transformed 
into the system of three equations, Eqs. (14), (16) and (17), with three basic variables, i.e. 
pure bending deflection and in-plane shear angles , bw xϑ  and yϑ , respectively. 
 
4 Differential equations of natural vibrations 

 

In case of natural vibrations sinb bw W tω= , sinx x t=ϑ ωΘ  and siny y tϑ ω= Θ , so that 
system of Eqs. (14), (16) and (17) is reduced to the vibration amplitudes 
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Amplitude of total deflection according to (15) reads 
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Coefficient in the second term of (18) can be presented in a simpler form 
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It is worth-while to point out that the structure of Eqs. (19) and (20) for in-plane shear 
vibrations is similar to that of in-plane membrane vibrations well-known in the theory of 
elasticity [15] 
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Both, the system of Eqs. (19) and (20), and that of Eqs. (23) and (24), deals with the same 
differential operators. Angles xΘ  and yΘ  correspond to membrane displacements u  and . 
Differences are additional moments 

v

xSΘ  and ySΘ , which are associated with inertia 

moments 2
xJω Θ  and , and represent reaction of imagined rotational elastic 

foundation with stiffness per unit cross-section area equal to the plate shear stiffness per unit 
breadth, . Hence, based on the recognized analogy, shown in Figure 2 where , plate 
in-plane shear response can be obtained by membrane vibration analysis performed for the 
same boundary conditions. Analytical solution can be found in [15, 16]. The functions of 
natural modes are the same in both cases, while the natural frequencies are different. Their 
relation arises from the equality of factors related to the function 

2
yJω Θ

S 0mK =

xΘ  and , i.e.  and v , 
which are the same. Hence, one finds 

u yΘ

 
Figure 2 Analogy between in-plane shear model and membrane model 
Slika 2 Analogija između modela ravninskog smicanja i modela membrane 

 2 .m
S
J

ω ω= +  (25) 

Expression 00 S Jω =  is natural frequency of plate layers oscillating on in-plane elastic 
foundation (as a set of playing cards) and is obtained from Eqs. (19) and (20) for constant 
values of xΘ  and . In that case disturbing function in (18) vanishes and there is no 
possible coupling between flexural and in-plane shear vibrations. 

yΘ

 
5 Natural vibrations of rectangular plate 
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In order to analyse physical background of differential equations of vibrations, a 
simply supported rectangular plate with aspect ratio a b  is considered. Amplitude of bending 
deflection and shear angles are assumed in the form of double trigonometric series 
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Hence, total deflection , Eq. (15), and bending moments (1) are zero at the edges, while the 
boundary conditions for the in-plane shear vibrations read 

w
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By substituting (26) into (18), (19) and (20), the following system of three homogenous 
algebraic equations is obtained 
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Determinant of system (28) has to be equal to zero in order to obtain a nontrivial solution, i.e. 
. The first condition (11 22 33 23 32Det 0d d d d d= − 11 0d = and the second one 

 represent the frequency equation of flexural vibrations and in-plane shear 
vibrations, respectively. It is obvious that these two types of vibrations are not coupled. From 
the first condition one obtains 

22 33 23 32 0d d d d− =
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The solution of (30) gives 
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is the well-known formula for the natural frequencies of the thin plate. 
The second condition, 22 33 23 32 0d d d d− = , in expanded form reads 
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and after some manipulation, 
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The eigenvalues of Eq. (34) read 

 ( )1 2
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and one finds from (35) for natural frequencies of in-plane shear vibrations 
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Due to practical reason, a non-dimensional frequency parameter is introduced as 
2a h D 2λ ω ρ π= . In that case Eqs. (38) and (39) are transformed into 
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The above expressions can be also presented as 
2(1,2) 2 (1,2)

0 ,mn mnλ λ λ⎡ ⎤= + ⎣ ⎦  where the first and the 

second term are related to the frequency parameter of plate layers oscillations on elastic 
foundation and membrane vibrations, respectively. According to Eqs. (38) and (39), the 
membrane has two frequency spectra, with frequency ratio ( )1: 1 2ν− . On the other side, 

frequency squared of in-plane shear vibrations is shifted for S J  with respect to the 
membrane frequency squared. For longitudinal vibrations of a free bar the first solution, Eq. 
(40), is relevant, which gives the well-known formula for the natural frequencies 

( )m m a Eω π= ρ . Relative amplitudes of natural modes are determined from the second or 
the third equation in (28) as 23B d=  and 22C d= − , and 33B d=  and 32C d= − , respectively. 

The problem of in-plane shear vibrations is also analysed in [17] in order to 
investigate the so-called missing modes in the spectrum of flexural plate vibrations. However, 
only one expression for frequency parameters is identified, which is identical to Eq. (41). 
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6 Rectangular finite element for flexural vibrations 

 

A simple four node rectangular element is considered, Figure 3. The ordinary 
procedure for determining element properties of a thin plate is applied [18]. Bending 
deflection is assumed in polynomial form with the number of unknown coefficients equal to 
the total number of d.o.f. 
 { },b b

w P a=  (42) 
where { }a  is vector with terms , ia 0,1, 11i = K , and 

 2 2 3 2 2 3 31, , , , , , , , , , ,
b

P 3ξ η ξ ξη η ξ ξ η ξη η ξ η ξη= , (43) 

where x aξ =  and y bη =  are nondimensional coordinates. Shear polynomial, according to 
(13) for static analysis, reads 
 0,0,0,2 ,0,2 ,6 ,2 ,2 ,6 ,6 ,6

s
P α β αξ αη βξ βη αξη βξη= − , (44) 

where  

 2 ,D
Sa Sb

α β= =  2

D . (45) 

 
Figure 3 Plate finite element for flexural vibrations 
Slika 3 Konačni element ploče za fleksijske vibracije 

 
The total static deflection (15) can be presented in the form 
 ( ){ }b s

w P P a= + , (46) 
with angles of rotation 

 { } { }2 2 2 31 1 0,1,0,2 , ,0,3 , 2 , ,0,3 ,b
x

P
a a

a a
ϕ ξ η ξ ξη η

ξ
∂

= − = −
∂

ξ η η , (47) 

 { } { }2 2 3 21 1 0,0,1,0, , 2 ,0, , 2 ,3 , ,3b
y

P
a a

b b
ϕ ξ η ξ ξη η ξ ξη

η
∂

= − = −
∂

. (48) 

By taking coordinate values lξ  and lη  for each node, 1,2,3,4l =  into account in Eqs. 
(46), (47) and (48), the relation between nodal displacements and the unknown coefficients  
is obtained 

ia

 { } [ ]{ }C aδ = , (49) 
where 
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 { }
{ }

{ }
{ }

1

4

,
l

xll

yl

wδ
δ δ ϕ

δ ϕ

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪

⎩ ⎭⎩ ⎭

  M
⎪

, (50) 

and 

[ ]

1 0 0 2 0 2 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0

1 1 0 1 2 0 2 1 6 0 2 0 0 0
1 1 1 10 0 0 0 0 0 0 0

1 2 30 0 0 0 0 0 0 0 0

1 1 1 1 2 1 1 2 1 6 1 2 1 2 1 6 1 6 1 6
1 1 2 1 2 3 10 0 0 0

1 2 1 3 2 1 30 0 0 0

1 0 1 2 0 1 2 0 2

b

a

b b b b

a a aC

b b b b b b b

a a a a a a a a

α β

α β α β

3

1
b

α β α α β β α

α β α

− −

−

− − − −

− − −
=

− − − − − − −

− − − − − − − −

− − −

β−

0 1 6 0 0
1 2 30 0 0 0 0 0 0 0 0

1 1 10 0 0 0 0 0 0 0

b b b

a a a

β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− − − −⎢ ⎥⎣ ⎦

1
a

. (51) 

 
Now, for a given nodal displacement vector, the corresponding coefficient vector { }a  

can be determined from (49) 
 { } [ ] { }1a C δ−= . (52) 
By substituting (52) into (42) yields 
 { }b b

w φ δ= , [ ] 1

b b
P Cφ −= , (53a, b) 

where 
b

φ  is the vector of the bending shape functions. 
In a similar way shear deflection can be presented in the form 

 { }s s
w P a= , (54) 

and by employing (52) yields 
 { }s s

w φ δ= , [ ] 1

s s
P Cφ −= , (55a, b) 

where 
s

φ  is the vector of the shear shape functions. 
Total deflection according to (46) reads 

 { }w φ δ= , 
b s

φ φ φ= +  (56a, b) 

where φ  is the vector of the total shape functions. 
Columns of inverted matrix [C] are vectors of coefficients ai obtained for the unit 

value of particular nodal displacements 
 [ ] { } { }1

1 1
...C A A−

2
⎡ ⎤= ⎣ ⎦ , (57) 

where 
 { } 0 1 11...T j j j

j
A a a a=  . (58) 

 Bending curvatures and warping are presented in the form 

 265



 { }

2

2

2

2

2

2

b

b
b

b

w
x
w
y
w

x y

κ

⎧ ⎫∂
⎪ ⎪

∂⎪ ⎪
⎪ ⎪∂

= − ⎨ ⎬∂⎪ ⎪
⎪ ⎪∂
⎪ ⎪

∂ ∂⎩ ⎭

. (59) 

By substituting (53a, b) into (59) yields 
 { } [ ] { }bb

Lκ δ= − , [ ] [ ] [ ] 1

b b
L H C −= , (60a, b) 

where [ ]bL  is bending curvature matrix, and 

 [ ]

2

2

2

2

2

1

1

2

b

b
b

b

P
a

P
H

b
P

ab

ξ

η

ξ η

⎡ ⎤∂
⎢ ⎥

∂⎢ ⎥
⎢ ⎥∂
⎢ ⎥=

∂⎢ ⎥
⎢ ⎥∂⎢ ⎥
⎢ ⎥∂ ∂⎣ ⎦

. (61) 

Now it is possible to determine bending stiffness matrix by employing general 
formulation from the finite element method [19] 

 [ ] [ ] [ ] [ ]
1 1

0 0

d dT

b b b b
K ab L D L ξ η= ∫ ∫ , (62) 

where 

 [ ]
( )

1 0
1 0

0 0 1 2
b

D D
ν

ν
ν

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

 (63) 

is matrix of plate flexural rigidity. Furthermore, by substituting (60a, b) into (62), yields 
 [ ] [ ] [ ][ ] 1T

b
K C B C− −= , (64) 

where symbolically [ ]  and [ ]( 1 TTC C− −= )
 [ ] [ ] [ ] [ ]

1 1

0 0

d dT

b b b
B ab H D H ξ η= ∫ ∫ . (65) 

By taking (61) and (63) into account, (65) can be presented in the form 
 [ ] [ ] [ ] [ ]( ) [ ] ( )[ ]( )1 2 3 4

2 1
5

B D I I I I Iν= + + + + −ν , (66) 

where 
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[ ] { }

[ ] { } [ ]

[ ] { }

[ ] { }

2 21 1

3 2 21
0 0

2 21 1

2 22 3
0 0

2 21 1

3 2 24
0 0

2 21 1

5
0 0

d d ,

1 d d ,

d d ,

1 d d .

b b

Tb b

b b

b b

P PbI
a

P P
I I

ab

P PaI
b

P P
I

ab

ξ η
ξ ξ

ξ η
ξ η

ξ η
η η

ξ η
ξ η ξ η

∂ ∂
=

∂ ∂

∂ ∂
= =

∂ ∂

∂ ∂
=

∂ ∂

∂ ∂
=

∂ ∂ ∂ ∂

∫ ∫

∫ ∫

∫ ∫

∫ ∫

 (67) 

 According to Eqs. (1) for xΘ  and yΘ , and (8), the vector of shear strain 
accompanying bending reads 

 { }
s

s

w
x

w
y

γ

∂⎧ ⎫
⎪ ⎪∂⎪ ⎪= ⎨ ⎬∂⎪ ⎪
∂⎪ ⎪⎩ ⎭

. (68) 

By taking (55a, b) into account, one obtains 
 { } [ ] { }s

Lγ δ= , [ ] [ ] [ ] 1

s s
L H C −=  (69a, b) 

where [ ]s
L  is the shear strain matrix, and 

 [ ]

1

1

s

s
s

P
a

H
P

b

ξ

η

⎡ ⎤∂
⎢ ⎥∂⎢ ⎥= ⎢ ⎥∂
⎢ ⎥

∂⎢ ⎥⎣ ⎦

. (70) 

Analogously to (64), the shear stiffness matrix is presented in the form 

 [ ] [ ] [ ] [ ]
1 1

0 0

d dT

s s s s
K ab L D L ξ η= ∫ ∫ , (71) 

where [ ] . By substituting (69a, b) into (71), yields 
1 0
0 1s

D S ⎡= ⎢
⎣ ⎦

⎤
⎥

 [ ] [ ] [ ][ ] 1T

s
K C S C− −= , (72) 

where 

 [ ] [ ] [ ]
1 1

0 0

d dT

s s
S Sab H H ξ η= ∫ ∫ . (73) 

By taking (70) into account, (73) can be presented in the form 
 [ ] [ ] [ ]( )6

S S I I= +
7

, (74) 
where 

 
[ ] { }

[ ] { }

1 1

6
0 0

1 1

7
0 0

d d ,

d d .

s s

s s

P PbI
a

P PaI
b

ξ η
ξ ξ

ξ η
η η

∂ ∂
=

∂ ∂

∂ ∂
=

∂ ∂

∫ ∫

∫ ∫
 (75) 

Finally, the complete stiffness matrix is 
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 [ ] [ ] [ ] [ ] [ ] [ ]( )[ ] 1T

b s
K K K C B S C− −= + = + . (76) 

According to the general formulation of mass matrix in the finite element method [18], 
one can write 

 [ ] { }
1 1

0 0

d dM mab φ φ ξ η= ∫ ∫ , (77) 

where { }φ  is the vector of total shape functions (56b). By taking (53b) and (55b) into account 
yields 
 [ ] [ ] [ ] [ ] 1

0

TM mab C I C− −
= , (78) 

where 

 [ ] { }
1 1

0
0 0

d dI ab P P ξ η= ∫ ∫ , (79) 

and { } { } { }b
P P P= +

s
, Eqs. (43) and (44). 

According to definition the load vector reads [19] 

 { } { }
1 1

0 0

d d
q

F ab qφ ξ η= ∫ ∫ . (80) 

If load is constant, by employing (53b) and (55b), yields 

 { } [ ] { }
1 1

0 0

d dT

q
F abq C P ξ η−

= ∫ ∫ . (81) 

Finite element equation for harmonic vibration has ordinary form [ ] [ ]( ){ } { }2
q

K M Fω δ− = . 

 
7 Rectangular finite element for in-plane shear vibrations 

 

A four node rectangular element with two shear angles per node is shown in Figure 4, 
with origin located in the middle of the element due to reason of simpler integration of shape 
function over the element surface. The element is similar to the membrane element since a 
thick plate layer behaves as a membrane with deformations proportional to the distance from 
the middle surface. Therefore, the ordinary procedure for developing of the membrane finite 
element is employed [20]. 

 
Figure 4 Plate finite element for in-plane shear vibrations 
Slika 4   Konačni element ploče za ravninske smične vibracije 
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Shear angles are two independent variables of the same order and are assumed in the 
form 
 { } { },x yP a P bϑ ϑ= =  ,  (82) 
where 
 1, , ,P ξ η ξη= , (83) 

x aξ = , y bη = , 0 1 2 3, , ,a a a a a=  and 0 1 2 3, , ,b b b b b= . By taking nodal coordinates, 
as shown in Figure 4, into account, the nodal angles can be presented in the form 
 { } [ ]{ } { } [ ]{ },x yC a C bϑ ϑ= =  ,  (84) 
where 

 [ ]

1 1 1 1
1 1 1 1

.
1 1 1 1
1 1 1 1

C

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥
⎢ ⎥− −⎣ ⎦

 (85) 

The unknown coefficients are obtained from (84) as 
 { } [ ] { } { } [ ] { }1 ,xa C b C 1 ,yϑ ϑ−= =  −  (86) 
where in this specific case 

 [ ] [ ]1 1 .
4

TC C−
=  (87) 

By substituting (86) into (82) yields 
 { } { },x x y ,yϑ φ ϑ ϑ φ ϑ= =   (88) 
where 

 [ ]1
4

TP Cφ = , (89) 

is the vector of shape functions with typical term 

 ( )( )1
1 1 1 , 1,2,3,4,
4i i iφ ξ ξ ηη= + + =  , (90) 

where ξ  and η  are nondimensional nodal coordinates.  
The vector of the displacements field reads 

 { } [ ]{ } ,x

y

f
ϑ

φ δ
ϑ
⎧ ⎫

= =⎨ ⎬
⎩ ⎭

, (91) 

where 1 1 4 4, , ,x y x yδ ϑ ϑ ϑ ϑ= K  is the nodal displacement vector and 

 [ ] 1 2 3 4

1 2 3

0 0 0 0
,

0 0 0 0
φ φ φ φ

φ
4φ φ φ φ

⎡ ⎤
= ⎢
⎣ ⎦

⎥  (92) 

is the matrix of shape functions. 
According to (1) the deformation vector reads 

 { } [ ]{ },fτ = Λ  (93) 
where 
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 [ ]

0

0

x

y

y x

⎡ ⎤∂
⎢ ⎥
∂⎢ ⎥
⎢ ⎥∂

Λ = ⎢ ⎥∂⎢ ⎥
⎢ ⎥∂ ∂
⎢ ⎥∂ ∂⎣ ⎦

 (94) 

is differential operator. By substituting (91) with (92) into (93) the in-plane shear strain 
matrix yields 

 [ ] [ ][ ]
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1

1 1 1 1 1 1 1 1
p

b b b b
L a a a

A
a b a b a b a

η η η η
φ ξ ξ ξ

ξ η ξ η ξ η ξ η

⎡− − − + − + ⎤
⎢ ⎥= Λ = − − − + + −⎢ ⎥
⎢ ⎥− − − − − + − + + − − +⎣ ⎦

a
b

ξ  (95) 

According to definition the stiffness matrix reads 

 [ ] [ ] [ ] [ ]
1 1

1 1

d d ,
4

T

p p p p

AK L D L ξ η
− −

= ∫ ∫  (96) 

where 4A ab= , and [ ] [ ]p
D D=

b
, Eq. (63). Integrals in Eq. (96) take the following values 

 

( ) ( )

( ) ( )

( ) ( )

( )( )

1 1 1 1
2 2

1 1 1 1
1 1 1 1

2 2

1 1 1 1
1 1 1 1

2 2

1 1 1 1
1 1

1 1

161 d d 1 d d
3

161 d d 1 d d
3

81 d d 1 d d
3

1 1 d d 4,

1, 2,3, 4.

i i

i

ξ ξ η η ξ η

ξ ξ η η ξ η

ξ ξ η η ξ η

ξ ξ ηη ξ η

− − − −

− − − −

− − − −

− −

+ = + =

− = − =

− = −

+ + =

=

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

∫ ∫

,

,

,=  (97) 

The stiffness matrix reads [ ] ( )[ ]24
p

K D= k , where [ ]k  is the normalized nondimensional 

stiffness matrix presented in Table 1, with parameters a bα =  and b aβ =  [21]. 
Table 1 Normalized stiffness matrix for in-plane shear, [ ]k  

Tablica 1 Normirana matrica krutosti za ravninsko smicanje, [ ]k  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

8 4 1 3 1 8 2 1 3 1 3 4 2 1 3 1 4 4 1 3 1 3
8 4 1 3 1 3 4 4 1 3 1 4 2 1 3 1 3 8 2 1

8 4 1 3 1 4 4 1 3 1 3 4 2 1 3 1
8 4 1 3 1 3 8 2 1 3 1 4 2 1

8 4 1 3 1 8 2 1

β ν α ν β ν α ν β ν α ν β ν α ν
α ν β ν α ν β ν α ν β ν α ν β

β ν α ν β ν α ν β ν α ν
α ν β ν α ν β ν α ν β

β ν α ν β ν α

+ − + − + − − − − − − − + − − −
+ − − − − − + − − − − − − + −

+ − − + − − − − − − − +
+ − − − + − + − − −

+ − + − + − ( )
( ) ( ) ( )

( ) ( )
( )

3 1 3
8 4 1 3 1 3 4 4 1

8 4 1 3 1
. 8 4 1Sym

ν
α ν β ν α ν β

β ν α ν
α ν β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥

+ − − − −⎢ ⎥
⎢ ⎥+ − − +⎢ ⎥
⎢ ⎥+ −⎣ ⎦

 

 
The general form of the mass matrix reads 

 [ ] [ ] [ ]
1 1

1 1

d d .
4

T

p

AM J φ φ ξ η
− −

= ∫ ∫  (98) 

Integrals of shape functions take the following values: 
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1 1
2

1 1
1 1

1 1
1 1

1 1

1d d ,
9

1d d   for neighboring nodes,
18

1d d   for diagonal nodes.
36

i

i j

i j

φ ξ η

φφ ξ η

φφ ξ η

− −

− −

− −

=

=

=

∫ ∫

∫ ∫

∫ ∫

 (99) 

By taking (99) into account, one arrives at [ ] [ ]
36p

AM J m= , where 

 , (100) [ ]

4 0 2 0 1 0 2 0
4 0 2 0 1 0 2

4 0 2 0 1 0
4 0 2 0 1

4 0 2 0
4 0 2

4 0
. 4

m

Sym

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢= ⎢
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎥
⎥

is the normalized nondimensional mass matrix [21]. 
The finite element equation for in-plane shear natural vibrations reads 

 [ ] [ ] [ ] { } { }2 0 .
24 36 36
D SA JAk m mω δ⎛ + − =⎜

⎝ ⎠
⎞
⎟  (101) 

where the first two terms represent the total stiffness matrix consisting of the conventional 
stiffness and the stiffness of elastic foundation. Governing equation for the membrane 
element is  

 [ ] [ ] { } { }2 0 .
24 36

m
m m

D mAk mω δ⎛ ⎞−⎜ ⎟
⎝ ⎠

=

)

 (102) 

where ( 21mD Eh ν= −  is membrane rigidity. 
 
8 Illustrative examples 

 

8.1 Simply supported square plate 
 

Analytical solutions for frequency parameter derived in Section 5, (PS-An.) are listed 
in Table 2. They are compared with the present FEM solution (PS-FEM), and NASTRAN 
values obtained by 2D and 3D vibration analysis [22]. Boundary conditions for 3D FEM 
model are specified for nodes at the middle surface. PS-An. results are rigorous since they 
also result from direct application of the Mindlin theory. Namely, in the Mindlin theory it is 
possible to derive the same differential equation for the total deflection w , as homogenous 
part of Eq. (14) with bending deflection , [2, 23]. Hence, PS-An. solution can be used as 
benchmark for the evaluation of numerical solutions. In the considered case NASTRAN 2D 
and 3D frequency parameter values are very similar, and with PS-FEM values band the exact 
solution. The first 9 natural modes determined by 3D FEM NASTRAN analysis are shown in 
Figure 5 as relief map, where sagging and hogging modal areas are noticeable. FEM mesh 
used in 2D and 3D NASTRAN model is 8 x 8 and 8 x 8 x 4 elements, respectively. 

bw
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Table 2 Frequency parameter 2 /a h D 2λ ω ρ π=  of flexural vibrations of simply supported square plate, 

0.2h a = , 5 6k =  

Tablica 2 Frekvencijski parametar 2 /a h D 2λ ω ρ π=  fleksijskih vibracija slobodno oslonjene kvadratne ploče, 

0.2h a = , 5 6k =  

NASTRAN MIN* 
m,n 

PS-An. 
[14] PS - FEM 

2D 3D 

1,1 1.768 1.803 1.682 1.651 

1,2; 2,1 3.866 4.024 3.791 3.717 

2,2 5.588 5.827 5.249 5.142 

1,3; 3,1 6.601 7.072 6.478 6.436 

2,3; 3,2 7.974 8.466 7.336 7.273 

3,3 9.980 10.519 8.560 8.657 

*MIN - mode identification number 
 

 
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

 
Mode 6 Mode 7 Mode 8 Mode 9 Mode 10 

 
Figure 5 Natural modes of simply supported square plate 
Slika 5 Prirodni oblici vibriranja slobodno oslonjene kvadratne ploče 

 
In order to analyse plate in-plane shear vibrations the membrane eigenpairs are 

determined by NASTRAN, using FEM mesh 16 x 16 elements. The first 25 values of 
frequency parameter are listed in Table 3, while the associated natural modes are shown in 
Figure 6. The analytical results determined according to Section 5, PS-An. are also included 
in the table, with modal identification number ( ),m n . Most of the frequency parameters are 
obtained by the second root of the frequency equation (41). The remained parameter values, 
arising from the first root (40), are written in the brackets in Table 3. Modes of equal even 
numbers (  are double symmetric, ),m n ( )3,8,22M , while those of odd equal numbers are 

antisymmetric . The other modes for (  9M ) ( ),m n  and ( ),n m  have the same shape rotated 
for 2π . Identification of some higher modes is rather difficult since it is not only a question 
of  numbers, but also of ratio of integration constants ( ,m n) B C . The in-plane shear 
frequency parameters are obtained by transferring the membrane values PS-An., as states in 
Table 3. 

Vibrations of square plate are also investigated in [17]. The in-plane frequency 
parameters are obtained analytically by expression (41) for the second root of the frequency 
equation, and the same values as those specified in the fifth column of Table 3 are reported. 
Hence, the values related to the first root, Eq. (40), are omitted. The obtained results are 
compared with those calculated by the discrete singular convolution (DSC) – Ritz method 
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[24], and very dense frequency spectrum is obtained. It is claimed that it holds all possible 
natural modes. However, the eigenpairs determined in the present analysis from the first root, 
Eq. (40), and presented in the brackets in the fifth column of Table 3 are not captured. Some 
similar values listed in brackets in the last column in Table 3 are obtained and declared as 
frequency parameters of coupled flexural and in-plane natural modes. Since in [17] natural 
modes are not presented, it is not possible to compare them with modes 8, 16 and 17 shown in 
Figure 6 and draw some definite conclusion. 

 
Table 3 Frequency parameter 2 /a h D 2λ ω ρ π=  of simply supported square plate, membrane and in-plane 

shear vibrations, 0.2h a = , 5 6k =  

Tablica 3 Frekvencijski parametar 2 /a h D 2λ ω ρ π=  slobodno oslonjene kvadratne ploče, membranske i 

ravninske smične vibracije, 0.2h a = , 5 6k =  

Membrane In-plane shear Mode 
no. 

MIN* 
m,n PS – An. NASTRAN PS – An. transfer DSC-Ritz method, 

[17] 
1 0,1 3.262 3.256 16.737 16.737 
2 1,0 3.262 3.256 16.737 16.737 
3 1,1 4.613 4.593 17.052 17.052 
4 0,2 6.532 6.482 17.664 17.664 
5 2,0 6.523 6.482 17.664 17.664 
6 1,2 7.293 7.222 17.963 17.963 
7 2,1 7.293 7.222 17.963 17.963 
8 (1,1) (7.621) 7.753 (18.097) (18.573)** 
9 2,2 9.226 9.067 18.831 18.831 

10 0,3 9.785 9.644 19.111 19.111 
11 3,0 9.785 9.644 19.111 19.111 
12 1,3 10.314 10.129 19.387 19.387 
13 3,1 10.314 10.129 19.387 19.387 
14 2,3 11.760 11.446 20.194 20.194 
15 3,2 11.760 11.446 20.194 20.194 
16 (1,2) (12.326) 12.181 (20.528) (21.235)** 
17 (2,1) (12.326) 12.181 (20.528) (21.235)** 
18   12.714   
19   12.714   
20 0,4 13.047 13.057 20.969 20.969 
21 4,0 13.047 13.057 20.969 20.969 
22 3,3 13.838 13.309 21.470 21.470 
23   14.024   
24   14.024   
25 (2,2) (15.593) 15.242 (22.641) (23.504)** 

*MIN - mode identification number 
**Coupled flexural and in-plane modes 
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Figure 6 Natural modes of simply supported square membrane 
Slika 6 Prirodni oblici vibriranja slobodno oslonjene kvadratne membrane 
 
8.2 Clamped square plate 
 

Vibration analysis of clamped plate is analysed by the finite element method using 
mesh of 8 x 8 elements. PS-FEM results and NASTRAN 2D and 3D results for flexural 
vibrations are listed in Table 4. In 3D FEM model all boundary nodes are fixed. The obtained 
results are compared with those from [25], which are obtained by the Rayleigh-Ritz method 
and due to high accuracy can be used for evaluation of the present solutions. As in the case of 
simply supported plate, PS-FEM and NASTRAN results band the referent values and 
discrepancies are of the same order of magnitude. The flexural natural modes determined by 
3D FEM NASTRAN are shown in Figure 7. 

Membrane frequency parameter determined by NASTRAN are also included in Table 
4, and transferred to the values of in-plane shear vibrations according to the relation given in 
Section 5. Shift of parameters for about 10 is evident. The membrane natural modes, which 
are identical for plate layers, are shown in Figure 8. 
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Table 4 Frequency parameter 2 /a h D 2λ ω ρ π=  of clamped square plate, membrane and in-plane shear 

vibrations, 0.2h a = , 5 6k =  

Tablica 4 Frekvencijski parametar 2 /a h D 2λ ω ρ π=  upete kvadratne ploče, membranske i ravninske smične 

vibracije, 0.2h a = , 5 6k =  

Plate flexure Membrane In-plane shear Mode 
no. Rayleigh-Ritz, 

[25] 
PS - 
FEM 

NASTRAN 
2D 

NASTRAN 
3D NASTRAN Membrane 

transfer 
1 2.687 2.724 2.657 2.758 6.115 17.518 

2 4.691 4.842 4.607 4.787 6.115 17.518 

3 4.691 4.842 4.607 4.787 7.118 17.893 

4 6.298 6.527 5.956 6.164 8.657 18.559 

5 7.177 7.640 6.942 7.240 9.593 19.013 

6 7.276 7.697 7.013 7.357 9.593 19.013 

7 8.515 8.989 7.786 8.096 9.747 19.091 

8 8.515 8.989 7.786 8.096 11.206 19.876 

9 10.013 11.031 8.985 9.342 11.378 19.974 

 

 
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

 
Mode 6 Mode 7 Mode 8 Mode 9 Mode 10 

 
Figure 7 Natural modes of clamped square plate 
Slika 7   Prirodni oblici vibriranja upete kvadratne ploče 

 

 
Figure 8 Natural modes of clamped square membrane 
Slika 8   Prirodni oblici vibriranja upete kvadratne membrane 
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9 Discussion and conclusion 
 

As elaborated in Section 2 the Mindlin thick plate theory operates with three main 
variables, i.e. total deflection and two slope angles of plate cross-sections. In the present 
theory those quantities are split into their constitutive parts, resulting in decomposed plate 
flexure (bending and transverse shear) and in-plane shear. These two types of vibration are 
related by transverse shear stiffness which appears in in-plane shear problem as stiffness of 
in-plane elastic foundation. Therefore, these two problems can be analysed separately. The in-
plane shear task can be considered in an indirect way by using analogy with membrane 
equations of vibration. Natural modes of plate layers are identical to the membrane modes 
determined for the same boundary conditions. Natural frequencies have to be transferred from 
the membrane to the plate by a quite simple formula. Due to significant shift of frequency 
spectrum of in-plane shear vibrations with respect to that of flexural vibrations, the former 
might be interesting for noise analysis. 

Different finite elements have been developed for thick plate analysis by taking into 
account total angles of rotation xψ  and yψ , as single variable since their components (8) in 
force-strain relations (1) have the same stiffness. As shown in the present paper, bending and 
shear angles arise from different sources, which results with different stiffness at the finite 
element level. Condition of unique angles, usually interpolated by the same order polynomials 
as in the case of deflection, leads to the well-known shear locking since the total stiffness of 
thick plate cannot be reduced to the standard thin plate stiffness by decreasing plate thickness. 
This artificially introduced gap has been a subject of investigation for many years. Since 
unique solution has not been found, numerous alternative remedial procedures have been 
proposed with different level of success, as stated in the Introduction. Most of the procedures 
are based on a suitable mixed formulation of the problem. The idea consists of improving the 
approximated plate deflection by means of additional internal parameters, bubble modes or 
edge rotations. In the present finite element formulation additional rotations are introduced at 
the very beginning into the decoupled in-plane shear problem with physical meaning. In-plane 
shear is more likely membrane behaviour than plate bending and interpolation of shear slope 
angles is done by polynomials of lower order than the ones used for bending deflections. 

Flat finite elements, comprising plate and membrane elements, are often used for 
modelling of thin shell structures. In a case of thick plate application, developed in-plane 
shear element has to be added. In that case total stiffness matrix consists of three submatrices, 
i.e. one for membrane deformations, one for plate flexure, and one for in-plane shear 
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 (103) 

The matrix has to be rearranged in order to include all displacements of a node in one vector 
 , , , , , , , , ,i i i xi yi zi xi yi zii

u v wδ ϕ ϕ ϕ ϑ ϑ= ϑ  (104) 

where ziϕ  and ziϑ  are dummy d.o.f. In spite of the fact that bending angles of rotation and 
shear slope angles lie in the same planes, they cannot be unified into common d.o.f. due to 
different stiffness. Furthermore, the element stiffness matrix has to be transformed from the 
local to the global coordinate system. In that case the membrane and flexural stiffness are 
coupled. However, the flexural and in-plane shear stiffness matrices are not coupled in any 
case, because the corresponding angles always act in the same directions. 
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Based on the above facts, shear locking does not appear in the new finite element 
formulation. The developed bending and transverse shear stiffness matrices are related 
through parameters α  and β , Eqs. (45), which depend on plate thickness squared and their 
values are considerably reduced for thin plates. The application of the proposed finite element 
procedure is illustrated in case of a simple four node rectangular plate element. The same 
accuracy is obtained as by sophisticated finite element incorporated in commercial software 
packages. That procedure can be applied for the development of more complex thick plate and 
shell elements with different shapes and increased number of nodes, in order to achieve 
higher level of accuracy in linear static and dynamic analyses. 
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