On the absolute Nörlund summability factors

HÜSEyin Bor*

Abstract

In this paper a theorem on the absolute Nörlund summability factors has been proved under more weaker conditions by using an almost increasing sequence.

Key words: Nörlund summability, summability factors, almost increasing sequence

AMS subject classifications: 40D15, 40F05, 40G05
Received July 6, $2000 \quad$ Accepted October 12, 2000

1. Introduction

Let $\sum a_{n}$ be a given infinite series with the sequence of partial sums $\left(s_{n}\right)$ and $w_{n}=n a_{n}$. By u_{n}^{α} and t_{n}^{α} we denote the n-th Cesàro means of order α, with $\alpha>-1$, of the sequences $\left(s_{n}\right)$ and $\left(w_{n}\right)$, respectively. The series $\sum a_{n}$ is said to be summable $|C, \alpha|$, if (see [4], [6])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|u_{n}^{\alpha}-u_{n-1}^{\alpha}\right|=\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}^{\alpha}\right|<\infty \tag{1}
\end{equation*}
$$

Let $\left(p_{n}\right)$ be a sequence of constants, real or complex, and let us write

$$
\begin{equation*}
P_{n}=p_{0}+p_{1}+p_{2}+\ldots+p_{n} \neq 0, \quad(n \geq 0) \tag{2}
\end{equation*}
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
\sigma_{n}=\frac{1}{P_{n}} \sum_{\nu=0}^{n} p_{n-\nu} s_{v} \tag{3}
\end{equation*}
$$

defines the sequence $\left(\sigma_{n}\right)$ of the Nörlund mean of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$. The series $\sum a_{n}$ is said to be summable $\left|N, p_{n}\right|$, if (see [7])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|\sigma_{n}-\sigma_{n-1}\right|<\infty \tag{4}
\end{equation*}
$$

*Department of Mathematics, Erciyes University, 38039 Kayseri, Turkey, e-mail: bor@erciyes.edu.tr

In the special case where

$$
\begin{equation*}
p_{n}=\frac{\Gamma(n+\alpha)}{\Gamma(\alpha) \Gamma(n+1)}, \alpha \geq 0 \tag{5}
\end{equation*}
$$

the Nörlund mean reduces to the (C, α) mean and $\left|N, p_{n}\right|$ summability becomes $|C, \alpha|$ summability. For $p_{n}=1$ and $P_{n}=n$, we get the $(C, 1)$ mean and then $\left|N, p_{n}\right|$ summability becomes $|C, 1|$ summability. For any sequence $\left(\lambda_{n}\right)$ we write $\Delta \lambda_{n}=\lambda_{n}-\lambda_{n+1}$ and $\Delta^{2} \lambda_{n}=\Delta\left(\Delta \lambda_{n}\right)=\Delta \lambda_{n}-\Delta \lambda_{n+1}$.
In [5] Kishore has proved the following theorem concerning $|C, 1|$ and $\left|N, p_{n}\right|$ summability methods.

Theorem 1. Let $p_{0}>0, p_{n} \geq 0$ and $\left(p_{n}\right)$ be a non-increasing sequence. If $\sum a_{n}$ is summable $|C, 1|$, then the series $\sum a_{n} P_{n}(n+1)^{-1}$ is summable $\left|N, p_{n}\right|$.

Ahmad [1] proved the following theorem for absolute Nörlund summability factors.
Theorem 2. Let $\left(p_{n}\right)$ be as in Theorem 1. If

$$
\begin{equation*}
\sum_{\nu=1}^{n} \frac{1}{\nu}\left|t_{\nu}\right|=O\left(X_{n}\right) \quad \text { as } \quad n \rightarrow \infty \tag{6}
\end{equation*}
$$

where $\left(X_{n}\right)$ is a positive non-decreasing sequence and $\left(\lambda_{n}\right)$ is a sequence such that

$$
\begin{gather*}
X_{n} \lambda_{n}=O(1), \tag{7}\\
n \Delta X_{n}=O\left(X_{n}\right), \tag{8}\\
\sum n X_{n}\left|\Delta^{2} \lambda_{n}\right|<\infty \tag{9}
\end{gather*}
$$

then the series $\sum a_{n} P_{n} \lambda_{n}(n+1)^{-1}$ is summable $\left|N, p_{n}\right|$.
Later on Bor [3] has proved Theorem 2. under weaker conditions in the following form.

Theorem 3. Let $\left(p_{n}\right)$ be as in Theorem 1. Let $\left(X_{n}\right)$ be a positive non-decreasing sequence. If the conditions (6) and (7) of Theorem 2. are satisfied and the sequences $\left(\lambda_{n}\right)$ and $\left(\beta_{n}\right)$ are such that

$$
\begin{gather*}
\left|\Delta \lambda_{n}\right| \leq \beta_{n} \tag{10}\\
\beta_{n} \rightarrow 0 \tag{11}\\
\sum n X_{n}\left|\Delta \beta_{n}\right|<\infty \tag{12}
\end{gather*}
$$

then the series $\sum a_{n} P_{n} \lambda_{n}(n+1)^{-1}$ is summable $\left|N, p_{n}\right|$.

2. Main results

The aim of this paper is to prove Theorem 3 under more weaker conditions. For this we need the concept of an almost increasing sequence. A positive sequence $\left(b_{n}\right)$ is said to be almost increasing if there exist a positive increasing sequence $\left(c_{n}\right)$ and two positive constants A and B such that $A c_{n} \leq b_{n} \leq B c_{n}$ (see [2]). Obviously, every increasing sequence is almost increasing but the converse need not be true, as can be seen from the example $b_{n}=n e^{(-1)^{n}}$. So we are weakening the hypotheses of the theorem replacing the increasing sequence by any almost increasing sequence. Now we shall prove the following theorem.

Theorem 4. Let $\left(p_{n}\right)$ be as in Theorem 1 and let $\left(X_{n}\right)$ be an almost increasing sequence. If the conditions (6), (7), (10) and (12) of Theorem 2. and Theorem 3. are satisfied, then the series $\sum a_{n} P_{n} \lambda_{n}(n+1)^{-1}$ is summable $\left|N, p_{n}\right|$.

We need the following Lemma for the proof of our theorem.
Lemma 1. Under the conditions on $\left(X_{n}\right),\left(\lambda_{n}\right)$ and $\left(\beta_{n}\right)$, as taken in the statement of the theorem, the following conditions hold, when (12) is satisfied:

$$
\begin{gather*}
n \beta_{n} X_{n}=O(1) \text { as } n \rightarrow \infty \tag{13}\\
\sum_{n=1}^{\infty} \beta_{n} X_{n}<\infty \tag{14}
\end{gather*}
$$

Proof. Let $A c_{n} \leq b_{n} \leq B c_{n}$, where $\left(c_{n}\right)$ is an increasing sequence. In this case

$$
\begin{aligned}
n \beta_{n} X_{n} & \leq n B c_{n}\left|\sum_{\nu=n}^{\infty} \Delta \beta_{\nu}\right| \leq n B c_{n} \sum_{\nu=n}^{\infty}\left|\Delta \beta_{\nu}\right| \leq B \sum_{\nu=n}^{\infty} \nu c_{\nu}\left|\Delta \beta_{\nu}\right| \\
& \leq(A / B) \sum_{\nu=n}^{\infty} \nu X_{\nu}\left|\Delta \beta_{\nu}\right|<\infty
\end{aligned}
$$

Hence, $n \beta_{n} X_{n}=O(1)$ as $n \rightarrow \infty$.
Again

$$
\begin{aligned}
\sum_{n=1}^{\infty} \beta_{n} X_{n} & \leq B \sum_{n=1}^{\infty} c_{n} \beta_{n}=B \sum_{n=1}^{\infty} c_{n}\left|\sum_{\nu=n}^{\infty} \Delta \beta_{\nu}\right| \\
& \leq B \sum_{n=1}^{\infty} c_{n} \sum_{\nu=n}^{\infty}\left|\Delta \beta_{\nu}\right|=B \sum_{\nu=1}^{\infty}\left|\Delta \beta_{\nu}\right| \sum_{n=1}^{\nu} c_{n} \\
& \leq B \sum_{\nu=1}^{\infty} \nu c_{\nu}\left|\Delta \beta_{\nu}\right| \leq(B / A) \sum_{\nu=1}^{\infty} \nu X_{\nu}\left|\Delta \beta_{\nu}\right|<\infty
\end{aligned}
$$

Thus $\sum_{n=1}^{\infty} \beta_{n} X_{n}<\infty$.
Proof of Theorem 4. In order to prove the theorem, we need consider only the special case in which $\left(N, p_{n}\right)$ is $(C, 1)$, that is, we shall prove that $\sum a_{n} \lambda_{n}$ is
summable $|C, 1|$. Our theorem will then follow by means of Theorem 1. Let T_{n} be the n-th $(C, 1)$ mean of the sequence $\left(n a_{n} \lambda_{n}\right)$, that is,

$$
\begin{equation*}
T_{n}=\frac{1}{n+1} \sum_{\nu=1}^{n} \nu a_{\nu} \lambda_{\nu} \tag{15}
\end{equation*}
$$

Using Abel's transformation, we have

$$
\begin{aligned}
T_{n} & =\frac{1}{n+1} \sum_{\nu=1}^{n} \nu a_{\nu} \lambda_{\nu}=\frac{1}{n+1} \sum_{\nu=1}^{n} \Delta \lambda_{\nu}(\nu+1) t_{\nu}+\lambda_{\nu} t_{\nu} \\
& =T_{n, 1}+T_{n, 2}, \text { say }
\end{aligned}
$$

By (1), to completes the proof of the theorem, it is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty}(1 / n)\left|T_{n, r}\right|<\infty \quad \text { for } r=1,2 \tag{16}
\end{equation*}
$$

Now, we have

$$
\begin{aligned}
\sum_{n=2}^{m+1}(1 / n)\left|T_{n, 1}\right| & \leq \sum_{n=2}^{m+1}(1 / n(n+1))\left\{\sum_{\nu=1}^{n-1}((\nu+1) / \nu) \nu\left|\Delta \lambda_{\nu}\right|\left|t_{\nu}\right|\right\} \\
& =O(1) \sum_{n=2}^{m+1}\left(1 / n^{2}\right)\left\{\sum_{\nu=1}^{n-1} \nu \beta_{\nu}\left|t_{\nu}\right|\right\} \\
& =O(1) \sum_{\nu=1}^{m} \nu \beta_{\nu}\left|t_{\nu}\right| \sum_{n=\nu+1}^{m+1} 1 / n^{2}=O(1) \sum_{\nu=1}^{m} \nu \beta_{\nu}\left|t_{\nu}\right| / \nu \\
& =O(1) \sum_{\nu=1}^{m-1} \Delta\left(\nu \beta_{\nu}\right) \sum_{r=1}^{\nu}\left|t_{r}\right| / r+O(1) m \beta_{m} \sum_{\nu=1}^{m}\left|t_{\nu}\right| / \nu \\
& =O(1) \sum_{\nu=1}^{m-1}\left|\Delta\left(\nu \beta_{\nu}\right)\right| X_{\nu}+O(1) m \beta_{m} X_{m} \\
& =O(1) \sum_{\nu=1}^{m-1}\left|\Delta \beta_{\nu}\right| \nu X_{\nu}+O(1) \sum_{\nu=1}^{m-1}\left|\beta_{\nu+1}\right| X_{\nu+1}+O(1) m \beta_{m} X_{m} \\
& =O(1) a s m \rightarrow \infty,
\end{aligned}
$$

by (6), (10), (12), (13) and (14).
Again

$$
\begin{aligned}
\sum_{n=1}^{m}(1 / n)\left|T_{n, 2}\right| & =\sum_{n=1}^{m}\left|\lambda_{n}\right|\left(\left|t_{n}\right| n\right) \\
& =\sum_{n=1}^{m-1} \Delta\left|\lambda_{n}\right| \sum_{\nu=1}^{n}\left|t_{\nu}\right| \nu+\left|\lambda_{m}\right| \sum_{n=1}^{m}\left|t_{n}\right| n \\
& =O(1) \sum_{\substack{m=1}}^{m-1}\left|\Delta \lambda_{n}\right| X_{n}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1) \sum_{n=1}^{m-1} \beta_{n} X_{n}+O(1)\left|\lambda_{m}\right| X_{m}=O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

by $(6),(7),(10)$ and (14). This completes the proof of the theorem.

References

[1] Z. U. Ahmad, Absolute Nörlund summability factors of power series and Fourier series, Annales Polonici Math. 27(1972), 9-20.
[2] S. Aljančić, D. Arandelović, O-regularly varying functions, Publ. Inst. Math. 22(1977), 5-22.
[3] H. Bor, Absolute Nörlund summability factors of power series and Fourier series, Annales Polonici Mathematici 56(1991), 11-17.
[4] M. Feteke, Zur Theorie der divergenten Reihen, Math. es Termes Ertesitö (Budapest) 29(1911), 719-726.
[5] N. Kishore, On the absolute Nörlund summability factors, Riv. Math. Univ. Parma 6(1965), 129-134.
[6] E. Kogbentliantz, Sur lés series absolument sommables par la méthode des moyennes arithmétiques, Bull. Sci. Math. 49(1925), 234-256.
[7] F. M. Mears, Some multiplication theorems for the Nörlund mean, Bull. Amer. Math. Soc. 41(1935), 875-880.

