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On the absolute Nörlund summability factors

Hüseyin Bor∗

Abstract. In this paper a theorem on the absolute Nörlund sum-
mability factors has been proved under more weaker conditions by using
an almost increasing sequence.
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1. Introduction

Let
∑

an be a given infinite series with the sequence of partial sums (sn) and
wn = nan. By uα

n and tαn we denote the n-th Cesàro means of order α, with
α > − 1, of the sequences (sn) and (wn), respectively. The series

∑
an is said to

be summable | C, α |, if (see [4], [6])
∞∑

n=1

| uα
n − uα

n−1 | =
∞∑

n=1

1
n
| tαn |< ∞. (1)

Let (pn) be a sequence of constants, real or complex, and let us write

Pn = p0 + p1 + p2 + ... + pn �= 0, (n ≥ 0) (2)

The sequence-to-sequence transformation

σn =
1

Pn

n∑
ν=0

pn−νsv (3)

defines the sequence (σn) of the Nörlund mean of the sequence (sn), generated by
the sequence of coefficients (pn). The series

∑
an is said to be summable | N, pn |,

if (see [7])
∞∑

n=1

| σn − σn−1 | < ∞. (4)
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In the special case where

pn =
Γ(n+ α)

Γ(α)Γ(n + 1)
, α ≥ 0 (5)

the Nörlund mean reduces to the (C, α) mean and | N, pn | summability becomes
| C, α | summability. For pn = 1 and Pn = n, we get the (C, 1) mean and then
| N, pn | summability becomes | C, 1 | summability. For any sequence (λn) we write
∆λn = λn − λn+1 and ∆2λn = ∆(∆λn) = ∆λn −∆λn+1.
In [5] Kishore has proved the following theorem concerning | C, 1 | and | N, pn |
summability methods.

Theorem 1. Let p0 > 0, pn ≥ 0 and (pn) be a non-increasing sequence. If
∑

an

is summable | C, 1 |, then the series
∑

anPn(n + 1)−1 is summable | N, pn |.

Ahmad [1] proved the following theorem for absolute Nörlund summability factors.

Theorem 2. Let (pn) be as in Theorem1. If

n∑
ν=1

1
ν
| tν |= O(Xn) as n → ∞, (6)

where (Xn) is a positive non-decreasing sequence and (λn) is a sequence such that

Xnλn = O(1), (7)

n∆Xn = O(Xn), (8)

∑
nXn | ∆2λn |< ∞, (9)

then the series
∑

anPnλn(n + 1)−1 is summable | N, pn |.

Later on Bor [3] has proved Theorem 2. under weaker conditions in the following
form.

Theorem 3. Let (pn) be as in Theorem1. Let (Xn) be a positive non-decreasing
sequence. If the conditions (6) and (7) of Theorem2. are satisfied and the sequences
(λn) and (βn) are such that

| ∆λn |≤ βn (10)

βn → 0 (11)

∑
nXn | ∆βn |< ∞, (12)

then the series
∑

anPnλn(n + 1)−1 is summable | N, pn |.
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2. Main results

The aim of this paper is to prove Theorem 3 under more weaker conditions. For this
we need the concept of an almost increasing sequence. A positive sequence (bn) is
said to be almost increasing if there exist a positive increasing sequence (cn) and
two positive constants A and B such that Acn ≤ bn ≤ Bcn (see [2]). Obviously,
every increasing sequence is almost increasing but the converse need not be true, as
can be seen from the example bn = ne(−1)n

. So we are weakening the hypotheses of
the theorem replacing the increasing sequence by any almost increasing sequence.
Now we shall prove the following theorem.

Theorem 4. Let (pn) be as in Theorem1 and let (Xn) be an almost increasing
sequence. If the conditions (6), (7), (10) and (12) of Theorem2. and Theorem3.
are satisfied, then the series

∑
anPnλn(n + 1)−1 is summable | N, pn |.

We need the following Lemma for the proof of our theorem.

Lemma 1. Under the conditions on (Xn), (λn) and (βn), as taken in the statement
of the theorem, the following conditions hold, when (12) is satisfied:

nβnXn = O(1) as n → ∞, (13)

∞∑
n=1

βnXn < ∞ (14)

Proof. Let Acn ≤ bn ≤ Bcn, where (cn) is an increasing sequence. In this case

nβnXn ≤ nBcn |
∞∑

ν=n

∆βν |≤ nBcn

∞∑
ν=n

| ∆βν |≤ B

∞∑
ν=n

νcν | ∆βν |

≤ (A/B)
∞∑

ν=n

νXν | ∆βν |< ∞.

Hence, nβnXn = O(1) as n → ∞.
Again

∞∑
n=1

βnXn ≤ B

∞∑
n=1

cnβn = B

∞∑
n=1

cn |
∞∑

ν=n

∆βν |

≤ B

∞∑
n=1

cn

∞∑
ν=n

| ∆βν |= B

∞∑
ν=1

| ∆βν |
ν∑

n=1

cn

≤ B

∞∑
ν=1

νcν | ∆βν |≤ (B/A)
∞∑

ν=1

νXν | ∆βν |< ∞.

Thus
∞∑

n=1

βnXn < ∞. ✷

Proof of Theorem 4. In order to prove the theorem, we need consider only
the special case in which (N, pn) is (C, 1), that is, we shall prove that

∑
anλn is
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summable | C, 1 |. Our theorem will then follow by means of Theorem 1. Let Tn be
the n-th (C, 1) mean of the sequence (nanλn), that is,

Tn =
1

n+ 1

n∑
ν=1

νaνλν (15)

Using Abel’s transformation, we have

Tn =
1

n+ 1

n∑
ν=1

νaνλν =
1

n + 1

n∑
ν=1

∆λν(ν + 1)tν + λνtν

= Tn,1 + Tn,2 , say.

By (1), to completes the proof of the theorem, it is sufficient to show that
∞∑

n=1

(1/n) | Tn,r |< ∞ for r = 1, 2. (16)

Now, we have
m+1∑
n=2

(1/n) | Tn,1 | ≤
m+1∑
n=2

(1/n(n+ 1))

{
n−1∑
ν=1

((ν + 1)/ν)ν | ∆λν || tν |
}

= O(1)
m+1∑
n=2

(1/n2)

{
n−1∑
ν=1

νβν | tν |
}

= O(1)
m∑

ν=1

νβν | tν |
m+1∑

n=ν+1

1/n2 = O(1)
m∑

ν=1

νβν | tν | /ν

= O(1)
m−1∑
ν=1

∆(νβν)
ν∑

r=1

| tr | /r +O(1)mβm

m∑
ν=1

| tν | /ν

= O(1)
m−1∑
ν=1

| ∆(νβν) | Xν +O(1)mβmXm

= O(1)
m−1∑
ν=1

|∆βν | νXν +O(1)
m−1∑
ν=1

| βν+1 | Xν+1 +O(1)mβmXm

= O(1) as m → ∞,

by (6), (10), (12), (13) and (14).
Again

m∑
n=1

(1/n) | Tn,2 | =
m∑

n=1

| λn | (| tn | n)

=
m−1∑
n=1

∆ | λn |
n∑

ν=1

| tν | ν+ | λm |
m∑

n=1

| tn | n

= O(1)
m−1∑
n=1

| ∆λn | Xn +O(1) | λm | Xm

= O(1)
m−1∑
n=1

βnXn +O(1) | λm | Xm = O(1) as m → ∞ ,

by (6), (7), (10) and (14). This completes the proof of the theorem. ✷
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