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Abstract. In this paper, we study the Ostrovsky, Stepanyams and Tsimring equation.
We show that the associated initial value problem is locally well-posed in Sobolev spaces
Hs (R) for s > −3/2. We also prove that our result is sharp in the sense that the flow map
of this equation fails to be C2 in Hs(R) for s < −3/2.
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1. Introduction

This paper is concerned with the well-posedness of the following initial value problem
(IVP) for the Ostrovsky, Stepanyams and Tsimring (OST) equation:{

ut + uxxx − η(H ux + H uxxx) + uux = 0, x ∈ R, t ≥ 0,

u(x, 0) = u0(x),
(1)

where u = u(x, t) is a real-valued function, η > 0 and H denotes the usual Hilbert
transformation given by

H φ(x) =
1

π
p.v.

∫
R

φ(x− y)

y
dy,

for φ ∈ S (R). Equation (1) was derived by Ostrovsky et al. in [18] to describe the
radiational instability of long non-linear waves in a stratified flow caused by internal
wave radiation from a shear layer.

We recall that the IVP for (1) is locally well-posed in Banach space X if the
solution uniquely exists in a certain time interval [−T, T ] (unique existence), the
solution describes a continuous curve in X in the interval [−T, T ] whenever initial
data belong to X (persistence), and the solution varies continuously depending upon
the initial data (continuous dependence), i.e. continuity of application u0 7→ u(t)
from X to C([−T, T ];X).

Note that the OST equation is a modification of the well-known KdV equation

ut + uxxx + uux = 0.
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It is known that the KdV equation arises in modeling of one-dimensional long wave-
length surface waves propagating in weakly nonlinear dispersive media [1, 4, 12, 22],
as well as the evolution of weakly nonlinear ion acoustic waves in plasmas [21]. Dif-
ferent from the KdV equation which is of purely dispersive type, the OST equation
is of the dispersive–dissipative type.

A model similar to (1) is the Korteweg-de Vries-Kuramoto-Sivashinsky (KdV-
KS) equation {

ut + uxxx + η(uxx + uxxxx) + u2x = 0, x ∈ R, t ≥ 0,

u(x, 0) = u0(x).
(2)

This equation arises as a model for long waves on a viscous fluid flowing down an
inclined plane and describing drift waves in plasma [8, 20]. The IVP for (2) was
studied by Biagioni et al. [3]. They proved that (2) is well-posed in Hs(R) for s ≥ 1,
by using the properties of the semi-group associated with the linear problem. They
also obtained a global solution in Hs(R) for s ≥ 1, making use of the conserved
quantities for the Korteweg-de Vries equation. Recently, Carvajal and Panthee in
[7], considered the derivative equation of (2) and obtained the local well-posedness
of (2) in Hs(R) for s > −3/4 (see also [6]).

The first work on the well-posedness of the IVP for (1) was carried out by Alvarez
in [2]. He proved that (1) is locally well-posed in Hs(R) for s > 1/2 and globally
well-posed in Hs(R) for s ≥ 1. In [5], Carvajal improved these results. He proved
that (1) is locally well-posed in Hs(R), for s ≥ 0, and globally well-posed in L2(R).
Zhao and Cui in [23] used the ideas of Molinet and Ribaud in [15, 16, 17], employed
the method of bilinear estimate in the Bourgain-type spaces and proved that (1)
is locally well-posed in Hs(R) for s > −3/4; which coincides with the sharp local
well-posedness result for the KdV equation established by Kenig et al. in [14]. The
authors in [24] improved their previous results by showing that the IVP for (1) is
locally well-posed in Hs(R) for s > −1.

In this paper we shall prove that (1) is locally well-posed in Hs(R) for s > −3/2.
Indeed, we use purely dissipative methods as applied by Dix in [9] to study the IVP
for the KdV-Burgers equation{

ut + uxxx + uux = uxx, x ∈ R, t ≥ 0

u(x, 0) = u0(x).
(3)

The main ingredient consists of applying a fixed-point theorem to the integral equa-
tion associated to (1) in time-weighted spaces.

Regarding the sharpness of our result, we establish that the flow map of the OST
equation fails to be C2 in Hs(R) for s < −3/2. This means that a Picard iteration
cannot be used to obtain a solution of (1).

Before presenting the precise statement of our main result, let us first introduce
some definitions and notations.

Without loss of generality, later on we assume that η = 1. We shall denote by φ̂
the Fourier transform of φ, defined as

φ̂(ξ) =

∫
R
φ(x)e−ixξ dx.
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For s ∈ R, by Hs (R) we denote the nonhomogeneous Sobolev space defined by

Hs (R) =
{
φ ∈ S ′ (R) : ∥φ∥Hs(R) <∞

}
,

where

∥φ∥Hs(R) =
∥∥∥(1 + ξ2

)s/2
φ̂(ξ)

∥∥∥
L2(R)

,

and S ′ (R) is the space of tempered distributions.

For any positive numbers a and b, the notation a . b means that there exists a
positive constant c such that a ≤ cb; and we denote a ∼ b when, a . b and b . a.

For s ∈ R and u0 ∈ Hs(R), consider the following linear problem associated to
(1): {

ut + uxxx − H ux − H uxxx = 0, x ∈ R, t ∈ R,
u(x, 0) = u0(x).

(4)

The unique solution of (4) is given by the semigroup {U(t)}t≥0 defined as follows:

u(t) = U(t)u0 =

∫
R
et(iξ

3−|ξ|3+|ξ|)eixξ û0(ξ) dξ.

The main results of this paper read as follows:

Theorem 1. Let s > −3/2. Then for all u0 ∈ Hs(R), there exist

T = T
(
∥u0∥Hs(R)

)
> 0,

a space

X s
T ↪→ C ([0, T ];Hs(R))

and a unique solution u(t) of (1) such that u(0) = u0. Moreover, u ∈ C((0, T );
H∞(R)) and the map solution

F : Hs(R) −→ X s
T ∩ C ([0, T ];Hs(R)) , u0 7→ u,

is smooth.

Theorem 2. Let s < −3/2, if there exists some T > 0 such that the Cauchy problem
(1) is locally well-posed in Hs (R), then the flow-map data solution

F : Hs (R) −→ C([0, T ];Hs (R)), u0 7−→ u(t)

is not C2 at zero.

The rest of this paper is as follows. In Section 2 we present the time-weighted
space X s

T and obtain some basic linear and bilinear estimates in this space. Section 3
is devoted to proving the local well-posedness in this space. We also establish that
the flow map of the OST equation fails to be C2 in Hs(R) for s < −3/2.
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2. Linear and bilinear estimates

In this section, we introduce a suitable Banach space in order to derive appropriates
linear and bilinear estimates.

To prove Theorem 1, we will make the assumption −3/2 < s < 0, since the case
0 ≤ s follows by similar arguments. Our strategy is to use a contraction argument
on the integral equation associated to (1):

u(t) = Φ(u(t)) := U(t)u0 +
1

2

∫ t

0

U(t− t′)∂x(u
2(t′)) dt′. (5)

For 0 < T ≤ T ∗ = min{1, 9|s|/2}, we define the Banach space

X s
T =

{
u ∈ C ([0, T ];Hs(R)) : ∥u∥X s

T
<∞

}
,

where

∥u∥X s
T
= sup

t∈[0,T ]

(
∥u(t)∥Hs(R) + t|s|/3∥u(t)∥L2(R)

)
.

We note that T ∗ = 1, if s ≤ −2/9.

First we state the following lemma which is useful in establishing smoothness
properties for the semigroup of (1). The proof is straightforward.

Lemma 1. For any a > 0 and 0 < t ≤ 9a, we have for all ξ ∈ R,

ξ2a e−t(|ξ|3−|ξ|) ≤ ρ2ae−t(ρ3−ρ) =: ψ(a, t), (6)

where

ρ =

(
9a+

√
81a2 − t2

)1/3
3

t−1/3 +
t1/3

3
(
9a+

√
81a2 − t2

)1/3
Moreover, if a = 0, then (6) holds for ψ(0, t) = exp( 2t

3
√
3
).

Now, we will turn our attention to estimate the linear part in X s
T .

Proposition 1. Let 0 < T ≤ T ∗, s < 0 and u0 ∈ Hs(R), then

sup
t∈[0,T ]

∥U(t)u0∥Hs(R) ≤ e
2T
3
√

3 ∥u0∥Hs(R), (7)

and

sup
t∈[0,T ]

t|s|/3∥U(t)u0∥L2(R) . Υs(T )∥u0∥Hs(R), (8)

where

Υs(t) = e
2t

3
√

3 + t|s|/3ψ(|s|/2, t)

is a continuous nondecreasing function on [0, T ∗] and ψ is defined as in Lemma 1.
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Proof. Inequality (7) follows immediately from Lemma 1. To prove inequality (8),
we first observe from 0 < T ≤ 1 that

t|s|/3 ≤
(
1 + t2/3ξ2

)|s|/2
(1 + ξ2)|s|/2

,

for all t ∈ [0, T ]. Hence, by using the Plancherel theorem and the definition of U(t),
we deduce that

t|s|/3∥U(t)u0∥L2(R)

≤
∥∥∥∥(1 + t2/3ξ2

)|s|/2
e−t(|ξ3|−|ξ|) (1 + ξ2

)s/2
û0(ξ)

∥∥∥∥
L2(R)

.
(∥∥∥e−t(|ξ3|−|ξ|)

∥∥∥
L∞(R)

+
∥∥∥(t2/3ξ2)|s|/2e−t(|ξ3|−|ξ|)

∥∥∥
L∞(R)

)
∥u0∥Hs(R).

Lemma 1 implies the desired inequality in (8).

The next step is to derive the bilinear estimate.

Proposition 2. Let 0 ≤ t ≤ T ≤ T ∗ and s ∈ (−3/2, 0); then∥∥∥∥∫ t

0

U(t− t′)∂x(uv)(t
′) dt′

∥∥∥∥
X s

T

. e2
√
2T/

√
27T (2s+3)/6∥u∥X s

T
∥v∥X s

T
, (9)

for all u, v ∈ X s
T , where the constant of the above inequality depends only on s.

Proof. Let 0 ≤ t ≤ T . We have (1 + ξ2)s/2 ≤ |ξ|s, since s < 0. So by using the
Minkowski inequality and the definition of U(t), we obtain that∥∥∥∥∫ t

0

U(t− t′)∂x(uv)(t
′)dt′

∥∥∥∥
Hs(R)

≤
∫ t

0

∥∥∥ξ(1 + ξ2)s/2 e(t−t′)(|ξ|−|ξ|3)(u(t′)v(t′))∧(ξ)
∥∥∥
L2(R)

dt′

≤
∫ t

0

∥∥∥|ξ|1+s e(t−t′)(|ξ|−|ξ|3)
∥∥∥
L2(R)

∥∥∥û(t′) ∗ v̂(t′)(ξ)∥∥∥
L∞(R)

dt′.

(10)

The Young inequality implies that∥∥∥û(t′) ∗ v̂(t′)(ξ)∥∥∥
L∞(R)

≤
∥u∥X s

T
∥v∥X s

T

|t′|2|s|/3
. (11)

Therefore, by changing the variable, we obtain∥∥∥∥∫ t

0

U(t− t′)∂x(uv)(t
′) dt′

∥∥∥∥
Hs(R)

≤
(∫ t

0

∥∥∥|ξ|1+s e−t′(|ξ|3−|ξ|)
∥∥∥
L2(R)

1

|t− t′|2|s|/3
dt′

)
∥u∥X s

T
∥v∥X s

T
.

(12)
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To estimate the integral on the right-hand side of (12), we use a change of the
variable to deduce that∥∥∥|ξ|1+s et

′(|ξ|−|ξ|3)
∥∥∥
L2(R)

≤ |t′|−(2s+3)/6
∥∥∥e(|ξ|t′2/3−|ξ|3/2)

∥∥∥
L∞(R)

∥∥∥|ξ|1+se−|ξ|3/2
∥∥∥
L2(R)

. e2
√
2T/

√
27|t′|−(2s+3)/6,

(13)

where in the last inequality we used the following inequality

e(|ξ|t
′2/3−|ξ|3/2) ≤ e

2
√

2√
27

t′
, ∀ξ ∈ R.

Therefore, we get from (12), (13) and a change of the variable that∥∥∥∥∫ t

0

U(t− t′)∂x(uv)(t
′)dt′

∥∥∥∥
Hs(R)

. e2
√
2T/

√
27|T |(2s+3)/6

(∫ 1

0

|t′|−(2s+3)/6|1− t′|2s/3 dt′
)
∥u∥X s

T
∥v∥X s

T

. e2
√
2T/

√
27|T |(2s+3)/6∥u∥X s

T
∥v∥X s

T
,

(14)

for all 0 ≤ t ≤ T . On the other hand, a similar argument allows us to deduce for all
0 ≤ t ≤ T that

|t||s|/3
∥∥∥∥∫ t

0

U(t− t′)∂x(uv)(t
′)dt′

∥∥∥∥
L2(R)

≤ t|s|/3
∫ t

0

∥∥∥ξ e(t−t′)(|ξ|−|ξ3|)
∥∥∥
L2(R)

∥∥∥û(t′) ∗ v̂(t′)(ξ)∥∥∥
L∞(R)

dt′

≤ t|s|/3
(∫ t

0

∥∥∥|ξ| et′(|ξ|−|ξ3|)
∥∥∥
L2(R)

1

|t− t′|2|s|/3
dt′

)
∥u∥X s

T
∥v∥X s

T

. e2
√
2T/

√
27T (2s+3)/6

(∫ 1

0

|t′|−1/2|1− t′|−2|s|/3 dt′
)
∥u∥X s

T
∥v∥X s

T

. e2
√
2T/

√
27T (2s+3)/6∥u∥X s

T
∥v∥X s

T
.

This completes the proof.

Remark 1. If we consider s′ > s > −3/2, then after modifying the space X s′

T by

X̃ s′

T =
{
u ∈ X s′

T ; ∥u∥X̃ s′
T
<∞

}
with

∥u∥X̃ s′
T

= ∥u∥X s′
T

+ sup
t∈[0,T ]

t|s|/3
∥∥∥(1− ∂2x)

(s′−s)/2u(t)
∥∥∥
L2(R)

and using(
1 + ξ2

)s′/2 .
(
1 + ξ2

)s/2 (
1 + ξ21

)(s′−s)/2
+
(
1 + ξ2

)s/2 (
1 + (ξ − ξ1)

2
)(s′−s)/2
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and Proposition 2 we can deduce that for s > s′ > −3/2, we have (see (10))∥∥∥∥∫ t

0

U(t− t′)∂x(uv)(t
′) dt′

∥∥∥∥
X̃ s′

T

. e2
√
2T/

√
27T θ(s)

(
∥u∥X̃ s′

T
∥v∥X s

T
+ ∥v∥X̃ s′

T
∥u∥X s

T

)
.

Remark 2. We should note that Proposition 2 holds for s ≥ 0. Indeed since Hs(R)
is an algebra for s > 1/2, then bilinear estimate (9) holds easily. When s ∈ [0, 1/2],
we have∥∥∥∥∫ t

0

U(t− t′)∂x(uv)(t
′) dt′

∥∥∥∥
Hs(R)

.
∥∥∥∥∫ t

0

V (t− t′) ∗ ∂x(uv)(t′) dt′
∥∥∥∥
Hs(R)

, (15)

where

V (t) =

∫
R
eixξet(iξ

3−|ξ|3+|ξ|)dξ.

Observe that for any 1 ≤ p ≤ ∞ and ν ≥ 0, we have for some K > 0 that

∥DνV (t)∥Lp(R) . eKtt
− 1

3

(
ν+ 1

p′

)
. t

− 1
3

(
ν+ 1

p′

)
, (16)

for 0 ≤ t ≤ T ≤ 1, where D̂sV = |ξ|sV̂ . Then by using the fractional Leibnitz rule,
we get from (15), (16) and the Sobolev embedding that∥∥∥∥∫ t

0

U(t− t′)∂x(uv)(t
′) dt′

∥∥∥∥
Hs(R)

.
∫ t

0

∥∂xV (t− t′)∥L2/(2s+1)(R)∥⟨D⟩s(uv)(t′)∥L1/(1−s)(R)dt
′

.
∫ t

0

(t− t′)s/3−1/2∥u(t′)∥L2/(1−2s)(R)∥v(t′)∥Hs(R)

. T θ(s)∥u∥X s
T
∥v∥X s

T
,

where ⟨·⟩ = 1 + | · | and θ(s) > 0 for any s ≥ 0.

Next, we derive a regularity property which will be helpful in the regularity
property in Theorem 1.

Proposition 3. Let 0 ≤ t ≤ T ≤ T ∗, s ∈ (−3/2, 0) and κ ∈ [0, s+ 3/2); then

V : t 7−→
∫ t

0

U(t− t′)∂x(u
2(t′)) dt′,

is in C ([0, T ];Hs+κ (R)), for all u ∈ X s
T .

Proof. Let t0, t1 ∈ [0, T ] be fixed such that t0 < t1. Then by the Minkowski
inequality, we have

∥V(t1)− V(t0)∥Hs+κ(R) ≤ V1(t0, t1) + V2(t0, t1),
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where

V1(t0, t1) =

∫ t1

t0

∥∥U(t1 − t′)∂x(u
2(t′))

∥∥
Hs+κ(R) dt′,

and

V2(t0, t1) =

∫ t0

0

∥∥(U(t1 − t′)− U(t0 − t′)) ∂x(u
2(t′))

∥∥
Hs+κ(R) dt

′.

By performing some straightforward computations, analogously to the proof of
Proposition 2, we obtain that

V1(t0, t1) ≤
(∫ t1

t0

∥∥∥(1 + ξ2)(1+s+κ)/2 e(t1−t′)(|ξ|−|ξ3|)
∥∥∥
L2(R)

|t′|−2|s|/3 dt′
)
∥u∥2X s

T

.
(∫ t1

t0

|t1 − t′|−(2s+2κ+3)/6e2
√
2(t1−t′)/

√
27|t′ − t0|−2|s|/3 dt′

)
∥u∥2X s

T

. e2
√
2T/

√
27(t1 − t0)

(2s−2κ+3)/6

[∫ 1

0

|1−t′|−(2s+2κ+3)/6|t′|−2|s|/3 dt′
]
∥u∥2X s

T
.

Now, by using the hypotheses, we get that

lim
t1→t0

V1(t0, t1) = 0.

On the other hand, we have

V2(t0, t1) ≤
(∫ t0

0

∥g(t0, t1, t′, ξ)∥L2(R)|t′|−2|s|/3 dt′
)
∥u∥2X s

T
,

where

g(t0, t1, t
′, ξ) =|ξ|s+κ+1

[
e(t1−t′)(|ξ|−|ξ3|) ei(t1−t′)ξ3

]
− |ξ|s+κ+1

[
e(t0−t′)(|ξ|−|ξ3|) ei(t0−t′)ξ3

]
.

It is clear that g(t0, t1, t
′, ξ) tends to zero pointwise for almost every ξ ∈ R and

t′ ∈ [0, t0] when |t1 − t0| → 0. Hence

|g(t0, t1, t′, ξ)| . χ{|ξ|≤1}(ξ)e
2
√
2T/

√
27 + |ξ|s+κ+1e(t0−t′)(|ξ|−|ξ3|).

Thus, we deduce from the Lebesgue dominated convergence theorem that

∥g(t0, t1, t′, ξ)∥L2(R) −→ 0,

as t1 → t0. Using again the Lebesgue dominated convergence theorem, we conclude
that

lim
t1→t0

V2(t0, t1) = 0.

This completes the proof.
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3. Local existence and ill-posedness

All the elements are now in place to mount a proof of the local well-posedness result
in Theorem 1.

Proof of Theorem 1. Let s > −3/2 and u0 ∈ Hs(R). We are going to show
that the operator Φ defined in (5) is a contraction in some closed ball of X s

T . By
Propositions 1 and 2, there exist two positive constant C = C(s) and θ = θ(s) such
that

∥Φ(u)∥X s
T
≤ C

(
∥u0∥Hs(R) + T θ∥u∥2X s

T

)
, (17)

and
∥Φ(u)− Φ(v)∥X s

T
≤ CT θ∥u− v∥X s

T
∥u+ v∥X s

T
, (18)

for all u, v ∈ X s
T and 0 < T ≤ T ∗. Now we define

X s
T (b) =

{
u ∈ X s

T : ∥u∥X s
T
≤ b

}
with b = 2C∥u0∥Hs(R)

and we choose
0 < T < min

{
1, (2Cb)−1/θ

}
.

Estimates (17) and (18) imply that Φ is a contraction on the Banach space X s
T (b);

so that we deduce by the fixed point theorem, the existence of a unique solution u
of the integral equation (5) in X s

T (b) with the initial data u(0) = u0. Note that
Proposition 3 assures that Φ(u) ∈ C ([0, T ];Hs(R)).

The uniqueness of the solution of (5) on the whole space X s
T and the smoothness

of the flow map solution follow by standard arguments (see for example [13]).
Note that a similar contraction argument shows that the existence result holds

for any s′ > s > −3/2, in the time interval [0, T ] with T = T (∥u0∥Hs(R)) (see
Remark 1). Finally, we know that the map t 7−→ U(t)u0 is continuous in the time
interval (0, T ] with respect to the topology of H∞(R). Since our solution u belongs
to X s

T , we deduce from Proposition 3 that there exists κ > 0 such that the map V
belongs to C ([0, T ];Hs+κ(R)), so that

u ∈ C
(
(0, T ];Hs+κ(R)

)
.

Therefore, by a standard bootstrapping argument, using the uniqueness result and
the fact that the time interval of the existence of the solutions depends only on the
Hs(R)-norm of the initial data, we deduce that

u ∈ C ((0, T ];H∞ (R)) .

Remark 3. A standard argument similar to [3], one can observe that if u0 ∈ Hs(R),
for s ≥ 0, the corresponding local solution of (1) extends globally in time. More
precisely, since the solution u of (1) is in C((0, T ];H∞(R)), one only needs to prove
an a priori estimate for u. So u solves the Cauchy problem (1) in the classical sense.
Recall that T = T

(
∥u0∥Hs(R)

)
. This allows us to take the L2-scalar product of (1)

with u, integrate by parts and use the properties of the Hilbert transform (see for
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example [10, 11]), the Gagliardo-Nierenberg inequality and the Young inequality to
obtain

1

2

d

dt
∥u(t)∥2L2(R) = ∥D1/2u∥2L2(R) − ∥D3/2u∥2L2(R)

≤ C∥D3/2u∥2/3L2(R)∥u∥
4/3
L2(R) − ∥D3/2u∥2L2(R) ≤ C∥u∥2L2(R),

where C > 0 is independent of t. Then by the Gronwall inequality, it yields

∥u(t)∥L2(R) ≤ ∥u0∥L2(R)e
CT , for all t ∈ [0, T ].

Next, we are going to show that our well-posedness result is sharp. We will first
prove that we cannot solve the Cauchy problem (1) in Hs(R) using the fixed point
theorem when s < −3/2. Then we show that this fact implies Theorem 2.

Remark 4. With a slight modification, the proofs of Theorems 2 and 3 (below) are
very similar to Pastrán’s results in his thesis [19]. The author should mention that
he proved Theorems 2 and 3 independent of Pastrán’s thesis in [19], and for the sake
of completeness of this paper, the author gives the proofs in details here.

Theorem 3. Let s < −3/2 and T > 0. Then, there does not exist any space X s
T

such that X s
T is continuously embedded in C ([0, T ];Hs(R)), i.e.

∥u∥L∞
T Hs(R) . ∥u∥X s

T
, ∀ u ∈ X s

T (19)

and such that
∥U(t)u0∥X s

T
. ∥u0∥Hs(R), ∀ u0 ∈ Hs (R) (20)

and ∥∥∥∥∫ t

0

U(t− t′)(uv)x(t
′) dt′

∥∥∥∥
X s

T

. ∥u∥X s
T
∥v∥X s

T
, (21)

for all u, v ∈ X s
T .

Proof. Suppose that there exists a space X s
T as in Theorem 3. Take u0 ∈ Hs (R),

u(t) = U(t)u0, and fix 0 < t < T . Then by using relations (19), (20) and (21), we
see that ∥∥∥∥∫ t

0

U(t− t′)∂x

(
(U(t′)u0)

2
)

dt′
∥∥∥∥
Hs(R)

. ∥u0∥2Hs(R). (22)

We will show that (22) fails for an appropriate choice of u0, which would lead to a
contradiction. Define u0 by

û0(ξ) = N−sγ−1/2(χI1(ξ) + χI2(ξ)),

where N ≫ 1, γ = N1−ϵ0 (0 < ϵ0 ≪ 1 fixed) and

I1 = [N,N + 2γ], I2 = [−N − 2γ,−N ].

It is easy to see that
∥u0∥Hs(R) ∼ 1.
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Then, we use the definition of U(t) and Fubini’s theorem to get

∣∣∣ĥ(·, t)(ξ)∣∣∣ : = ∣∣∣∣∣
(∫ t

0

U(t− t′)∂x

(
(U(t′)u0)

2
)

dt′
)∧

(ξ)

∣∣∣∣∣
=

∣∣∣∣∫ t

0

iξe(t−t′)(iξ3−(|ξ|3−|ξ|))Û(t′)u0 ∗ Û(t′)u0 (ξ) dt′
∣∣∣∣

=

∣∣∣∣eitξ3 ∫
R
iξû0(ξ1)û0(ξ2)f(t, ξ, ξ1) dξ1

∣∣∣∣
&

∣∣∣∣ 1

γN2s

∫
M

ξf(t, ξ, ξ1) dξ1

∣∣∣∣ ,
where

f(t, ξ, ξ1) =
e−t(|ξ32 |−|ξ2|+|ξ31 |−|ξ1|)eit(ξ

3
1+ξ32−ξ3) − e−t(|ξ3|−|ξ|)

ω(ξ, ξ1)
,

ξ2 = ξ − ξ1,

ω(ξ, ξ1) = |ξ1| − |ξ31 | − |ξ32 |+ |ξ2|+ |ξ3|+ |ξ|+ 3iξξ1ξ2.

and
M = {ξ1 : ξ1 ∈ I1, ξ2 ∈ I2} .

When ξ1 ∈ I1 and ξ2 ∈ I2, we deduce that ξ ∈ [2N, 2N + 4γ] and ω(ξ, ξ1) . N3.

Now we choose a sequence of times tN = N−3−ϵ0 , so that e−(|ξ3|−|ξ|)tN ∼ e−N3tN ∼
e−N−ϵ0

> C > 0. Hence∣∣∣∣∣e−t(|ξ32 |−|ξ2|+|ξ31 |−|ξ1|−|ξ3|+|ξ|)eit(ξ
3
1+ξ32−ξ3) − 1

ω(ξ, ξ1)

∣∣∣∣∣ = 1

N3+ϵ0
+O

(
1

N3+2ϵ0

)
.

Therefore,
∥h(·, t)∥Hs(R) & N−s−3/2−3ϵ0/2.

Hence, we obtain that

N−s−3/2−3ϵ0/2 . 1, ∀ N ≫ 1;

which contradicts the assumption s < −3/2.

A proof of Theorem 2 is now in sight.

Proof of Theorem 2. Let s < −3/2, suppose that there exists T > 0 such that
the Cauchy problem (1) is locally well-posed in Hs (R) in the time interval [0, T ]
and that the flow map solution F : Hs (R) −→ C([0, T ];Hs (R)) is C2 at the origin.
When u0 ∈ Hs (R), we will denote uu0(t) = F (u0)(t) the solution of equation (1)
with initial datum u0. This means that uu0 is a solution of the integral equation

uu0(t) = F (u0)(t) = U(t)u0 −
1

2

∫ t

0

U(t− t′)∂x
(
u2u0

)
(t′) dt′.
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By computing the Fréchet derivative of F at φ in the direction u0, we obtain that

dφF (u0)(t) = U(t)u0 −
∫ t

0

U(t− t′)B [uφ(t
′), dφF (u0)(t

′)] dt′, (23)

where B[φ,ψ] = (φψ)x. Since the Cauchy problem (1) is supposed to be well-posed,
we know by using the uniqueness that F (0)(t) = u0(t) = 0 and then we deduce
from (23) that

d0F (u0)(t) = U(t)u0. (24)

Using (23), we compute the second Fréchet derivative at the origin in the direction
(u0, ψ) and using (24), we deduce that

d20F (u0, ψ)(t) = −
∫ t

0

U(t− t′)B [U(t′)ψ,U(t′)u0] dt
′.

The assumption of C2 regularity of F at the origin would imply that

d20F ∈ L (Hs (R)×Hs (R) ,Hs (R)) ,

which would lead to the following inequality∥∥d20F (u0, ψ)(t)
∥∥
Hs(R) . ∥u0∥Hs(R)∥ψ∥Hs(R), (25)

for all u0, ψ ∈ Hs (R). But (25) is equivalent to (22) which has been shown to fail
in the proof of Theorem 3.
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