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Least squares fitting with elliptic paraboloids
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Abstract. In [4], we discussed the problem of fitting some rotated paraboloid to given
measured data in 3-space. A numerical method was developed and numerical examples
were given. Recently that method was used to fit some parabolic antenna filter [1]. In
this connection the question arises whether this method could be extended for elliptic
paraboloids needed for some medical application [2]. We show how this could be done and
recommend a numerical method more difficult but similar to that one in [4].
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1. The problem

An elliptic paraboloid with the z-axis as the axis and the origin as the vertex is
given by

z = d

(
x2

A2
+

y2

B2

)
, (1)

where A and B are the half axes of an ellipse and d is varying. For A = B = 1 we
would have a rotated paraboloid [4]. Instead of (1), we will better use the canonical
parametric form

x = Av cosu

y = Bv sinu (2)

z = dv2 , where u ∈ [0, 2π), −∞ < v < ∞,

If (a, b, c)T is some shifting of the origin and

Q(β) =

 cosβ 0 − sinβ
0 1 0

sinβ 0 cosβ

 (3)

P (γ) =

 1 0 0
0 cos γ − sin γ
0 sin γ cos γ

 (4)
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are rotations in the x− z plane and in the y− z plane, then our extended model (2)
reads x

y
z

 = P (γ)Q(β)

 a + Av cosu
b + Bv sinu
c + dv2

 . (5)

Remark: A third rotation could be included in the x−z plane [2], but this is omitted
due to a larger extent.

If now data points (xi, yi, zi)
T (i = 1, . . . ,m) are given to which model (5) should

be fitted in the least square sense, then

1

2

m∑
i=1

∥∥∥∥∥∥
xi

yi
zi

− P (γ)Q(β)

 a + Avi cosui

b + Bvi sinui

c + dv2i

∥∥∥∥∥∥
2

(6)

has to be minimized with respect to the 8 + 2m unknowns

a,A, b, B, c, d, β, γ,u,v, where u = (u1, . . . , um)T , v = (v1, . . . , vm)T . (7)

It turns out to be somewhat more convenient transforming the given data (xi, yi, zi)
T

by xi

yi
zi

 = P (γ)T

xi

yi
zi

 ,

 x̃i

ỹi
z̃i

 = Q(β)T

xi

yi
zi

 . (8)

Note that
P (γ)−1 = P (γ)T and Q(β)−1 = Q(β)T .

Now the minimization of (6) is equivalent to the minimization of the following ob-
jective

S(a,A,B, b, c, d, β, γ,u,v) =
1

2

m∑
i=1

∥∥∥∥∥∥
 x̃i

ỹi
z̃i

−

 a + Avi cosui

b + Bvi sinui

c + dv2i

∥∥∥∥∥∥
2

=
1

2

m∑
i=1

(x̃i − a−Avi cosui)
2 + (ỹi − b−Bvi sinui)

2 + (z̃i − c− dv2i )
2 (9)

=
1

2

m∑
i=1

Si(a,A, b, B, c, d, β, γ, ui, vi) .

2. Necessary conditions for minimum

All 8 + 2m partial derivatives of S with respect to the 8 + 2m unknowns must
become zero. This is a highly nonlinear system of equations that can be solved
neither explicitly nor easily numerically (e. g. by NEWTON’s method).

Instead we will use a successive minimization method which is generally described
in [4] and also realized for rotated paraboloids. But at first we explicitly need all
partial derivatives of S. We will list them by the order of variables given in (7).
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We have

∂S

∂a
= 0 ⇐⇒

m∑
i=1

a+Avi cosui =
m∑
i=1

x̃i , (10)

∂S

∂A
= 0 ⇐⇒

m∑
i=1

avi cosui +Av2i cos
2 ui =

m∑
i=1

vi cosui , (11)

∂S

∂b
= 0 ⇐⇒

m∑
i=1

b+Bvi sinui =
m∑
i=1

ỹi , (12)

∂S

∂B
= 0 ⇐⇒

m∑
i=1

bvi sinui +Bv2i sin
2 ui =

m∑
i=1

vi sinui (13)

∂S

∂c
= 0 ⇐⇒

m∑
i=1

c+ dv2i =

m∑
i=1

z̃i (14)

∂S

∂d
= 0 ⇐⇒

m∑
i=1

cv2i + dv4i =
m∑
i=1

z̃iv
2
i . (15)

Further,

∂S

∂β
= 0 ⇐⇒

m∑
i=1

∂x̃i

∂β
(x̃i − a−Avi cosui) +

m∑
i=1

∂ỹi
∂β

(ỹi − b−Avi sinui)

+

m∑
i=1

∂z̃i
∂β

(z̃i − c− dv2i ) = 0. (16)

Here corresponding to (8) we have x̃i

ỹi
z̃i

 = Q(β)TP (γ)T

xi

yi
zi

 (17)

and also 

∂x̃i

∂β

∂ỹi
∂β

∂z̃i
∂β

 =
∂Q(β)T

∂β

xi

yi
zi

 . (18)

Inserting (17) and (18) into (16) we receive

∂S

∂β
= 0 ⇐⇒ H sinβ −G cosβ = 0, (19)
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where

H =
m∑
i=1

xi(a+Avi cosui) + zi(c+ dv2i )

G =
m∑
i=1

zi(a+Avi cosui) + xi(c+ dv2i ) .

For a minimum we must have

∂2S

∂β2
= H cosβ +G sinβ > 0 .

In this case

β = atan

(
G

H

)
, (20)

else this value has to be replaced by β + π. Using (8) the variable β also depends
on γ.

Similarly to (16)-(20) we have

∂S

∂γ
= 0 ⇐⇒

m∑
i=1

∂x̃i

∂γ
(x̃i − a−Avi cosui) +

m∑
i=1

∂ỹi
∂γ

(ỹi − b−Bvi sinui)

+
m∑
i=1

∂z̃i
∂γ

(z̃i − c− dv2i ) = 0. (21)

Using (8) we have 

∂x̃i

∂γ

∂ỹi
∂γ

∂z̃i
∂γ

 = Q(β)T
∂P (γ)T

∂γ

xi

yi
zi

 . (22)

Putting (17) and (22) into (21) after lengthy calculations we get

∂S

∂γ
= 0 ⇐⇒ U cos γ + V sin γ = 0, (23)

where

U =
m∑
i=1

sinβyi(a+Avi cosui)− zi(b+Bvi sinui) + cosβyi(c+ dv2i ),

V =
m∑
i=1

sinβzi(a+Avi cosui) + yi(b+Bvi sinui) + cosβzi(c+ dv2i ) .
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For a minimum we must have

∂2S

∂γ2
= −U sin γ + V cos γ > 0 .

In this case

γ = −
(
U

V

)
(24)

else this value has to be replaced by γ + π.
Finally,

∂S

∂vi
=

∂S

∂vi
= 0 (i = 1, . . . ,m)

must be examined. First we consider

∂S

∂vi
=

∂Si

∂vi
= 0 ⇐⇒ A cosui(x̃i − a−Avi cosui)

+ B sinui(ỹi − b−Bvi sinui)

+ 2dvi(z̃i − c− dv2i ) = 0 (25)

⇐⇒ 2d2v3i (A
2 cos2 ui +B2 sin2 ui − 2d(z̃i − c))vi

− [A cosui(x̃i − a) +B sinui(ỹi − b)] = 0.

These are m polynomial equations of degree three, each with one or three real
solutions. If there are three real roots, then the one with the smallest value for Si

(i = 1, . . . ,m) must be selected.
Analogously, we have to look for

∂S

∂ui
=

∂Si

∂ui
= 0 ⇐⇒ Avi sinui(x̃i − a−Avi cosui)

− Bvi cosui(ỹi − b−Bvi sinui) = 0 (26)

⇐⇒ (B2 −A2)v2i sinui cosui

+ Avi sinui(x̃i − a)−Bvi cosui(ỹi − b) = 0.

Putting

u = ui, w = (B2 −A2)v2i , p = Avi(x̃i − a), q = Bvi(ỹi − b)

for (26) we get
w sinu cosu+ p sinu− q cosu = 0. (27)

Substituting
r = tgu

for (27) we receive again a polynomial equation but now of degree four. It can be
shown that it has at least one real root [3]. This means that there exist two or four
real solutions. Again for each i = 1 . . . ,m this one with the smallest value of Si has
to be chosen. Note that polynomial equations of degree three and four can be solved
exactly, i.e. without some iterative numerical method.



414 H. Späth

3. Numerical algorithms

There are many possible sequences of the following series of necessary conditions
(10) through (15), (18,23), and (25,26) for i = 1, . . . ,m to be always fulfilled during
the minimization process. We will describe two possible sequences. All values of
unknows newly calculated in previous steps ought to be used within Steps 1 – 4.

Method I

Step 0: Let starting values for β, γ,u and v be given (e.g. ui =
2πi
m , vi equidistant

within the interval [min
k

zk,max
k

zk] for k = 1 . . . ,m).

Step 1: Calculate (a,A), (b,B), and (c, d) using in each case the corresponding two
linear equations (10,11), (12,13), and (14,15). Those will always have a
unique solution corresponding to an absolute minimum.

Step 2: Calculate β = β(a,A, c, d, γ) by (19) and also γ = γ(a,A, b,B, c, d, β) by
(23) as described.

Step 3: Calculate all real zeroes (1 or 3) for vi = vi(ui) via (25,26) and also those
(2 or 4) for ui = ui(vi) (i = 1, . . . ,m) and select in each case the one with
the smallest value of Si.

Step 4: Calculate S. If it has decreased again, then go back to Step 1, else STOP.
Check for some minimum of S, i.e. if at least all necessary conditions are
fulfilled.

Method II

Step 0: Let a,A, b,B, c, d, β, γ and u or v be given as starting values.

Step 1: Calculate u = u(v) or v = v(u) for given v or u in Step 1 similarly to Step
3 of Method I. Select the zeroes such that Si is minimal.

Step 2: Calculate β = β(γ) and γ = γ(β) by (19) and (23) as in Step 2 of Method
I.

Step 3: Calculate (a,A), (b, B), and (c, d) as in Step 1 of Method I.

Step 4: As decribed in Method I.

There may be other sequences for the variables resulting in other methods, too.
But it does not seem possible to select some best sequence in the sense that its
success does not depend on the given data (xi, yi, zi)

T (i = 1, . . . ,m) and with best
convergence properties. There is also no convergence proof for any method. But
as was indicated by numerical experiments for A = B = 1 [4], Method II perfectly
worked and so we recommend it here, too.
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