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Abstract. A rectifiable space (or a paratopological group) G is compactly generated if
G = ⟨K⟩ for some compact subset K of G. In this paper, we mainly discuss compactly
generated rectifiable spaces or paratopological groups. The main results are that: (1) each
σ-compact metrizable rectifiable space containing a dense compactly generated rectifiable
subspace is compactly generated; (2) a metriable rectifiable space is compactly generated
if and only if it is σ-compact and finitely generated modulo open sets; (3) any σ-compact
paratopological group can be embedded as a closed paratopological subgroup in some com-
pactly generated paratopological group. Finally, we consider generalized metric properties
of compactly generated rectifiable spaces.
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1. Introduction

Recall that a topological group G is a group G with a (Hausdorff) topology such that
the product map from G × G onto G is jointly continuous and the inverse map of
G onto itself associating x−1 with arbitrary x ∈ G is continuous. A paratopological
group G is a group G with a topology such that the product maps of G × G into
G is jointly continuous. A topological space G is said to be a rectifiable space [4]
provided that there are a surjective homeomorphism φ : G × G → G × G and an
element e ∈ G such that π1 ◦ φ = π1 and for every x ∈ G we have φ(x, x) = (x, e),
where π1 : G×G → G is the projection to the first coordinate. If G is a rectifiable
space, then φ is called a rectification on G. It is well known that rectifiable spaces
and paratopological groups are all good generalizations of topological groups. It is
easy to see that a topological group G with the neutral element e has a rectification
φ(x, y) = (x, x−1y). However, there exists a paratopological group which is not a
rectifiable space; Sorgenfrey line ([8, Example 1.2.2]) is such an example. Also, the
7-dimensional sphere S7 is rectifiable but not a topological group [21, § 3]. In fact, it
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is even not a semitopological group, because each (locally) compact semitopological
group is a topological group [7]. Further, it is easy to see that both paratopological
groups and rectifiable spaces are homogeneous.

Recently, the study of rectifiable spaces has become an interesting topic in topo-
logical algebra, see [1, 11, 13, 14, 15, 16, 20, 21].

2. Preliminaries

The following theorem was announced for the first time in [4], and the readers can
see the proof in [5, 11, 20].

Theorem 1 (see [4]). A topological space G is rectifiable if and only if there exist
an element e ∈ G and two continuous maps p : G2 → G, q : G2 → G such that for
any x ∈ G, y ∈ G the next identities hold:

p(x, q(x, y)) = q(x, p(x, y)) = y, q(x, x) = e.

In fact, we can assume that p = π2 ◦φ−1 and q = π2 ◦φ in Theorem 1. If we fix a
point x ∈ G, then fx, gx : G → G defined with fx(y) = p(x, y) and gx(y) = q(x, y),
for each y ∈ G, are homeomorphisms. We denote fx, gx by p(x,G), q(x,G), respec-
tively.

If G is a rectifiable space, then we shall call the map p the multiplication on
G. Moreover, sometimes we shall write x · y instead of p(x, y) and A · B instead of
p(A,B) for any A,B ⊂ G. Therefore, q(x, y) is an element such that x · q(x, y) = y;
since x · e = x · q(x, x) = x and x · q(x, e) = e, it follows that e is a right neutral
element for G and q(x, e) is a right inverse for x. Hence a rectifiable space G is
a topological algebraic system with binary operations p, q, 0-ary operation e and
identities as above. It is easy to see that this algebraic system need not satisfy the
associative law about the multiplication operation p. Clearly, every topological loop
is rectifiable.

If G is a rectifiable space (or a paratopological group) and X ⊂ G, then we use
⟨X⟩ to denote the smallest rectifiable subspace of G which contains X. A set X
algebraically generates G if G = ⟨X⟩.

Recall that a rectifiable space G (a paratopological group) is:
(1) σ-compact if G =

∪
{Kn : n ∈ N}, where each Kn is compact, and

(2) compactly generated if G = ⟨K⟩ for some compact subset K of G.

Note 1. (a): Obviously, each compactly generated rectifiable space is σ-compact.
However, there exists a compactly generated paratopological group which is not σ-
compact. Indeed, let X be an uncountable compact space, and let AP (X) be a free
Abelian paratopological group. Then −X is closed discrete in AP (X) [17], which
implies that AP (X) is not σ-compact. Moreover, AP (X) is not a topological group.

(b): There exists a countable, metrizable, and compactly generated paratopologi-
cal group which is not a topological group. Indeed, let the rational number Q with the
subspace topology of Sorgenfrey line. Then Q is a countable, metrizable paratopo-
logical group which is not a topological group. Put S = {0} ∪ { 1

n : n ∈ N}; then
Q = ⟨S⟩. Therefore, Q is compactly generated.
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(c): Sorgenfrey line is not a compactly generated paratopological group since each
compact subset of Sorgenfrey line is countable [2, 3.3.b].

All spaces considered in this paper are supposed to be T1 and regular unless
stated otherwise. The notation N denotes the set of all positive integer numbers.
The letter e denotes the neutral element of a group or the right neutral element of a
rectifiable space. Readers may refer to [2, 8, 10] for notations and terminology not
explicitly given here.

3. Compactly generated rectifiable spaces

In this section, we mainly discuss compactly generated rectifiable spaces. Firstly,
we give some technical lemmas.

Lemma 1 (see [9]). Let {Un : n ∈ N} be a local base at point e of a topological space
G such that Un+1 ⊂ Un for all n ∈ N. Assume that {Fn : n ∈ N} is a sequence of
subsets of G such that

1. each Fn is compact, and

2. Fn ⊂ Un.

Then K =
∪
{Fn : n ∈ N} ∪ {e} is compact. Moreover, if each Fn is finite, then for

each enumeration i : N → K a sequence {i(n) : n ∈ N} converges to e.

Let A be a subspace of a rectifiable space G. Then A is called a rectifiable
subspace [14] of G if we have p(A,A) ⊂ A and q(A,A) ⊂ A.

Lemma 2 (see [14]). Let G be a rectifiable space. If V is an open rectifiable subspace
of G, then V is closed in G.

Lemma 3. Let H be a dense rectifiable subspace of a rectifiable space G. Then for
each open rectifiable subspace E of H there exists an open rectifiable subspace E′ of
G such that E′ ∩H = E.

Proof. Let

E′ =
∪

{V : V is open in G and clG(V ) ∩H ⊂ E}.

Obviously, E′ is an open subset of G and E′ ∩H = E. Now, we shall prove that E′

is a rectifiable subspace of G.
Indeed, suppose that a, b ∈ E′. It follows from the definition of E′ that there exist

open sets U and V in G such that a ∈ U, b ∈ V, clG(U)∩H ⊂ E and clG(V )∩H ⊂ E.
By the density of H in G, we have clG(U ∩H) = clG(U) and clG(V ∩H) = clG(V ).
Therefore, it follows from the continuity of p in G that

p(U, V ) ⊂ p(clG(U), clG(V )) = p(clG(U ∩H), clG(V ∩H)) ⊂ clG(p(U ∩H,V ∩H)).

Then we have clG(p(U, V )) = clG(p(U ∩H,V ∩H)) , and

clG(p(U, V ))∩H = clG(p(U ∩H,V ∩H))∩H ⊂ clG(p(E,E))∩H = clG(E)∩H = E
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since E is closed in H by Lemma 2. Therefore, p(a, b) ∈ p(U, V ) ⊂ E′.
Suppose that c, d ∈ E′. Then there exist open sets O,W in G such that c ∈

O, d ∈ W , clG(O)∩H ⊂ E and clG(W )∩H ⊂ E. Obviously, q(O,W ) is open in G.
Moreover, it also easy to see that clG(q(O,W )) = clG(q(O ∩H,W ∩H)). Since

clG(q(O,W ))∩H = clG(q(O∩H,W∩H))∩H ⊂ clG(q(E,E))∩H ⊂ clG(E)∩H = E,

it follows that q(c, d) ∈ q(O,W ) ⊂ E′.

Corollary 1. A dense rectifiable subspace of a connected rectifiable space has no
proper open rectifiable subspaces.

Proof. By Lemma 2, each open rectifiable subspace of a rectifiable space is closed,
and therefore, a connected rectifiable space cannot have proper open rectifiable sub-
spaces. Now the result follows from Lemma 3.

Lemma 4 (see [14]). Let G be a rectifiable space. If Y is a dense subset of G and
U is an open neighborhood of the right neutral element e of G, then G = Y · U .

Theorem 2. If a σ-compact metrizable rectifiable space G contains a dense com-
pactly generated rectifiable subspace, then G is also compactly generated.

Proof. Let H be a dense rectifiable subspace of G such that H is generated by
some compact set E, and let G =

∪
{Kn : n ∈ N}, where each Kn is compact.

Since G is metrizable, the point e has a countable local base {Un : n ∈ N}, where
Un+1 ⊂ Un for each n ∈ N. By the density of H in G, it follows from Lemma 4 that
p(H,Un) = G for each n ∈ N. For each n ∈ N, there exists a finite subset Fn of H
such that Kn ⊂ p(Fn, Un), and put Ln = Un∩ q(Fn,Kn), then each Kn ⊂ p(Fn, Ln)
since Kn ⊂ p(Fn, q(Fn,Kn)). Obviously, each Ln is compact and, by Lemma 1,
L =

∪
{Ln : n ∈ N} is also compact. Therefore,

G =
∪

{Kn : n ∈ N} ⊂
∪

{p(Fn, Ln) : n ∈ N} ⊂
∪

{p(H,Ln) : n ∈ N} ⊂ p(H,L).

Since H is generated by E, G is generated by the compact set E ∪ L. Therefore, G
is compactly generated.

Corollary 2. If a σ-compact metrizable rectifiable space G contains a dense finitely
generated rectifiable subspace, then G is also compactly generated.

Next, we define the notion of finitely generated modulo open sets in rectifiable
spaces which contains all compactly generated rectifiable spaces.

Definition 1. We will say that a rectifiable space (or a paratopological group) G is
finitely generated modulo open sets if for each non-empty open rectifiable subspace
H of G there exists a finite subset F of G such that G = ⟨F ∪H⟩.

Proposition 1. Let G be a rectifiable space. Then the following conditions are
equivalent:

1. G is finitely generated modulo open sets;
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2. for each non-empty open subset V of G there exists a finite subset F of G such
that G = ⟨F ∪ V ⟩.

Proof. Obviously, (2)⇒(1).
(1)⇒(2). Let V be a non-empty open subset V of G. Let H be the rectifiable

subspace generated by V , that is, H = ⟨V ⟩. Obviously, H is open in G, and so by
(2) there is a finite set F ⊂ G such that

G = ⟨F ∪H⟩ = ⟨F ∪ ⟨V ⟩⟩ = ⟨F ∪ V ⟩.

Theorem 3. If a rectifiable space G is compactly generated, then it is finitely gen-
erated modulo open sets.

Proof. Assume that G = ⟨K⟩, where K is a compact set. Let H be an open
rectifiable subspace of G. Then H = {g ·H : g ∈ G} is an open covering of G. Since
K is compact, there exist finitely many elements of H , say g1 ·H, · · · , gn ·H, which
cover K. Put F = {g1, · · · , gn}. Then G = ⟨F ∪H⟩.

Theorem 4. Let G be a metrizable rectifiable space G and A a countable subset
of G. Suppose that G is finitely generated modulo open sets. Then G contains a
sequence S converging to e of G such that A ⊂ ⟨S⟩.

Proof. Let A = {an : n ∈ ω}. Since G is metrizable, let {Un : n ∈ ω} be a local
base at e such that

G = U0 ⊇ U1 ⊇ · · · ⊇ Un ⊇ · · · .

Since G is finitely generated modulo open sets, for each n ∈ ω we can fix a finite set
Fn such that G = ⟨Fn ∪ Un+1⟩.

By induction on n, we will define a sequence {Bn : n ∈ ω} of finite subsets of G
with the following properties:

(a) Bn ⊂ Un;
(b) G = ⟨B0 ∪B1 ∪ · · · ∪Bn ∪ Un+1⟩, and
(c) an ∈ ⟨B0 ∪B1 ∪ · · · ∪Bn⟩.
To begin with, let B0 = F0 ∪ {a0}; then B0 satisfies all three conditions (a)-(c).

Assume that we have already defined finite sets B0, B1, · · · , Bn−1 satisfying all three
conditions (a)-(c). By (b), Fn ∪ {an} ⊂ ⟨B0 ∪ B1 ∪ · · · ∪ Bn−1 ∪ Un⟩. Since Fn is
finite, we can find a finite set Bn ⊂ Un such that

Fn ∪ {an} ⊂ ⟨B0 ∪B1 ∪ · · · ∪Bn−1 ∪Bn⟩.

Clearly, (a)-(c) are satisfied.
Put S = ∪{Bn : n ∈ ω}. By (c), A ⊂ ⟨S⟩. By Lemma 1 and (a), S can be

enumerated as a sequence converging to e.

Theorem 5. Let G be a σ-compact metrizable rectifiable space G. Then G is com-
pactly generated if and only if G is finitely generated modulo open sets.
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Proof. By Theorem 3, we only need to prove the sufficiency. Suppose that for each
open rectifiable subspace H of G there exists a finite set F such that G = ⟨F ∪H⟩.
Obviously, G is separable, and letD be a countable dense subset ofG. By Theorem 4,
G has a dense compactly generated rectifiable subspace, and by Theorem 2, G is
compactly generated.

Corollary 3. A metrizable rectifiable space G is compactly generated if and only if
G is σ-compact and finitely generated modulo open sets.

A rectifiable space without proper open rectifiable subspaces trivially satisfies
condition (2) of Proposition 1. Therefore, we have the following corollary.

Corollary 4. A σ-compact metrizable rectifiable space G without proper open rec-
tifiable subspaces is compactly generated.

By Corollaries 1 and 4, we also have the following corollary.

Corollary 5. A σ-compact dense rectifiable subspace of a connected metrizable rec-
tifiable space G is compactly generated.

Corollary 6. A σ-compact connected metrizable rectifiable space G is compactly
generated.

By Theorems 3 and 4, it is easy to prove the following theorem.

Theorem 6. A countable metrizable rectifiable space is compactly generated if and
only if it is compactly generated by a sequence converging to the right neutral ele-
ment e.

4. Compactly generated paratopological groups

In this section, we mainly discuss compactly generated paratopological groups.

Lemma 5. Let G be a paratopological group. If Y is a dense subset of G and U is
an open neighborhood of the neutral element e of G, then G = Y −1 · U .

Proof. For arbitrary g ∈ G, since Y is a dense subset of G, we have Ug−1 ∩ Y ̸= ∅.
Take x ∈ Ug−1 ∩ Y . Then g ∈ x−1U ⊂ Y −1 · U .

The proof of the following theorem is similar to that of Theorem 2.

Theorem 7. If a σ-compact first-countable paratopological group G contains a dense
compactly generated subgroup, then G is also compactly generated.

Proof. Let H be a dense subgroup of G such that H is generated by some compact
set E, and let G =

∪
{Kn : n ∈ N}, where each Kn is compact. Since G is first-

countable, the point e has a countable local base {Un : n ∈ N}, where Un+1 ⊂ Un

for each n ∈ N. By the density of H in G, it follows from Lemma 5 that HUn = G
for each n ∈ N. For each n ∈ N, there exists a finite subset Fn of H such that
Kn ⊂ FnUn, and put Ln = Un ∩ (Fn)

−1Kn, then each Kn ⊂ FnLn since Kn ⊂
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Fn(Fn)
−1Kn. Obviously, each Ln is compact and, by Lemma 1, L =

∪
{Ln : n ∈ N}

is also compact. Therefore,

G =
∪

{Kn : n ∈ N} ⊂
∪

{FnLn : n ∈ N} ⊂
∪

{HLn : n ∈ N} ⊂ HL.

Since H is generated by E, G is generated by the compact set E ∪ L. Therefore, G
is compactly generated.

Note 2. Under the class of paratopological groups, we can obtain all results from
Proposition 1 to Theorem 5 and Corollary 4 to Theorem 6 in Section 3 by similar
proofs. In fact, the respective counterparts also hold for first-countable paratopologi-
cal groups and this condition is weaker than the metrizability.

Since a compactly generated rectifiable space G is σ-compact, G has Souslin prop-
erty, see [18] or [19]. Moreover, E.A. Reznichenko showed that every σ-compact
Hausdorff paratopological group has Souslin property, see [2, Theorem 5.7.12]. How-
ever, the following question is still open.

Question 1. Let G be a compactly generated paratopological group. Does G have
Souslin property?

Theorem 8. Any σ-compact paratopological group G can be embedded as a closed
paratopological subgroup in some compactly generated paratopological group.

Proof. Let σΠ = σΠ{Gn : n ∈ Z} be the σ-product of copies of G with the topology
induced from Tikhonov power GZ, where σΠ is a σ-product with the neutral element
e as a distinguished point. Then σΠ is also a paratopological group. For each n ∈ Z,
let in : G → Gn be a topological isomorphism, and we can identify Gn with its image
in σΠ under the natural embedding. Suppose that G =

∪
{Kn : n ∈ Z}, where each

Kn is compact. LetK denote the subspace
∪

n∈Z in(Kn) of the paratopological group
σΠ. Since K is closed in the compact subspace Π{Kn : n ∈ Z} of the paratopological
group GZ under the natural embedding σΠ → GZ, K is compact in σΠ.

The group Z of integers with the discrete topology acts on the paratopological
group σΠ by shifting coordinates: for x = (xn)n∈Z ∈ σΠ and k ∈ Z, k · x is the
element of σ

∏
whose n-th coordinate is xn+k. Let G

′ denote the semidirect product
σΠo Z. Assume 1z is the smallest positive element of Z. Then the space K ∪ {1z}
is a compact subspace of G′ and G′ = ⟨K ∪{1z}⟩. Indeed, let H = ⟨K ∪{1z}⟩ in G′.
Clearly, Z ⊂ H. Next, we shall prove that, for each m ∈ Z, Gm ⊂ H. Take arbitrary
x ∈ Gm. Then i−1

m (x) ∈ Kn for some n ∈ Z. Let a be the element (ini
−1
m (x), 0)

and b the element (e,m− n) of the semidirect product G′. Clearly, a ∈ K ⊂ H and
b ∈ H, and hence ba belongs to H. However, it is easy to see that ba = x.

If G be countable, then each of the sets Kn can be assumed finite. A simple
analysis of the topological structure of the space K ∪ {1z} enables us to obtain

Theorem 9. Any countable paratopological group G can be embedded as a closed
paratopological subgroup in some paratopological group algebraically generated by a
subspace homeomorphic to the one-point compactification ∂N of a countable discrete
space.

Question 2. Can any σ-compact rectifiable space G be embedded as a closed recti-
fiable subspace in some compactly generated rectifiable space?
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5. Generalized metrizability properties of compactly gener-
ated rectifiable spaces

A closed mapping f is called perfect if each fiber is compact.

Proposition 2. Suppose that F is a compact subspace of a rectifiable space G. Then
the restriction p and q to the subspace F ×G is a perfect and open mapping of F ×G
onto G.

Proof. We firstly prove that the restriction p to the subspace F × G is a perfect
and open mapping of F ×G onto G.

Let f : F × G → F × G be defined by f(x, y) = (x, p(x, y)) for each (x, y) ∈
F ×G. Obviously, f is continuous, one-to-one, and f(F ×G) = F ×G. Moreover,
f−1(x, y) = (x, q(x, y)). Therefore, f−1 is also continuous. Thus f is a homeomor-
phism. For i = 1, 2, denote by πi the projection of F ×G onto the i-th factor. Since
p(x, y) = π2(x, p(x, y)) = π2f(x, y) for all x ∈ F and y ∈ G, p is the composition of
f and π2, that is, p = π2 ◦f . Since F is compact, it follows from [8, Theorem 3.1.16]
that π2 is closed. Then p is closed since f is a homeomorphism and π2 is closed.
For each y ∈ G, p−1(y) = f−1(F × {y}) =

∪
{(x, q(x, y)) : x ∈ F} is closed in the

compact subspace F ×q(F, y). Indeed, let (x, q(z, y)) ∈ (F ×q(F, y))\p−1(y), where
x, z ∈ F . Then q(x, y) ̸= q(z, y), and thus there exist two open sets U and V in G
such that q(x, y) ∈ U , q(z, y) ∈ V and U ∩V = ∅. Since q is continuous, there exists
an open neighborhood W of e such that q(x ·W, y ·W ) ⊂ U and q(z ·W, y ·W ) ⊂ V .
Then (x·W,V ) is an open neighborhood of (x, q(z, y)). However, since q(x·w, y) ⊂ U
for each w ∈ W , it follows that (x ·W,V ) ∩ p−1(y) = ∅. Therefore, p−1(y) is closed
in F × q(F, y), and thus it is compact. Then p is perfect.

Let O be an open subset of F × G. Put O′ = π1(O). For each x ∈ O′, let
Ux = {y ∈ G : (x, y) ∈ O}; then Ox is open in G as the projection of the open subset
O ∩ π−1

1 (x) of {x} ×G onto the second factor. Therefore, p(O) =
∪

x∈O′ p(x,Ox) is
open in G, which implies that p is an open mapping.

As for the mapping q, we only redefine the mapping f by (x, y) = (x, q(x, y)) for
each (x, y) ∈ F ×G, and the rest of the proof is immediate.

Corollary 7. Suppose that F is a compact subspace of a rectifiable space G, and
that M is a closed subspace of G. Then p(F,M) and q(F,M) are all closed in G.

Note 3. Corollary 7 gives an affirmative answer to the following question. Recently,
L.X. Peng and S.J. Guo [16] have also obtained Corollary 7. However, we prove
Corollary 7 by a different method.

Question 3 (see [15]). Let G be a rectifiable. If F, P are compact and closed subsets
of G, respectively, is P · F or F · P closed in G?

Since the restriction of a perfect mapping to a closed subspace is again a perfect
mapping, it follows from Corollary 7 and Proposition 2 that we have the following
corollary.

Corollary 8. Suppose that F is a compact subspace of a rectifiable space G, and
that M is a closed subspace of G. Then the restriction p and q to the subspace F×M
is a perfect mapping of F ×M onto a closed subspace of G.
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A space G is of countable tightness if for each subset A of G and each point
x ∈ cl(A) there exists a countable subset D of A such that x ∈ cl(D).

Theorem 10. Suppose that F is a compact subspace of a rectifiable space G and
that M is a closed subspace of G. Suppose also that both F and M have countable
tightness. Then both spaces p(F,M) and q(F,M) have countable tightness, too.

Proof. Since perfect mappings do not increase the tightness and the tightness of
the product F × M is countable by [8, 3.12.8(a)], it follows from Corollary 8 that
both spaces p(F,M) and q(F,M) have countable tightness, too.

Theorem 11. Suppose that F is a compact metrizable subspace of a rectifiable space
G, and that M is a closed metrizable subspace of G. Then both spaces p(F,M) and
q(F,M) are metrizable, too.

Proof. By Corollary 7, p(F,M) and q(F,M) are closed in G. Since perfect map-
pings preserve the metrizability [8, Theorem 4.4.15], it follows from Corollary 8 that
p(F,M) and q(F,M) are metrizable.

A network for a space X is a collection F of subsets of X such that whenever
x ∈ U with U open, there exists F ∈ F with x ∈ F ⊂ U .

Theorem 12. Let G be a rectifiable space, and let H be a rectifiable subspace
of G compactly generated by a compact metrizable space F . Suppose further that
G = p(H,M), where M is a closed metrizable subspace of G. Then G is the union
of a countable family of closed metrizable subspaces.

Proof. By induction on n, we can define a sequence {An : n ∈ ω} of subsets of G
such that:

(1) A0 = F ∪ p(F, F ) ∪ q(F, F );

(2) A1 = p(A0, A0) ∪ q(A0, A0);

(3) An = p(An−1, An−1) ∪ q(An−1, An−1).

Obviously, each p(An, An), q(An, An), An are compact. Since compact space with
a countable network is metrizable [10], it follows from Theorem 11 that each An is
also metrizable. Since H = ⟨F ⟩, H =

∪
n∈ω An. Since G = p(H,M), it follows from

Theorem 11 again that G is the union of a countable family of closed metrizable
subspaces.

A neighborhood assignment for a space X is a function φ from X to the topology
of X such that x ∈ φ(x) for each point x ∈ X. A space X is a D-space[6], if for any
neighborhood assignment φ for X there is a closed discrete subset D of X such that
X =

∪
d∈D φ(d).

Corollary 9. Let G be a rectifiable space, and let H be a rectifiable subspace of
G compactly generated by a compact metrizable space F . Suppose further that
G = p(H,M), where M is a closed metrizable subspace of G. Then G is a D-
space.
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Proof. It is well known that each metrizable space is a D-space. Hence M is a
D-space, and then each p(h,M) is a D-space, too. Since a countable infinite union
of closed D-subspaces is D [3], it follows that G = p(H,M) =

∪
h∈H p(h,M) is a

D-space.

Recall that a space X has a quasi-Gδ-diagonal provided there is a sequence
{G(n) : n ∈ N} of collections of open subsets of X such that for any distinct points
x, y ∈ X there is a number n with x ∈ st(x,G(n)) ⊂ X \ {y}.

Theorem 13. Let G be a compactly generated Tychonoff rectifiable space, and
Y = bG \ G have locally quasi-Gδ-diagonal, where bG is a Hausdorff compacti-
fication of G. Then G satisfies one of the following conditions:

(1) G is locally compact;
(2) G is separable and metrizable.

Proof. Suppose that G is nowhere locally compact. Since G is σ-compact, it follows
from [14, Theorem 7.3] that G is separable and metrizable.

A space X is said to have a regular Gδ-diagonal if the diagonal ∆ = {(x, x) : x ∈
X} can be represented as the intersection of the closures of a countable family of
open neighborhoods of ∆ in X ×X.

Since a rectifiable space with a countable pseudocharacter has a regular Gδ-
diagonal [14] and a paracompact space with a Gδ-diagonal is submetrizable [10], we
have the following proposition.

Proposition 3. If G is a compactly generated rectifiable space with a countable
pseudocharacter, then G is submetrizable.

Proposition 4. Let G be a compactly generated Tychonoff rectifiable space with a
countable pseudocharacter, and let Y = bG \G be Lindelöf, where bG is a Hausdorff
compactification of G. Then G is separable and metrizable.

Proof. Since Y = bG \ G is Lindelöf, G is countable type [12], and thus G is a
p-space [1]. Then G is a σ-compact p-space with a Gδ-diagonal, hence it is separable
and metrizable [10, Corollaries 3.8 and 3.20].
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[2] A.V.Arhangel’skǐı, M.Tkachenko, Topological Groups and Related Structures,
Atlantis Press and World Sci., Paris, 2008.

[3] C.R.Borges, A.Wehrly, A study of D-spaces, Topology Proc. 16(1991), 7–15.



Compactly generated rectifiable spaces or paratopological groups 427
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