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The extensibility of D(4)-pairs
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10 000 Zagreb, Croatia

Received March 11, 2013; accepted September 27, 2013

Abstract. A set of m positive integers with the property that the product of any two
of them increased by 4 is a perfect square is called a D(4)-m-tuple. In this paper, we
consider the extensibility of a general D(4)-pair {a, b} and prove some results supporting
the conjecture that there does not exist a D(4)-quintuple.
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1. Introduction

Let n ̸= 0 be an integer. A set of m positive integers is called a Diophantine m-tuple
with the property D(n), or simply a D(n)-m-tuple, if the product of any two of
them increased by n is a perfect square.

The most famous and most studied case is n = 1. There is a folklore conjecture
that there does not exist a D(1)-quintuple. In 2004, Dujella [4] proved that there
does not exist aD(1)-sextuple and that there are only finitely manyD(1)-quintuples.
In recent years, the second author [7, 8, 9, 10] proved analogous results in the case
n = 4. Recently, there has been a lot of work done on D(n)-m-tuples, especially
in the cases n = 1, n = −1 and n = 4. To see all details the reader can visit the
webpage http://web.math.pmf.unizg.hr/˜duje/dtuples.html. Here, we consider only
the case n = 4.

In the case n = 4, there is a conjecture (see [6, Conjecture 1]), that if {a, b, c, d}
is a D(4)-quadruple such that a < b < c < d, then

d = d+ = a+ b+ c+
1

2
(abc+ rst) ,

where r, s and t are positive integers defined by ab+4 = r2, ac+4 = s2 and bc+4 = t2.
Notice that this immediately implies that there does not exist a D(4)-quintuple. The
D(4)-quadruple {a, b, c, d}, where d > max{a, b, c} is called a regular quadruple if
d = d+. We also define d− = a+ b+ c+ 1

2 (abc− rst) . The set {a, b, c, d−} is also a
D(4)-quadruple if d− ̸= 0, but then d− < c.
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There are many results which support the Conjecture (see for example [1, 2, 4, 7,
8, 9, 10, 12, 13, 14, 16, 17]). Recently, the authors [2] have proved that a D(4)-triple
of the form {k − 2, k + 2, c}, where k≥3 is an integer, has a unique extension to a
quadruple with a larger element. In this paper, we try to generalize that result by
proving the following theorem.

Theorem 1. Let {a, b, c} be a D(4)-triple with a < b. Suppose that {a, b, c, d} is a
D(4)-quadruple with d > d+ and that {a, b, c′, c} is not a D(4)-quadruple for any c′

with 0 < c′ < d−.

(1) If b < 1.5a, then c < b6.

(2) If 1.5a ≤ b < 5a, then c < b5.

(3) If b ≥ 5a, then c < 6b5.

Unfortunately we were not able to generalize the result from [2] completely,
because the congruence method does not work for a general triple {a, b, c}, or at
least it is not so obvious. But if we take a and b to be fixed and we furthermore
know all possible c’s which extend the D(4)-pair {a, b}, by proving this Theorem we
know exactly which triples are left to be examined. For example, considering the
extension of a parametric family of D(4)-pairs {F2k, 5F2k} (which will be treated
in a subsequent paper), by using this Theorem we can save a lot of time proving
non-extendibility to a D(4)-quintuple, actually proving the uniqueness of extension
of D(4)-triples {F2k, 5F2k, c} to a quadruple. Although there we can use the version
of Rickert’s theorem from [6], the problem is with congruences, because it is not
so obvious which congruences to look at for general c as it was done in [2] for the
D(4)-pairs {k − 2, k + 2}. And with this Theorem we are only left with a few exact
values of c (depending only on k) to consider.

In the proof of Theorem we use standard methods which are used in a solving
similar kind of problems. So we firstly transform our problem of extensibility of
D(4)-triples to solving systems of simultaneous Pellian equations. And it further-
more leads to finding the intersection of binary recurrence sequences. It is eventually
solved by combining the congruence method firstly introduced by Dujella and Pethö
in [5] with the hypergeometric method and Baker’s theory of linear forms in loga-
rithms. The main part in our proof is to improve Rickert’s theorem in our special
case similarly to what we have done in [2]. Let us also mention that the analogous
result in the case n = 1 was recently proven by the second author, Fujita and Togbé
in [11]. Here we use few more technical tricks to make our proof slightly faster.
Those ’tricks’ are that we make Baker-Davenport reduction at the beginning and
in the case of sequences with odd indices we do not have to consider all subcases
depending on the sign of initial values. Also, because some proofs are the same as
in [2] and [11] we will not give all details here but we will cite the exact reference
where they can be found.

2. Preliminaries

We first prove one useful result showing how to get the third element c in a D(4)-
triple {a, b, c} if we know the first two and if they satisfy a < b < 5a.
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Let {a, b, c} be a D(4)-triple and s, t positive integers satisfying ac + 4 = s2,
bc+ 4 = t2. Eliminating c, we get

at2 − bs2 = 4(a− b). (1)

Now we can generate all solutions of this equation if we know the fundamental ones.
If (t, s) belongs to the same class as either of the solutions (±2, 2), which means that

t
√
a+ s

√
b = (±2

√
a+ 2

√
b)

(
r +

√
ab

2

)ν

,

then s can be expressed as s = s±ν , where

s±0 = 2, s±1 = r ± a, s±ν+2 = rs±ν+1 − s±ν (2)

with r being a positive integer satisfying ab + 4 = r2. Define c±ν = ((s±ν )
2 − 4)/a.

Now we have the following lemma.

Lemma 1. Let {a, b, c} be a D(4)-triple. Assume that a < b < 5a. Then c = c±ν for
some ν.

Proof. The proof uses the same idea which was used in proving the analogous result
in [15] for the case n = 1 and a < b < 4a.

Let us define s′, t′ by s′ = rs−at
2 and t′ = rt−bs

2 . Then, it is easy to see that (t, s)
and (t′, s′) belong to the same class of solutions of Pellian equation (1), because we
have

t
√
a+ s

√
b = (t′

√
a+ s′

√
b)

(
r +

√
ab

2

)
.

Also define c′ = ((s′)2 − 4)/a. Notice that we may assume that c′ < r2 because we
can continue with the same procedure defining now c = c′ until we get c′ < r2. We
can do this because in every step we have

ac′ = (s′)2 − 4 <
s2

r2
− 4 =

ac+ 4

r2
− 4 <

ac

r2
,

which implies 0 ≤ c′ < c
r2 . In this way we always remain in the same class of

solutions.
Now, if c′ > b, then in the same way as in [15, Theorem 2], using c′ < r2, we get

c′ = a+ b+ 2r = c+1 and hence c = c+ν for some ν.
If c′ = b, then a+ b+ c+ 1

2 (abc− rst) = b implies

c2 − (2a+ 4b+ ab2)c+ a2 − 4ab− 16 = 0.

The discriminant of this equation with respect to c is equal to (ab+ 4)2(b2 + 4), so
we must have b = 0, a contradiction.

Suppose now that 0 < c′ < b. Let us define r′ = s′r−at′

2 and b′ = ((r′)2 − 4)/a.
Then, b′ = a + b + c′ + 1

2 (abc
′ − rs′t′), and because {a, b′, c′, b} is a regular D(4)-

quadruple b < 5a implies that

b′ <
b

ac′
<

5a

ac′
=

5

c′
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and b′c′ < 5. But with such defined numbers {a, b′, c′} is a D(4)-triple (with a
possibility that some element is equal to 0), so it implies that b′c′ + 4 is a perfect
square. This furthermore implies that b′ = 0 which yields c′ = a + b − 2r = c−1 ,
whence c = c−ν for some ν.

If c′ = 0, then s′ = t′ = 2 and therefore c = s + t which is possible only if
s = a+ r, t = b+ r and c = a+ b+ 2r = c+1 , so again c = c+ν for some ν.

Let {a, b, c} be a D(4)-triple and r, s, t positive integers satisfying ab + 4 = r2,
ac+ 4 = s2, bc+ 4 = t2. Suppose that {a, b, c, d} is a D(4)-quadruple with d+ < d.
Then, there exist positive integers x, y, z such that ad + 4 = x2, bd + 4 = y2,
cd+ 4 = z2, from which we obtain

az2 − cx2 = 4(a− c), (3)

bz2 − cy2 = 4(b− c). (4)

Positive solutions of Pellian equations (3) and (4) respectively have the forms:

z
√
a+ x

√
c = (z0

√
a+ x0

√
c)

(
s+

√
ac

2

)m

, (5)

z
√
b+ y

√
c = (z1

√
b+ y1

√
c)

(
t+

√
bc

2

)n

, (6)

where m,n are non-negative integers and (z0, x0), (z1, y1) are fundamental solutions
of (3), (4), respectively, satisfying

2 ≤ x0 <
√
s+ 2, 2 ≤ |z0| <

√
c
√
c√
a
,

2 ≤ y1 <
√
t+ 2, 2 ≤ |z1| <

√
c
√
c√
b
.

Thus, we have z = vm = wn, where

v0 = z0, v1 =
sz0 + cx0

2
, vm+2 = svm+1 − vm,

w0 = z1, w1 =
tz1 + cy1

2
, wn+2 = twn+1 − wn. (7)

In what follows, we assume that

{a, b, c′, c} is not a D(4)-quadruple for any c′ with 0 < c′ < d−, (8)

where d− = a+ b+ c+ 1
2 (abc− rst), in order to furthermore narrow the possibilities

for fundamental solutions (z0, x0) and (z1, y1).

Lemma 2. Assume (8) and c ≥ b5. Then, v2m+1 ̸= w2n and v2m ̸= w2n+1. More-
over, we obtain the following.

(i) If v2m = w2n, then z0 = z1 and |z0| = |z1| = 2.
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(ii) If v2m+1 = w2n+1, then |z0| = t, |z1| = s and z0z1 > 0.

Proof. The proof of this lemma is the same as the proof of [2, Lemma 3] where we
have considered the case of extendibility of D(4)-pairs {k − 2, k + 2}, the novelty
being the use of the fact that c ≥ b5.

3. Congruences

In this section we firstly prove the following lemma.

Lemma 3. Let {a, b, c} be a D(4)-triple with a < b. If b ≤ 104, then the only
extension of {a, b, c} to a D(4)-quadruple is with d = d+ and d = d−.

Proof. To prove this we use the Baker-Davenport reduction method which is ex-
plained in detail in [7, Section 5]. Notice that we can use the exact values for
fundamental solutions from Lemma 2. We have done this in Mathematica 8 package
where we start with fixed a and b for which we have upper bounds, and then we start
with smallest possible c to prove the uniqueness of the extension of a D(4)-triple
{a, b, c}. On that way we can always assume (8). Remember that from [7, Lemma
8] we have an upper bound for c and the first upper bound for indices m and n
using the same arguments as in [7, Section 5]. The only difference is that there it
was done for a general triple {a, b, c}.

In the case b < 5a we use that we know exactly all possible c’s which are given
by formula

c = c±ν =
4

ab

{(√
b±

√
a

2

)2(
r +

√
ab

2

)2ν

+

(√
b∓

√
a

2

)2(
r −

√
ab

2

)2ν

− a+ b

2

}
,

while in the case b ≥ 5a we find all possible c’s by solving equation (1) in s and t
knowing the upper bounds for fundamental solutions. It takes us slightly more time
in that way, but the interesting thing is that in most of the cases we get only the
fundamental solutions (s0, t0) = (2,±2) so c = c±ν .

To run all of this in Mathematica it took us around 400 hours with the processor
Intel(R) Core(TM) i3 CPU 550 @3.20GHz.

Now using this we get the following Lemma.

Lemma 4. Assume (8) and c ≥ b5.

(i) If v2m = w2n, then m <


1.008n if b < 1.5a,

1.031n if 1.5a ≤ b < 5a,

1.21n if b ≥ 5a.

(ii) If v2m+1 = w2n+1, then m <


1.008n if b < 1.5a,

1.031n if 1.5a ≤ b < 5a,

1.21n if b ≥ 5a.
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Proof. (i) Suppose that v2m = w2n. Since

v2m > v1(s− 1)2m−1,

w2n < w1(t)
2n−1,

and c ≥ b5 in any case, we have (s− 1)2m−1 < c+t
c+s (t)

2n−1. We now have

c+ t

c+ s
· (t)2n−1 < 1.001 · (bc+ 4)n−1/2 < 1.0012n(bc)n−1/2

and

(s− 1)2m−1 > 0.9992m−1(ac)m−1/2.

The first two statements now follow easily from this, using that b > 104 and the
upper bound for b in terms of a.

In the case b ≥ 5a, we have 0.9992m−1cm < 1.0012nc(12n−1)/10, which implies
m < 1.21n. Because if we suppose m ≥ 1.21n, using the fact that c ≥ b5 > 1020, we
have

20(0.01n+ 0.1) log(10) < 2n log(1.001)− (2m− 1) log(0.999).

It furthermore yields, using that we always have n ≤ m < 2n,

0.46n+ 4.6 < 0.007n,

which is a contradiction for any positive integer n.
(ii) Suppose that v2m+1 = w2n+1. The proof of this case is the same, but here

we also use that v1=w1.

Lemma 5. Assume (8).

(i) If v2m = w2n, then

n >


1.414a−1/2c1/8 if b < 1.5a and c ≥ b6,

0.183a1/2b−1c1/2 if b ≥ 1.5a and c ≥ b5,

0.863a1/2b−1c1/2 if b ≥ 5a and c ≥ 6b5.

(ii) If v2m+1 = w2n+1 and c ≥ b5, then n > 0.433b−3/4c1/4.

Proof. We give the proof only for the first case in (i) because the proof, based on
the well known congruence method introduced in [5], is the same as for the analogous
lemma in [11]. Suppose that v2m = w2n. Note that we may assume that m ≥ 2 and
n ≥ 2. We see with z0 = z1 = ±2 and x0 = y1 = 2 that

±am2 + sm ≡ ±bn2 + tn (mod c). (9)

Consider now b < 1.5a and c ≥ b6. Suppose that n ≤ 1.414a−1/2c1/8. Since
m < 1.008n by Lemma 4 and c ≥ b6 > 1024, it is easy to see that

am2 <
c

2
, sm <

c

2
, bn2 <

c

2
, tn <

c

2
. (10)
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Then, it follows from (9) that

±am2 + sm = ±bn2 + tn. (11)

Moreover, squaring both sides of (9) twice, we have{
(am2 − bn2)2 − 4(m2 + n2)

}2 ≡ 64m2n2 (mod c). (12)

Since {
(am2 − bn2)2 − 4(m2 + n2)

}2
< (0.5an2)4 < c,

64m2n2 ≤ 64 · 1.0082 · 1.4144a−2c1/2 < c,

(12) in fact becomes an equation, and hence we have

am2 − bn2 = ±2(m± n). (13)

If am2 − bn2 = ±2(m+ n), we have

±

{
a

(
t± 2

s∓ 2

)2

− b

}
n = ±2

(
t± 2

s∓ 2
+ 1

)
.

Then we have either

n =
(s+ 2)(s+ t)

2(2b− 2a+ at+ bs)
>

ac

b(2s+ 4)
> 0.33a−1/2c1/2 > 1.414a−1/2c1/8,

which is a contradiction, or we have

n =
(s− 2)(s+ t)

2(2a− 2b+ at+ bs)
>

s− 2

2b
> 0.33a−1/2c1/2 > 1.414a−1/2c1/8,

a contradiction again. Similarly, if am2 − bn2 = ±2(m− n), we have

n =
(t− s)(s± 2)

2(bs− at± 2(b− a))
>

t− s

2(b− a)
=

c

2(s+ t)
> 0.24b−1/2c1/2 > 1.414a−1/2c1/8,

which is a contradiction. Therefore, if b < 1.5a and c ≥ b6, then n > 1.414a−1/2c1/8.

4. Proof of Theorem 1

In this Section, we firstly give the improvement of [3, Theorem 3.2] and [18, Theorem]
where we use the important fact that in our case N is divisible by ab similarly to
what was done in [2].

Theorem 2. Let a, b and N be integers with 0 < a ≤ b − 7, b ≥ 12 and N ≥
308.07a′b2(b− a)2, where a′ = max{4(b− a), 4a}. Assume that N is divisible by ab.
Then the numbers
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θ1 =

√
1 +

4b

N
and θ2 =

√
1 +

4a

N

satisfy

max

{∣∣∣∣∣θ1 − p1
q

∣∣∣∣∣,
∣∣∣∣∣θ2 − p2

q

∣∣∣∣∣
}

>

(
16.01a′bN

a

)−1

q−λ

for all integers p1, p2, q with q > 0, where

λ = 1 +
log(8.01a−1a′bN)

log(0.026a−1b−1(b− a)−2N2)
< 2.

Proof. Proof of this Theorem is the same as the proof of [2, Theorem 2].

Now using the last Theorem for N = abc, p1 = sbx, p2 = tay and q = abz and
combining it with [6, Lemma 6] we can prove the following.

Lemma 6. Let {a, b, c, d} be a D(4)-quadruple with a < b < c < d. Assume that
c > 308.07a′b(b− a)2/a, where a′ = max{4a, 4(b− a)}. Then,

log z <
log(32.02aa′b4c2) log(0.026ab(b− a)−2c2)

log(0.00325a(a′)−1b−1(b− a)−2c)
.

And eventually we need one more lemma which is actually part of the proof of
[7, Lemma 8].

Lemma 7. Assume that c ≥ b5. If z = vm′ = wn′ with (m′, n′) ∈ {(2m, 2n), (2m+
1, 2n+ 1)}, then

log z >
n′

2
log(bc).

At the end we prove the Proposition which will finish the proof of the main
Theorem.

Proposition 1. (1) If b < 1.5a and c ≥ b6, then b ≤ 9940.

(2) If 1.5a ≤ b < 5a and c ≥ b5, then b ≤ 3505.

(3) If b ≥ 5a and c ≥ 6b5, then b ≤ 8877.

Proof. Here we give only the proof of (1) because the proofs for other cases are the
same using the previous results.

Since c ≥ b5 in any case, and b > 104, we have c > 308.07a′b(b − a)2/a and we
may apply Lemma 6, which together with Lemma 7 implies that

n′

2
<

log(32.02a(a′)b4c2) log(0.026ab(b− a)−2c2)

log(bc) log(0.00325a(a′)−1b−1(b− a)−2c)
, (14)

where n′ ∈ {2n, 2n+ 1} and a′ = max{4a, 4(b− a)}.
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(1) Assume that b < 1.5a and c ≥ b6. Since 4b/1.5 < a′ = 4a < 4b and
8 < b− a < b

3 , we have

32.02a(a′)b4c2 < 32.02 · 4b6c2 = 128.08b6c2,

0.026ab(b− a)−2c2 < 0.026b2 · 8−2c2 < 0.00041b2c2,

0.00325a(a′)−1b−1(b− a)−2c > 0.00325 · a(4a)−1b−1

(
b

3

)−2

c > 0.00731b−3c,

which together with (14) implies that

n′

2
<

log(128.08b6c2) log(0.00041b2c2)

log(bc) log(0.00731b−3c)
=: f(c).

Since f(c) is a decreasing function with respect to c for c ≥ b6, we have f(c) ≤ f(b6)
and thus

n′

2
<

log(128.08b18) log(0.00041b14)

log(b7) log(0.00731b3)
. (15)

(i) If v2m = w2n, then we have

1.414b−0.5(b6)0.125 <
log(128.08b18) log(0.00041b14)

log(b7) log(0.00731b3)
,

which implies b ≤ 9940.
(ii) If v2m+1 = w2n+1, then we have

0.433b−0.75(b6)0.25 + 0.5 <
log(128.08b18) log(0.00041b14)

log(b7) log(0.00731b3)
,

which implies b ≤ 127.

Acknowledgement

The second author was supported by the Ministry of Science, Education and Sports,
Republic of Croatia, grant 037-0372781-2821.

References
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[2] Lj. Baćić, A. Filipin, On the extendibility of D(4)-pair {k − 2, k + 2}, J. Comb.
Number Theory, to appear.

[3] M.A.Bennett, On the number of solutions of simultaneous Pell equations, J. Reine
Angew. Math. 498(1988), 173–199.
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