MATHEMATICAL COMMUNICATIONS 457
Math. Commun. 18(2013), 457477

Some inequalities for polynomials and transcendental entire
functions of exponential type

QAzI M. TARIQ!*

Y Department of Mathematics and Computer Science, Virginia State University,
Petersburg, VA 23806, U.S. A.

Received January 18, 2013; accepted October 7, 2013

Abstract. Let p be a polynomial of degree n such that |p(z)] < M (]z| = 1). The
Bernstein’s inequality for polynomials states that |p’(z)| < Mn (|z] = 1). A polynomial p
of degree n that satisfies the condition p(z) = 2"p(1/z) is called a self-reciprocal polynomial.
If p is a self-reciprocal polynomial, then f(z) = p(e') is an entire function of exponential
type n such that f(z) = ™ f(—z). Thus the class of entire functions of exponential type
7 whose elements satisfy the condition f(z) = ¢7f(—z) is a natural generalization of
the class of self-reciprocal polynomials. In this paper we present some Bernstein’s type
inequalities for self-reciprocal polynomials and related entire functions of exponential type
under certain restrictions on the location of their zeros.
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1. Introduction and statement of results

1.1. Bernstein’s inequality for polynomials

Let P,, denote the class of all polynomials of degree at most n and let f € P,. An
inequality for polynomials in P, known as Bernstein’s inequality, gives an estimate
for |f'(z)| on the unit circle in terms of the maximum of |f(z)| on the same circle.
It states (see [15], p. 508) that

max|f'(z)] < nmax|f(=), [ € P, (1)

|z=1 |2l

where the equality holds for polynomials of the form cz",c # 0.
It is known [13] that if f is as above and f*(z) := 2" f(1/Z), then on |z| =1

G+ 1G] < nmax[f(z)], f € Pa. (2)

2]
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Let P.’ be the subclass of P,, consisting of all polynomials f which satisfy the
condition f(z) = f*(z). It follows from (2) that
n

max |f'(z)] < o max|f(z)],  fEP;. 3)

|z|=1 2 |z|=1

Let f € P, and 2 a point on the unit circle such that |f(zo)| = max ;= |f(2)].
Clearly, [f*'(20)| = [nf(20) = 20f"(20)| = nlf(20)] = |f'(20)|. Hence, if f € Py, then

max |f/(2)] 2 31f (0] = 5 max | £(2)]

|z[=1 |2l

w_»

and so, in (3), the inequality sign “<” may be replaced by . Thus, we have

max |f'(z)| = 5 max|f(z),  fePy. (4)

|z|= |z|=1

The subclass P, of P, is of considerable importance. There is another subclass
of P,, which has proved itself to be equally significant, if not more. It consists of
those polynomials f in P, which satisfy the condition f(z) = 2"f(1/z). Let us
denote it by P,’. The condition defining the subclass P,/ looks very similar to the
one defining P,’. As regards the distribution of their zeros, polynomials in P, and
those in Py, they all have at least half of their zeros outside the open unit disk (here
it is understood that a polynomial f belonging to P,, but of degree m < n has n—m
of its zeros at 00).

Frappier, Rahman and Ruscheweyh ([6], p. 97) showed that for the polynomial
f(z) :={(1 —iz)? 4+ 2""2(2 — i)2} /4, which clearly belongs to P, we have

max |f(z)] =1 =|f(i)| whereas |f'(—i)]=n—1,

|z|=1
thus exhibiting a polynomial f in P, for which

max | f'(z)| = (n — 1) max |f(2)]. (5)

|z]=1 |z|=1

Later Frappier, Rahman and Ruscheweyh ([7, Theorem 2]) proved that for poly-
nomials f(z) := Y ._,a,2”, whose constant term a is equal to a, (the coefficient
of the leading term a,z"), we have

w2 < (0= + gty ) ma £ ©

|z|=1

Since f belongs to P if and only if ar, = a,_j for each k (k =0...n), the above
inequality certainly holds for polynomials in P,Y. Inequalities (5) and (6) show
that by restricting ourselves to the subclass P/, we do not obtain a meaningful
improvement on the Bernstein’s inequality (1). This is quite surprising since the
two classes P’ and P, look similar; for P, holds formula (4) by which |f’(z)| at
a point of the unit circle cannot be larger than n/2 times M := max;— |f(2)| if
f € Py while it can be as large as n — 1 times M if f belongs to Py, as (5) says.
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However, under some additional restrictions, either on the location of the zeros
or on the coefficients of polynomials in P, the bound in (6) can be improved.
For example, Rahman and Tariq [16] (see also [11]) proved that for a polynomial
f(z) = >0 _ja,z” in Py, whose coefficients lie in a sector of opening 0 < v < 7
with the vertex at the origin, we have

, n
max|//(2) € 5ot ). (7)
In the case when n is an even integer, the equality holds in (7) for the polynomial
f(z) = 2™ + 2e727/2 4 1.

On the other hand, if we assume that all the zeros of f are in the left half plane
or in the right half plane [9], then

/ <
max |f1(2)l = 5 max £ (z)l- (®)

Very few sharp results are known about the class P, although many papers have
been written on the subject since 1976 (see for example, [9, 11, 16]). In fact, the
sharp inequality analogous to (1) is still unknown even for n = 3.

The Bernstein’s inequality has been generalized in many ways. For example, if
f is a polynomial in P,,, then by Zygmund [19] for any p > 1, we have

[ﬂﬁwwwsw[ﬂm%%m fepn. (©)

If we assume that f belongs to P,’, the above inequality can be improved. In
this case Dewan and Govil [5] proved the following result

/ e do<n Cy [ |fE@O)P do,  fePr, (10)
where ) fl"( /2 0
s _ T U(p/2 +
Cp= T _gmp VI WZT ) 11
= i+ eafrda T(p/2+1/2) 1

In this paper, we present a property of polynomials in P,” which have all their
zeros in the left half plane. More precisely, we have the following

Theorem 1. Let f be a polynomial in P, having all its zeros in the left half plane.
Suppose in addition that its zeros which lie in the second quadrant are of modulus at
most 1. Then

[Fe<If'()],  o0<o<m (12)

As the first application of Theorem 1, we will prove the following L inequality
for the subclass P. We do not know if it is sharp.

Corollary 1. Let f, which has all its zeros in the left half plane, belong to P .
Furthermore, the zeros in the second quadrant are in the unit disk {z : |z| < 1}.

Then, forp > 1
0

/O @ do<ne ¢y [ LF(E)P do, (13)

—T

where C), is as given in (11).
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As the next application we state the following corollary.

Corollary 2. Let f, which has all its zeros in the left half plane, belong to P .
Furthermore, the zeros in the second quadrant are in the unit disk {z : |z] < 1}.
Suppose that |f(e™9)| < M for 0 <6 < m. Then

I (e7)| < Mg, 0<6<m (14)

The example f(z) = (22 +1)% shows that the estimate is sharp when n is even. For
odd n, the equality holds for f(z) = (z +1)".

1.2. Transcendental entire functions of exponential type

For an entire function f and a real number 7 > 0, let M (1) = My(r) :=max|.|—, | f(2)|.
Unless f is a constant of modulus less than or equal to 1, its order, which is denoted
by p, is defined to be limsup,._, . (logr) ™! loglog M(r). Constants of modulus less
than or equal to 1 are of order 0 by convention.

If f is of finite positive order p, then T := limsup,_, 7 ?log M (r) is called its
type.

An entire function f is said to be of exponential type 7 if for any £ > 0 there
exists a constant k(¢) such that |f(2)| < k(e)e("t9)I%l for all 2 € C. Any entire
function of order less than 1 is of exponential type 7, where 7 can be taken to be
any number greater than or equal to 0. Functions of order 1 type T' < 7 are also of
exponential type 7.

If f is an entire function of exponential type, then its indicator function h¢(6) is
defined by h(6) := limsup,_, . 7~ log|f(re?)|. It describes the growth of f along
the ray {z|argz = 0}. hy(9) is either finite or —oo and is a continuous function of
0 unless it is identically —oo.

For a detailed discussion on entire functions of exponential type, we refer the
reader to Boas [4].

Bernstein [2], (see also [3], p. 102) extended inequality (1) to arbitrary entire
functions of exponential type bounded on the real line.

Theorem 2. Let f be an entire function of exponential type T > 0 such that
|f(x)] < M on the real azis. Then

sup [ f'(2)] < M. (15)

—oco<z <00
The equality in (15) holds if and only if f(z) = ae'™ + be™' "%, where a,b € C.

If f € PY, then g(z) := f(e'*) is an entire function of exponential type which
satisfies the condition g(z) = e"*g(—z). Moreover, its type is n. This suggests that
the class of entire functions of exponential type that generalizes P, consists of entire
functions of exponential type f such that f(z) = e'™* f(—z). Let us denote this class
by F.) which has been studied by Govil [8], Rahman and Tariq [17, 18].

Rahman and Tariq ([17, Theorem 2|) proved the following Theorem which is akin
to (5), a result proved by Frappier, Rahman and Ruscheweyh [7] for polynomials.
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Theorem 3. For a given positive number €, as small as we please, there exists an
entire function f. € F, such that

sup |fi(x)] = (r—¢) sup |[fe(a)]. (16)

—oo<r <o —oo<r<oo

Like polynomials, improved inequalities for F¥ can be obtained if we impose
some additional restriction on it. For example, Rahman and Tariq ([17, Theorem 1])
proved the following theorem for functions in FY which are uniformly almost periodic
on the real line. It is clearly an extension of (7) for entire functions of exponential

type.

Theorem 4. Let f € F be uniformly almost periodic on the real line. Furthermore,
suppose that the coefficients A1, As, ... of the Fourier series Y .- Apethn® of f lie
in a sector of opening 0 < v < 7 with the vertex at the origin. Then

sup | f'(x)] [£(0)]- (17)

r
[ —

— o<z <00 ~ 2cos(y/2)

The result is best possible as the equality holds for f(z) = e7* 4+ 2el7el™#/2 4 1.

Let p > 0 be a real number. We say that a function f belongs to LP on the
real line if, [ |f(2)[P dz < co. Inequalities (9) and (10) have been generalized for
entire functions of exponential type as well. For example, as a generalization of (9)
we have

Theorem 5. Let f be an entire function of exponential type T that belongs to LP
on the real line, where p > 0 is a real number. Then

[ irapda<e [P . (13)
For various refinement and detailed information we refer the reader to the paper
of Rahman and Schemeisser [14].
For functions f in F that belong to L? on the real line, Rahman and Tariq ([18,
Theorem 3]) proved that

o'} 7_2 o0
| r@p <G [P (19)

where the coefficient 72/2 of [*_|f(2)|? dz cannot be replaced by a smaller number.

In this paper, we present the following theorem for functions in F that have
all their zeros in the first and the third quadrants. It is clearly an extension of
Theorem 1 for entire functions of exponential type.

Theorem 6. Let f, which has all its zeros in the first and the third quadrants,
belong to F,'. Then

(=)l <|f' (=), x>0 (20)

As applications of Theorem 6, we state the following inequality about functions
in F,/. We do not know if it is sharp.



462 Q. M. TARIQ

Corollary 3. Let f, which has all its zeros in the first and the third quadrants,
belong to F,. Further suppose that f € LP on (—00,0). Then, forp > 1

0 0
[ ir@pas<ee, [ iap (21)
where C), is as given in (11).

Corollary 4. Let f, which has all its zeros in the first and the third quadrants,
belong to F, . Further assume that |f(z)] < M on (—o0,0). Then

z < 0. (22)

The estimate is sharp as the evample M (1 + e'7*)/2 shows.

Corollary 5. Let f, which has all its zeros in the first and the third quadrants,
belong to F. Further assume that |f(z)] < M on (—o00,0). Then

M
Fla+ig) < 5e ™ a<0y<0. (23)
The estimate is sharp as the evample M (1 + e'7*)/2 shows.

1.3. Mean value of entire functions of exponential type

Let p > 0 be a real number. For a function f, the mean of order p on the real line
is defined by

T
MP f(z) = limsup % /T |f(x)P dx. (24)

T—o0

We say that f has a bounded mean of order p, if MPf(x) < oo. It can be easily
seen that a function bounded on the real axis will always have a bounded mean.
However, there are functions which have a bounded mean but not bounded on the
real line. Harvey [12] considered the problems of the mean value of entire functions
of exponential type. Here is one of his results.

Theorem 7. If f is an entire function of exponential type T, then

(p+2)2vt2

P £/
M f (37) S TP op+1

(€™ — 1)MP f(z), p>0, (25)

where § is an arbitrary positive number.

However, when p is greater than one, the constant in the above theorem can be
replaced by 7P. More precisely, Harvey [12] proved that

Theorem 8. If f is an entire function of exponential type T, then

MPf'(z) < TPMPf(z),  p>1. (26)
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As to the mean value of functions in FY, Rahman and Tariq [18] considered the
case when p = 2 and obtained the following inequality.

Theorem 9. If f, which is a uniformly almost periodic function on the real line,
belongs to F., then

) 1 0 , 9 7_2 ) 1 0 9
hmsupf If (x)]7 dx < 5 hmsupf |f(2)]® de. (27)

T—oo -T T—o00 -T
Inequality (27) is sharp as the example f(2) = (1 + €'7*)/2 shows.

Here, we will prove the following inequality about the mean value theorem for
functions in F,'. We do not know if it is sharp.

Theorem 10. Let f, which has all its zeros in the first and the third quadrants,
belong to FY. Assume further that f has a bounded mean of order p where p > 1.
Then

I I
limsupT/T lf (z)|P dz < 7P C, lijr}l_?upf/ |f(z)|P dx, (28)

T—o0 00 -T

where C), is as given in (11).

The rest of the paper is organized as follows. In Section 2, we list all the lemmas
needed in our proofs. Section 3 deals with the proofs of Theorem 1, Theorem 6 and
Theorem 10 and their corollaries discussed above.

2. Lemmas

The first two Lemmas have been proved by Rahman and Tariq [18].

Lemma 1. Let f belong to F, such that |f(z)| is bounded on the real line. Then,

-
for any real v and s = —v/7, we have

oo

] {ewf/(x) I ei”f’(fx)} = Z cnf (17 -5+ n%) , z € R, (29)

n—=—oo

L 11+ (=1)"} {1 = (=1)"cosy} T, n=0,+1,£2,...

= (sT —nm)

and Y07 en] = 7.
Lemma 2. Let f belong to F such that |f(x)| < M on the real line. Then
@)+ (—x)l < M7, zeR. (30)

We will make use of the following interpolation formula due to Aziz and Moham-
mad [1].
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Lemma 3. Let f belong to P, and let £&1,&9,---&, be the zeros of 2" + a, where
a # —1 is an arbitrary complex number. Then for any complex number z we have

2f'(2) = o 1 ra ZCV J(2&), (31)

where
2

n _n fu B n2a
2= T T T ap

v=1 v=1

The next inequality, that can be found in Malik [13] (also see, Govil and Rahman
([10], Inequality (3.2)) where this inequality is given for any order derivatives) is
well-known and widely used in the study of polynomials.

Lemma 4. Let f belong to P,,. Define g(z) = 2" f(1/Z), a polynomial in P,,. Then

[F' @)+ 19'(2)] < nmax fGL =1 (32)

Lemma 5. Let us denote w, = 2z, + 1/2, and w, = 2, + 1/z,, where z,, z, are
complex numbers such that m/2 < arg z,, arg z, < and |z,| <1, |z,| < 1. Define

F(z; wy, wy) = 74372%((,0,, —wy) + 42 (wpwy,) — (|w#|2\swu + |wu|23wﬂ),
G(z; wy) = —2(x 4+ 1)Sw,.

Then for —1 <z <1,

F(x; wy, wy)

>0,
G(z; wy) >0

Proof. First, we note that w, may be written as w, := x, R, + iy, L,, where

1 1
R,o=(1+——"1)>0 IL,=(1-———)<o,
(*dﬁ+ﬁ)— ( aﬁ+%)

x, = Rz, and y, = Jz,. Since argz, lies in [7/2, 7], it implies that Rw, < 0 and
Sw, < 0. Similarly, w, = z,R, + iy,L,, where R, > 0,L, < 0,Rw, < 0 and

Sw, < 0.
F(z; wy, wy,) is a quadratic function of the form az?+bz+c, where a = — 4S(w, —
w,) > 0,b = 4% (wywy,) > 0, and ¢ = —(|w, [*Sw, + |[w, [*Sw,) > 0. Its vertex is

(=b/2a, F(=b/2a; wy,, wy,)), where —b/2a = J(wyw,)/2¥(w, —w,) and

F(=b/2a; w,, wu) (‘Wu|2%wv + ‘WV‘QCSWM)

Cx

(3(%%))
S(wy, — )

(S(wpwp))? = (|Jwu2Sws + |w [2Sw,) S(w, — T,)
S(wy — W)
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The numerator (%((,ul,w#))2 — (|wu|*Swy + [wo [*Sw,)S(w, —w),) of the above expres-
sion is equal to

(quuyuLu+xu uyu {yu 1' 2 R2 +y# )+yu (1' R2+yy )}(yuLu'FyuLu)

= - [yML,UyVLV { IH " ‘r’/RV) (ylLL,lQ,L + yu } + 2y3LuyuL2] (33)
<0.

Since ¥(w, —w,) <0, we have a > 0 and F(—b/2a;w,,w,) > 0. Also, F(z;w,,w,,)
will attain the minimum value at the vertex. Thus, for any real number z we have
F(x;wy,wy,) > F(=b/2a;w,,w,) > 0 and hence in particular for —1 <z < 1.

As far as the function G is concerned, we just have to note that Sw, < 0, which
shows that G(z;w,) = —2(x +1)Sw, >0 for —1 <z < 1. O

3. Proofs of Theorem 1, Theorem 6 and Theorem 10

3.1. Proof of Theorem 1 and its corollaries

Case 1. f has all its zeros on the unit circle

Let us assume that z, := €% where 7/2 <0, <7 (v =1, 2,...,1) are | zeros
of f. Since f belongs to P, for every v,1/z, = e1% is also a zeros of f. Assume
further that f has a zero of multiplicity m at —1, where m > 0. Thus f may be

written as
l

f)=E=+1m H z—elf)(z — e7i0v),

where n = 2] + m. Let 6 be a number in [0, 7] such that 8 # 6,,(v =1, 2,...,1).

Then
) G T
f(e?) f(e?) fe)’
where
g%f’(ew) _ m(cos + 1) i cosf — cosf,  cosf — cosb,
F(e?) |1 T el?]2 |60 — eif. |2 |60 — o0, |2
and
%f’(eie) __ _msinf i:sin@ufsinf)isiné,,JrsinH
F(ei?) 11+ eif|2 60 —eifv[2 el — e 10u]2°

Note that % (f(e'?)/f(e!?)) is an even function of 6 and I (f/(e!?)/f(e'?)) is an odd
function of 0. So |f'(e'?)|/|f(e'?)] is equal to

\/@J;((g:))f " (s ?((j:;)z = \/@?((f—::))f " (S?((f—::;)g
F(em19)
)|

(34)
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For f € PY and 6 € [0, 7], we have |f(e™?)| = |f(e!?)|. So we conclude, from (34)

IF/(e70) <|f' ()], 0<0<m, f(e?) #0.

By continuity, the same must hold for those 6 for which f(e'?) = 0.
Case 2. f is a second degree polynomial

Let z, be the zero of f such that 7/2 < argz, < m and |z,| < 1. The polynomial
f and its derivative f’ may be written as f(z) = (2—2,)(2—1/2,) and f'(z) = 2z—w,,
respectively, where w, 1=z, + 1/z, =z, R, +iy,L,,—1 <z, = Rz, <0,

1
Ry(lJr)>O,0§yy%zl,§1andLy<1 ><O.

) +yp z3 + vy,
The conditions on R, L,,x,,y, ensure that w, lies in the third quadrant. Thus, we
have

P e )] = 2677 —w,| < 267 —w,| = /(")  0<O<m.

This proves the theorem when f is a polynomial of degree 2. We also note that for
0<6<m,|f(e7i? = |f(e!]. Thus, for any f in Py we have

‘f’(e‘“’) ()
7l ) %)

/
< ‘f
1 f(
Case 3. Not all the zeros of f are on the unit circle
Let z, (v =1,2,---,1) be the zeros f such that 7/2 < argz, < and |z,| < 1.
Also suppose that f has a zero of multiplicity m at —1 where m > 0. Then f can
be represented as

el

. 0<6<m (35)

l
OEICEa | !
v=1

where g,(z) = (z — 2,)(2 — 1/2,) is a second degree polynomial in Py for each v.
For any z on the unit circle such that f(z) # 0 we have

’ Lo
f(Z): m +Zg”(2).
F2) A1 g
A straightforward calculation gives us

‘f@)
f(2)

2 2

m
36
z+1 (36)

: ’ m_g,(2) Y FACKAE
+3° +2R | ——= +2 ) R[Sk :
v=1 (Z + 1) gl’(z) p=v+1 gy(z) gH(Z)
There are four parts in the above equation. We will compare the value of each
part at e and €', respectively.

~—

9,(2)
9v(2)
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The first part |m/(z + 1)|* gives us

2
, 0<6<m. (37)

m | m
e—19+1’ T e+ 1

Since g, (z) belongs to Py for each v, from (35) the second part |g/,(2)/g,(2)[?

gives us
2

gu(e™)[* _[ge®)|’
g (e 0)| = | g, (%)
Let z = x + iy be a point on the unit circle. From Case 2 again, it is easy to verify
that

., 0<f<m (38)

m g,(z) m 22 —w,
(z+1)9.(2) (z+1)22—wezt1

_ m 2z — wy o

e+ 12 |z2—wyz+1|2(z+1)(z @z 1)

_ m (Ql(x;wu)"_y Sl(x;wu))—’_i (QZ(x;wu)+y SQ(x;wu)) (39)
|z + 1) |22 —wyz + 1)2 ’

where

Qi1(z;w,) = (x+1) (4x —2(z + DH)Rw, + |wu\2) ;
S1(z;w,) = —2(x 4+ 1)Sw,; (40)
Q2(z;w,) = 2(1 — 2?)Sw,;
So(z;wy) = (4o +2(z — DRw, — [wy [?) .

Thus from Lemma 5, (39) and the fact that
|ef219 _ efia w, + 1|2 _ |ef2i0”e2i9 _ ei0 w, + 1|2 — |e2i0 _ ei@ w, + 1|2,

the third part & (mg{,(z)/(z +1)g, (z)) gives us

mgy(efie) ‘67i0 + 1|2 |672i0 _ efiG w, + ]_|2

Q1(cosb;w,) —sinf Sy (cosO;w,)
= - - - 41
e 112 (020 — oif o, + 12 (41)

5 ( m g;(e—i9)> - Qu(cos(=0);w,) + sin(=6) Si(cos(~0); 1)

Q1(cosB;w,) +sind Sy (cosb;w,)
60 + 1|2 [e20 — et w0, + 1|2

! (10
%(mg”(e )>7 0<6<m.

(e + 1) gu(e)

Let us turn to the fourth part. As in the third part, let z = x + iy be a point on
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the unit circle. Then for any p and v, it can be verified that

g,(2) 9,,(2) 2z — wy, 2z —w, 4 — 220, — 2Zw, + w, W,

9u(2) gu(z) P —zw 1222w, +1 422 - 22(W, +wy) + Wy,

(42)

(Qs(z;wy,wu)+y S3(z;wy, wy))+H1 (Qalw; wy, wy)+y Sa(x;wy,wy))
[42? — 22 (w, +w,) + wyw,|? ’

where

Q3(ziwy,wy) = 1622 — 162R(w, + wy) + Bny%(wu +w,) + 8R(wWywy)
_492%(5;1@11)“‘4&2@# + wu|2+ |WMWV|2 _4$%(EM|WV|2+WV|WM|2)§

Sy(z5wy,wy,) = —8x2%(wy —wy) + 82 (wywy,) + 2%wy|wu\2 — 2%wu|wy|2;

Qu(z;wy,w,) = 82y* (W, + wy) — 44°S(@,w,); (43)

Sa(zywy,wy,) = 8x2§R(wy —Wy,) — 4:E(|wl,|2 — |w#|2) + 2|w,,|2§)%w# — 2|w#\2§Rw,,.

Thus from Lemma 5 and (42), the fourth part Zu s R (g,’j(z)gﬁt(z)/g,,(z)gu(z»

gives us
o (e gl i))
M;Ll < V( )g ( )

B zl: (cos( wy) + sin(—0) Ss(cos(—0);w,)
N —~ |4 cos( - 2(wy +@,,) cos(—0) + w,w,,|?
zl: Q3(cosb;w,) —sinh Sz(cosb;w,) (44)
vt |4 cos 62 — 2(w,, + @) cos O + w,w,|?
i Q3(cosb;w,) +sind Sz(cosB;w,)
5 |4 cos 62 — 2(w,, + wy,) cos O + wy,w,|?
i R g”(efe) 9(") 0<0<m.
p=v+1 gu(e¥) 9u(e?) ’ -
Using (37), (38), (41) and (44) in (36), we conclude that
(o]
<6<m. 4
o 10 , 0<f6<m (45)

Since for any 6, |f(e™%)| = | f(e'?)|, we get from (45)
[Fe™) <If ), 0<o<m f(e”) #0.

By continuity, the same must hold for those # for which f(e'?) = 0. This completes
the proof of Theorem 1.
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Proof of Corollary 1. For polynomials f in P,’, we have

S (D) 4 2 () = n f(2)

From the interpolation formula (31) of Aziz and Mohammad given in Lemma 3, with
a = e, where o € R and z = e'? is a complex number on the unit circle, we get

eia 2 n .
LETS™ o (a) (%),

v=1

i(0+a) pr(,i0y _ i(n—1)0 pr/.—i6 _
i) (e — el 10 pr(eni0) = LT
which can be written as

n

ei(0+a) f/(eie) _ ei(nfl)e f/(ein) =n Z du(eia) f(ei0§u)’

v=1
where
E d,(e'*)| = E - - =
ot [y (") = n? el /(14 el)?

For p > 1, we have

n

<n? 3 dy () [ £(e,)|".

v=1

Ql(0+0) f1(oi0) _ gi(n=1)0 £1(=i0) P

Integrating both sides with respect to 8 from —= to 7, we get
4 . . . (P ™ .
/ ’ 61(0+a) f/(eﬁ) _ el(n—1)9 f/(e—le)‘ do < np/ |f(819)’p do.

Since the above inequality is true for every « in [0, 27], integrating both sides with
respect to « and changing the order of integration, we get

™ 2m ™
/ / el(0+a) f/(eie) — el(n—1)0 f/(e—ia>‘1’ dov df < 27mp/ ’f<eu9)‘p do.
-7 0 -7
(46)

The left-hand side of the inequality (46) is

[

_ 0 2T oy |P ’ _i(n—2)0—ia f(e™)
_/_ﬂ/oyf(e” L—e f/(e)

ei
T 2 1 (510
1(—i0y|P _Ai(2—n)b+ia f'(e")
o[ el ‘1 ° o)

0 2m
> 2 / ()" do / 1+ e” da. (47)
-7 0

ei(0+a) f/(eie) 7ei(n71)0 f/(eiie)‘p dov do

P
da df

p
do df
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Inequality (47) follows from the fact that

|f (e /f (€)= 1for —m<0<0,
|F/(@)/f (e @) > 1for 0< @ <,

and

2m 2m
/ 11+ e |Pdy > / |1 + e|Pdy for every |r| > 1 and p > 1.
0 0

Also, for f € PY, |f(e79)| = |f(e!?)] for 0 < § < 7. From (46) and (47) we conclude
that

0 0
| wenpa e, [ ieny a.
where C), is as given in (11). O

Proof of Corollary 2. Let f be a polynomial in P such that |f(e™%)] < M for
0<6< 7. Since |f(e7!%)| = |f(e?)] for every f in P, it implies that |f(e!)] < M
for —m < 0 < 7. We also observe that g(z) = 2" f(1/z) = f(2). Then from inequality
(32) in Lemma 4, for z = '

FE)+1g' (@) =1 (T +|f' @) <nM, —m<f<m  (48)
From Theorem 1, | f/(e=%)| < |f/(e!?)| for 0 < 0 < =. So, from (48) we get
21/ () <1 D+ () <nM,  0<6<m (49)
The result follows from (49). It is easy to verify that the equality holds for f(z)
= (22+1)7, when n is even and f(z) = (z +1)”, when n is odd. O
3.2. Proof of Theorem 6 and its corollaries

Let {z,},v = 1,2,... be the zeros of f other than 0 in {z € C: Rz > 0,3z > 0}.
The number of such zeros can be finite or infinite. Besides, to each zero z, there
corresponds a zero —z,. A zero of f at the origin, if there is any, must be of even
multiplicity, say 2k. For these reasons, the Hadamard factorization of f takes the

form )
2k iTz/2 _ z
f(z) = cz™e H(l 23>,

where ¢ is a constant and k is a non-negative integer. Now, let us write
x, =Rz, and y, =Sz,

so that z, > 0 and y, > 0.
Case 1. f has only real zeros
In this case, for any real z different from 0 that is not a zero of f, we have

f'(x) 2k 1 1 T
f(x) _x+21j:(xl,+x_x,,—x>+12'
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The real part of f'(z)/f(z) is clearly an odd function of = and so

(e ah)

From the definition of the class FY it is clear that |f(—z)| = |f(z)| for any real z.
Hence |f'(—z)| = |f'(x)|. Since it holds for any x such that f(z) # 0, by continuity
it also holds for those values for x for which f(z) = 0.

Case 2. The zeros of f are not all real

In this case, for any real z different from 0 that is not a zero of f, we have

f'(x) _ (T
T =A@+ (54 Br@)
where A . 2k T, +x T, — X
p@)i= D (e mrra)
and

- TylYy
Blw) = da ) ((m + a2+ y2) (@, — 2+ y3>) |

Consequently, for any real & # 0 such that f(x) # 0 we have

f'(x)
f(=)

Now note that Bf(z) is an odd function that is positive for > 0. Hence

= @y + (B + )

’Bf(f:c)Jr%‘ < ’Bf(I)Jr% ) x>0, f(z) #0.

Since | f(—z)| = | f(z)|, we find that |f'(—z)| < |f'(x)]| for any positive x if f(x) # 0.
However, by continuity, the same must also hold for those values of x for which
f(z) = 0. The proof of Theorem 6 is thus complete.

Proof of Corollary 3. Let p > 1 be any real number. From the interpolation
formula (29) given in Lemma 1, we get

o0
<y =

n=—oo

ei'yf/(x) -‘reiﬁcf/(—x) p

T

o)

If we integrate both sides of the above inequality with respect to z on the real line,
we have

o0

/ €77 /() + &7 f (—a) |Pda < T”/ |f(@)["dz.

— —00
The above integral is true for any 0 < v < 2w, therefore by integrating both sides
with respect to v on the interval [0, 27] we get

oo

27 oo
/0 /_ e f/(x) 4+ ™% f(—x)[Pdxdy < 27 Tp/ |f(z)|Pdz. (50)

— 00
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The integral on the left-hand side of (50) may be written as
2m 0 ) 2m poo .
| 1es@serrcopaar [ Tén @ e P dr. 61
0 J-oo o Jo

The first integral fo% f_ooo el f'(x) + " f'(—x)|Pdx dy in (51), after the change of
order of integration can be written as

0 27
|| @@ e

-/ Ooo s [ -

0 2
> / (@) / 1+ P dy. (52)

— 00

1+ ei‘rac—i'y

Inequality (52) follows because for z < 0, |f'(—x)/f'(z)| > 1 from Theorem 6 and
fo% 1+ rel7|Pdy > fo% |1+ €7 |Pdry for every |r| > 1 and p > 1.

Similar reasoning applied to the second integral fo% IS 1€ f/ (@) +e f (—) [Pdady
in (51) gives

27 oo oo 27
/0 / 167 /(@) + 07 f'(—a) Pdady > / I (—a)Pdz / 14 Pdy, (53)

as once again from Theorem 6 we have |f'(z)/f'(—z)| > 1 when z > 0.
Thus from (50), (52) and (53) we get

/ Ty ( / @ det / prIEnT dx) <onrt [ |p@par. (54

— 00 — 00

Note that

0 o 0
[ r@r s [Cipeor a2 [ r@pra. @)

— 00 — 00

Also, for f € F), we have |f(z)| = |f(—=z)|, and so

[ isepar=2 [ irwpas (56)

— 00 — 00

From (54), (55), and (56) we get

0 0
[ 1w [ @,

where C), is as given in (11). O
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Proof of Corollary 4. Let f € FY such that |f(x)] < M for x < 0. Since f € FY,
we have |f(z)| = |f(—x)| for x € R and hence |f(z)] < M for —co < x < 0. So
from inequality (30) in Lemma 2 we have

'@+ [f(-2)| < M7, zeR (57)

Also, from Theorem 6, |f'(—x)| > |f'(z)| for x < 0, and (57) then gives us

M
F@)ls =5 w<0
It is easy to verify that the equality holds in (22) for f(x) = M(1 +e'™)/2. O

Proof of Corollary 5. Let f satisfy the conditions given in Corollary 5. Then
according to Corollary 4, for © < 0,|f'(z)] < M7/2. From Rahman and Tariq
([18, Lemma 3]), hy(m/2) < 0. Thus we have hyp (7/2) < hy(n/2) < 0 as well.
Consider the function g(z) = e'7*f(z). Then g(z) is an entire function of exponential
type 7 and g(z) = f(—z). From Corollary 4, |¢'(z)] < M7/2 for x > 0. Also,
hg (m/2) = hy(—m/2) = 7. Then according to Theorem 6.2.3 ([4], page 82), for
20,y 20,

. Mt
l9'(z +1iy)| < - € v.

Since g(z) = f(—2z), we have for x <0,y <0,

M
(e +iy) < - e
It is easy to see that the equality holds for the function M (1 + ei7%)/2. O

3.3. Proof of Theorem 10

Let f, whose zeros lie in the first and the third quadrants, belong to F¥. Let € > 0
be an arbitrary real number. Define the function g. as follows

in £
,sin sz

z

B
13

ge(2) =e f(2). (58)

=
2

It is obvious that g.(z) is an entire function of exponential type 7+ €. Also,

7497 (—2) = o8 L2 i () = 5 20 () = o (2),

Thus, g.(z) belongs to FY, ..

Note that the zeros of g.(z) are the zeros of sin 5z or the zeros of f(z). Since the
zeros of sin z are all real, the zeros of g.(z) also lie in the first and third quadrants.
Hence, according to Theorem 6,

lge(=2)| < lge(x)l, = =0. (59)
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Next, we will show that g. is bounded on the real line. The assumption that MP(f) <
oo gives us ([12, Theorem 1]), f(x) = O(\x|%) as |x| — oo . It means there exist a

positive real number zg € R and a real number N; € R such that |f(z)] < N |1’|%
for |z| > x¢. Thus for |z| > x,

.. sinfx sin £x 1 2 2
|g=(2)| = |e'3" 52 f@)] <M 52 |z[7 < N1 T =M -1
3T 3 el elzo| P

On the interval [—x¢, =], ge is continuous and hence bounded. So there exists a real
number N such that |g.(x)| < N for z € [—x0, zo]. Let K:max(2N1/6|x0\1_%,N2).
Then |ge(z)] < K for x € R. Thus g. is bounded on the real line and belongs to
F),.. Hence Lemma 1 (with 7 replaced by 7+ ¢), when applied to the function
ge(2), gives us for € R

: i i(t+e)x - nm
,1{e79é(g:)+e(+) g;(fx)}: Z Cn9e (ms+7+€>,

n=—oo

where

- m {1+ D" HL = (=D)"cosy} (T +e),  n=0,£1,%2,...,

7 is any real number, s = —y/(7 +¢), and Y~ |cn| =T + €.
From the above interpolation formula we have

—i{e"gl(x) + TG ()} & nm
r+e - Z dnge 55_5"’_7__'_5 ’ (60)

n=—oo

where d,, = ¢, /(T +¢) and Y02 __ |d,| = 1. Thus right-hand side of (60) is a

n=-—oo
convex combination of {g. (v — s +nw/T + )} So for p > 1 we get

oo
. . P
—i{e"gl(x) + T T)gl(—x)} = Y
< dn - 9
‘ T+e _n:z_:oo| o=\ s
which gives us
i i(rT x p > nm p
gl (x) + e 92(—35)‘ < (T+€)pn;w|dnl 9e (m_SJF T+€) (61)

Let T > 0 be an arbitrary real number. Then, integrating both sides of (61) with
respect to x we get

L " g ir+e)e g ([
o7 | |engk(@) + g ()| da
-T
1 T & nmw P
S(T+€)p2T/Tn_Z:OO|dn Je <x—s—|—7_+€) dz
= 1 T nm \|"
_ P dp| — — dz.
(t+¢) Z| |2T~/—T gs<x s+7_+6) i

n=—oo
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We can change the order of integration in the last inequality because the series on
right-hand side of (61) is absolutely convergent and hence uniformly convergent.
Applying Lemma 4 followed by Lemma 1 given in [12] we get

1 [T : P
limsup—T 'e“’g;(x)+el(T+5)wg;(—x)‘ dx
T— o0 -T
P
nw
< v E: dy1 — s+ )| 4
<(t+¢) | |1msup / (x S+T+€) x

n=—oo

) 1 T
=(+eyr Y |dn'“¥f;pﬁ/,T 9 (@) dz = (7 + £)? MPg. ().

n=—oo

Thus M? {gL(z) + !"T9)7g/ (—z) }, the mean value of {e!g.(z)+€!("+)7g/ ()},
exists for each real number v and € > 0. From the definition of limit superior, for
every § > 0 there exists a positive Tp € R such that

1 T

2T

. . p .
e gL(w) + TG ()| dr < MG () + T (~a)) 4 5

< (t4e)PMPg.(z)+6 (62)
foral T > Ty >0, v € R, and € > 0.
Since (62) is true for each ~, integrating both sides with respect to v from 0 to 27

and changing the order of integration which is justified by Fubini’s Theorem as the
function | gl (z) + e‘(T“)Igg(—x)’p is continuous, we get

1 T 27
/.

By considering the iterated integral on the left-hand side of (63), we get

LI

. . p
€9l () + &g ()| dyde < 2m{(7 + PP MPg.(x) + 6}, (63)

. ) P
eVgl(z) + e‘(T“)wgg(—x)‘ drydx

//%Igs )P S
[ o 96(( o
s [ThrePa ([ gerd s [ ldapdr
[iveera [ s [ wcore)
=2 [Tpetan ([ ar).

1+e—1’y+1(7+6)a: ge( )

drydx

1+el’y i(t4e)x

drydx
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Then multiplying both sides by 1/2T, from (63) we get
) 2m o 0
oT ; |1—|—ew| dry (/ |g;(x)|pdx)

</l

<2m{(7 + &)’ MPg.(z) + &} (64)

el'yg + el(‘r+€):r /( x)’p d")/d:l?

Inequality (64) is true for all T' > Tp, so taking limit superior when T' — oo, we get
1 27 . 0
lim sup T/ |1+ elv|P dvy (/ |g;(x)|pdx> < 2m{(T 4 &)PMPg.(z) + 6} (65)
T— o0 0 -T
Since, ¢ is an arbitrary positive real number, letting 6 — 0 we get
1 2 ) 0
limsup—/ |1+ e dy (/ |g;(;1c)|pdm) < 2m(1 4 e)P{MPg.(z)}. (66)
T—o0 T 0 -T
Note that from (59) for every = € R such that > 0, |g-(—z)| < |g-(x)|, we have

1 0
MPg.(xz) = lim SUp o |g5 )P dz < 21im sup T/ lge ()P . (67)
-7

T—o0 T—o0

Then from (66) and (67), we get
. 10 ’ P ; e p
lim sup — lge(2)|” dz < (7 + €)PCp lim sup — lge ()", (68)
T—o0 T -T T—o0 T -T

where C), is as given in (11).
For any x € R,

;I_I)T(l)gs( T) = ii_l)%eigfsngliwf(x) = f(x), (69)
and
lim g/ (2) = f'(a). (70)

Inequality (68) is true for every € > 0, therefore by letting e — 0, and using (69)
and (70), we get (28).
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