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Parametric programming: An illustrative mini
encyclopedia∗
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†

Abstract. Parametric programming is one of the broadest areas of
applied mathematics. Practical problems, that can be described by para-
metric programming, were recorded in the rock art about thirty millennia
ago. As a scientific discipline, parametric programming began emerging
only in the 1950’s. In this tutorial we introduce, briefly study, and illus-
trate some of the elementary notions of parametric programming. This
is done using a limited theory (mainly for linear and convex models) and
by means of examples, figures, and solved real-life case studies.

Among the topics discussed are stable and unstable models, such as a
projectile motion model (maximizing the range of a projectile), bilevel de-
cision making models and von Stackelberg games of market economy, law
of refraction and Snell’s law for the ray of light, duality, Zermelo’s navi-
gation problems under the water, restructuring in a textile mill, ranking
of efficient DMU (university libraries) in DEA, minimal resistance to a
gas flow, and semi-abstract parametric programming models. Some nu-
merical methods of input optimization are mentioned and several open
problems are posed.
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The tutorial is organized by topics as follows:

1. Introduction

2. History

3. Stability

4. Instability

5. Von Stackelberg games
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6. Optimality conditions

7. Duality

8. Input optimization

9. Semi-abstract parametric programming

10. General applications

11. Some open problems

1. Introduction

Applied mathematics uses mathematical models to describe, and possibly solve,
real-life problems. If a model describes an optimization problem, then it is called a
mathematical programming model or an optimization model. These models typically
contain two types of variables: those that can be changed, controlled or influenced
by the decision maker are called parameters (inputs, stimuli), the remaining ones
are decision variables (outputs, instruments). We denote the parameters by θ ∈ R

p

and the decision variables by x ∈ R
n.

The two kinds of variables are often related by a system of equations and in-
equalities such as x ∈ F (θ) = {x ∈ R

n : gi(x, θ) ≤ 0, i ∈ I, hj(x, θ) = 0, j ∈ J}
where gi, hj : R

n ×R
p → R, i ∈ I, j ∈ J are some functions, and I and J are finite

index sets. Models of the form

min
(x)

f(x, θ) subject to x ∈ F (θ)

where θ is allowed to vary over some set F in R
p, are termed parametric programming

models. Parametric programming is the study of such models. Their local analysis,
around a fixed θ, is referred to as sensitivity analysis. The classical sensitivity
analysis studies how the values of a function (say, the minimum value function)
change with small perturbations of the argument or the parameter.

Since every equality constraint can be replaced by two inequalities, one can
assume that J = ∅. Then the mathematical programming model (abbreviated:
model) is said to be linear (resp. convex) if the constraints f(·, θ), gi(·, θ) : R

n → R,
i ∈ I are linear (resp. convex) for every θ ∈ R

p. The set F (θ) is in the space of
decision variables and it is called the feasible set for a given parameter θ. We will
also talk about programs. In our terminology, a program is a special case of a model
when the parameter θ is fixed, i.e., when θ is not allowed to vary.

We assume that one can distinguish between the two types of variables: parame-
ters and decision variables. This may not always be easy. Often it is not clear which
variables should be “parameters” and which ones are “decision variables”. The rule
of thumb is to choose those variables that one can change, control or influence as
parameters.

2. History

Some of the oldest and most common practical problems can be formulated as
parametric programming models. One of these is to determine the maximal range
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of a projectile (stone, snowball, shot ball, arrow, spear, bullet, ski jumper) that
is launched into the air and is then allowed to move freely. Rock paintings, some
possibly 30 millennia old, illustrate the problem. (See Figure 1 reproduced from a
cave in Spain, same in Becker [3].)

Figure 1. Parametric programming in practice

The motion of the projectile is complicated by air resistance and rotational and
gravitational forces of the earth. If these are neglected, then the range depends on
the initial speed v of the projectile and on an angle θ of the launch relative to the
horizontal axis. Assuming that the initial speed is constant, the range still depends
on θ.

A basic problem now is to determine the angle of the launch that yields the
maximal range. It has taken many centuries to mathematically formulate and solve
this problem. It appears that Galileo Galilei (1564–1642) was the first person who
gave the modern, quantitative description of projectile motion. In particular, he
was aware of the validity of treating the horizontal and vertical components of
projectile’s motion as independent motions. (See, e.g., Tipler [40, vol. 1, p.63] for
a translation of Galileo’s comment.)

Using this approach one can formulate the optimal range problem as a paramet-
ric programming model:

2.1. Projectile motion

A situation where a projectile (say, an arrow) is being launched into the air from
an initial height of h meters with the initial velocity v and an angle of projection
θ is depicted in Figure 1. The path of its centre of mass can be described in time
t after applying the second law of motion of Isaac Newton (1642–1727) to the two
components:

d2x

dt2
= 0; no acceleration along the x axis.

d2y

dt2
= −g; constant acceleration along the y axis. (Here g ≈ 9.81m/s2.)

After solving these differential equations with the initial conditions, e.g., x(0) =
0, y(0) = h, and noting that the components of the initial velocity vector relative
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to the x and y axes are vx = v cos θ and vy = v sin θ, the path of the projectile’s
centre of mass is described by

x = x(t) = vt cos θ
y = y(t) = − g

2 t
2 + vt sin θ + h.

The angle θ can be considered as a parameter. Given θ, the projectile is at the
level zero when y(t) = 0, i.e., the corresponding feasible set is

F (θ) = {t : −g
2
t2 + vt sin θ + h = 0}.

It consists of the two roots of the equation y(t) = 0. The parametric program-
ming model, describing the maximal range problem, can be formulated as

max
(t)

f(t, θ) = vt cos θ subject to

− g
2 t

2 + vt sin θ + h ≤ 0.
(2.1)

Solution: In this situation we can determine the optimal parameter (angle).
Indeed, for every θ, the optimal decision variable is the larger root t = to(θ) =
2v
g sin θ, when h = 0. Hence, after substitution in the objective function, the optimal

value function is

fo(θ) = f(to(θ), θ) = vto(θ) cos θ =
v2

g
sin 2θ.

It assumes the maximal value when sin 2θ = 1. Hence the optimal parameter
(i.e., the optimal projection angle of the launch) is θ∗ = 45o; and the optimal value
of the model (i.e., the corresponding maximal range) is fo(θ∗) = v2

g .
The solution is slightly more complicated if the projectile is launched from a

positive initial height h > 0. Studies of the best shot putters (with h ≈ 2m) show
that the maximum range occurs when the projection angle is about 42o.

Remark 1. The problem of optimizing the optimal value function is one of the two
basic problems of parametric programming. The other one is the study of stability.

Let us consider the situation when the projectile is launched from the height
h = 0 and let us determine how the maximal range changes with small changes of
the height h = ε ≥ 0. This illustrates “sensitivity analysis”:

2.2. Sensitivity

The sensitivity information is obtained from the model

max
(t)

f(t, θ) = vt cos θ subject to

t ∈ F (θ, ε) = {t : g
2 t

2 − vt sin θ ≤ ε}.
After substituting the optimal larger root for t = t(ε) in the objective function,

the sensitivity information is obtained from the optimal value function

fo(θ, ε) = vt(ε) cos θ =
v

g

[
v sin θ +

√
v2 sin2 θ − 2gε

]
cos θ.
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In particular, its derivative at ε = 0 is ∂fo

∂ε (θ, 0) = u(θ) = cotθ. Hence we
conclude that the optimal range is most sensitive when the projectile is launched
at a small angle θ > 0, θ ≈ 0. It is least sensitive for the projection angle θ = π

2 ; in
this case ∂fo

∂ε (θ, 0) = 0. Indeed, for the projection angle θ = π
2 , the projectile lands

at the same point where it is launched from, regardless of the height ε = 0 or ε > 0.
The sensitivity function u(θ) turns out to be an optimal solution of the corre-

sponding “dual” model. (We will talk about this later. Since the variable t denotes
time, we have opted for the notation t rather than x in this special case.)

Parametric programming models often appear in problems of static equilibria:

Example 1. (Romeo’s problem) Romeo is climbing on a ladder of negligible
weight. He wants to know the maximal distance s he can climb before the lad-
der slips. Let L denote the length of the ladder and µ the coefficient of friction
between the ladder and the floor. Assume that the ladder leans against a frictionless
vertical floor at an angle 0 ≤ θ ≤ θ∗ < π

2 . (See Figure 2.)

Figure 2. Romeo’s problem

Then Romeo’s problem can be described by the linear parametric model

max
(s)

s subject to

s− µL tanθ ≤ 0, s ≤ L, 0 ≤ θ ≤ θ∗.

The inequality involving the tangent function is obtained using the conditions for
static equilibrium (e.g., Tipler [40, v.1, p.283]). The ladder will not slip as long as
this inequality is satisfied. The sensitivity function, relative to the right–hand side
perturbations of the first constraint is constant: u = u(θ) = 1, 0 ≤ θ < π

2 . One can
also consider µ or L as parameters.

The above two models have important properties: uniqueness of optimal solu-
tions and “stability”. Indeed, for a fixed value of the parameter θ there is only one
optimal decision variable. Also, continuous feasible perturbations of the parameter
θ imply continuous changes of the feasible set F (θ). Many problems of physics,
especially in mechanics, can be described by mathematical models having these
two properties. They are said to be “well posed”. In the late 1950’s, parametric
programming models appeared describing problems outside the world of physics.
These models were expressed in terms of both equations and inequalities. In many
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of these models at least one of the two properties of well posedness was violated.
New mathematical tools had to be developed to study these models. In particular,
basic notions of applied mathematics, such as “optimality” and “stability”, had to
be re-examined and, often, redefined. These are not uniquely defined, and one may
depend on the other. The role of “stability” in mathematical modelling has become
increasingly important even to the point that these days, when confronted with
the choice between optimality and stability, many managers would rather live with
non-optimal but stable plans, e.g., Carlson et al. [79, p.755]. Indeed, optimality and
stability are the two basic notions of parametric programming.

Parametric programming, as a scientific discipline, began to emerge in the early
1950’s. The term “parametric linear programming” appears to be first used by
Manne [26] in 1953. Presently there are at least 15 books devoted to parametric
programming (with hundreds of references). There have been 20 annual symposia
on mathematical programming with data perturbations organized by Tony Fiacco
at George Washington University and 6 biannual symposia on parametric program-
ming and related topics initiated by members of the “Berlin school of parametric
programming” and Frantǐsek Nožička. (At least 29 students obtained doctorates
under his supervision.)

3. Stability

Let us introduce a notion of stability. We study models

(P, θ)

min
(x)

f(x, θ) subject to x ∈ F (θ) = {x ∈ R
n : f i(x, θ) ≤ 0, i ∈ P}.

All functions f, f i : R
n+p → R, i ∈ P in the model (P, θ) are assumed to be contin-

uous. There are many notions of “stability”. We will define stability, essentially, as
continuity of the feasible set mapping F : θ 
→ F (θ). Following Berge [4], we define
continuity of a general point-to-set mapping using the notions of closed and open
mappings.

Definition 1. A point-to set mapping Γ : R
p → R

n is said to be closed at θ∗ ∈ R
p

if, given any sequence θk → θ∗ and a sequence xk ∈ Γ(θk), such that xk → x∗, it
follows that x∗ ∈ Γ(θ∗).

Fact 1. The feasible set mapping F : θ 
→ F (θ) = {x ∈ R
n : f i(x, θ) ≤ 0, i ∈ P}

is closed. The claim is an immediate consequence of continuity of the constraint
functions.

Definition 2. A point-to-set mapping Γ : R
p → R

n is open at θ∗ ∈ R
p if, given

any sequence θk → θ∗ and any point x∗ ∈ Γ(θ∗), there is a sequence xk ∈ Γ(θk)
such that xk → x∗.

Definition 3. A point-to-set mapping Γ : R
p → R

n is continuous at θ∗ ∈ R
p if it

is both closed and open at θ∗.

A closely related notion is the one of “lower semi-continuity”:
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Definition 4. A point-to-set mapping Γ : R
p → R

n is lower semicontinuous at
θ∗ ∈ R

p if, for each open set A ∈ R
n satisfying A ∩ Γ(θ∗) �= ∅, there exists a

neighbourhood N(θ∗) of θ∗ such that A ∩ Γ(θ) �= ∅ for each θ ∈ N(θ∗).

Fact 2. The notions of open and lower semicontinuous mappings are equivalent.

Remark 2. Since the feasible set mapping F : θ 
→ F (θ) is closed, this mapping is
continuous if, and only if, it is lower semicontinuous (i.e., open).

We will study mainly linear and convex models. They will often be studied
locally around an arbitrary but fixed θ∗ ∈ F = {θ : F (θ) �= ∅}, i.e., we will perform
a sensitivity analysis. In this case, we will denote converging sequences by θ → θ∗,
rather than θk → θ∗, k → ∞. Also, the results are simplified if one makes a weak
technical assumption that the set of optimal solutions exists and that it is bounded
at θ∗. The set of all optimal solutions of the program (P, θ∗) is denoted by F o(θ∗).

Definition 5. Consider the convex model (P, θ) around some θ∗ ∈ F . The objective
function f is said to be realistic at θ∗ if F o(θ∗) �= ∅ and bounded.

Theorem 1. (Characterization of continuity of the feasible set mapping)
Consider the convex model (P, θ) around some θ∗ ∈ F . The following statements
are equivalent:

(i) The point-to-set mapping F : θ 
→ F (θ) is continuous at θ∗.

(ii) For every realistic objective function f there exists a neighbourhood N(θ∗) of θ∗

such that F o(θ) �= ∅ and uniformly bounded for every θ ∈ N(θ∗). Moreover, all
limit points of the sequences of optimal solutions xo(θ) ∈ F o(θ), as θ ∈ N(θ∗),
θ → θ∗ are contained in F o(θ∗) (i.e., the optimal solutions mapping is closed).

(iii) For every realistic objective function f there exists a neighbourhood N(θ∗) such
that both F o(θ) �= ∅ for every θ ∈ N(θ∗) and θ → θ∗ implies fo(θ) → fo(θ∗).

We can now define local and global “stability” of a model.

Definition 7. (Local and global stability) Consider a convex model (P, θ) ar-
ound some θ∗ ∈ F . We say that the model is stable at θ∗ if the objective function
is realistic at θ∗ and if the feasible set mapping F : θ 
→ F (θ) is continuous at θ∗.
The model is globally stable if it is stable at every θ ∈ F .

The following sufficient condition for local stability is simple and useful.

Theorem 2. Consider the convex model (P, θ) around some θ∗ ∈ F . Assume that
the objective function is realistic at θ∗ and that the constraints of the program (P, θ∗)
satisfy Slater’s condition, i.e.,

“there exists an x such that f i(x, θ∗) < 0, i ∈ P”.

Then the model is stable at θ∗.
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Stability and instability are illustrated in Figures 3 and 4, respectively.

Figure 3. Stable model at θ∗

Figure 4. Unstable model at θ∗

A majority of models in applied mathematics, including parametric program-
ming models that describe situations in physics and engineering, that are governed
by the laws of Newton, appear to be globally stable relative to feasible perturbations
of the parameters. In contrast, many parametric programming models outside the
world of physics are unstable.

The “caveman’ s problem” of determining a projection angle, subject to Newton’s
law, that maximizes the arrow’s range is a globally stable parametric programming
model. In a modern version of this problem, a businessman wants to determine
prices of products, subject to market constraints, to maximize profit. The business-
man’s model, given below, is globally stable relative to the feasible set, but there are
some complications! They are caused by the non-uniqueness of the set of optimal
solutions.

Illustration 1. (A stable optimal pricing model) Suppose, academically, that
a businessman, the owner of a small corner store, wants to sell three products: x1,
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x2 and x3 with some unit prices θ1, θ2 and θ3, respectively. He assumes that he
can sell any amount of products, provided that certain constraints are satisfied. Let
us analyse his situation and determine a pricing policy that maximizes the shop
owner’s profit. Suppose that the “optimal pricing policy” model is

max
(x)

θ1x1 + θ2x2 + θ3x3

subject to the constraints

x1 + x2 + 2x3 ≤ 60
2x1 + 4x2 + x3 ≤ 80
θ1 + 2θ2 + θ3 ≤ 100
θ1 − θ3 ≤ 10

θ23(x1 + 1) ≤ 1

xi ≥ 0, i = 1, 2, 3; θi ≥ 0, i = 1, 2, 3.

The prices are considered as “parameters” and the products to be sold are the
“decision variables”. One can show (using e.g. Theorem2.) that this model is
globally stable at every feasible θ = (θi) with θ3 �= 1 relative to feasible perturbations
of parameters. Stability here implies, in particular, continuity of the optimal value
function. However, it does not imply continuity of the set of optimal solutions. Let
us analyse the model numerically.

Suppose, initially, that the prices are set at, say, θ1 = 10, θ2 = 20, and θ3 =
0.5. After substituting these values in the model, and solving the corresponding
linear program, one finds that a corresponding optimal sales profile is x∗ = (x∗i ) =
(40, 0, 0)T . This means that the owner should sell only 40 units of item 1 to achieve
the maximal profit, which is 400. Suppose that he wants to determine a pricing
policy that yields a higher profit. Using “input optimization” (described in Section
8) one finds that the profit increases along a path such as:

θ∗(t) = (θ∗i (t)) = (10, 20, 0.5)T + t

(
1√
41
,

2√
41
,

1√
41

− 1
2

)T

, 0 ≤ t ≤ 1.

The path begins at t = 0 and ends at t = 1, connecting the initial policy θ∗(0) =
(θ∗i (0)) = (10, 20, 0.5)T with the new policy:

θ∗(1) = (θ∗i (1)) =
(
10 +

1√
41
, 20 +

2√
41
,

1√
41

)T

.

The optimal sales profile x∗ = (40, 0, 0)T remains the same on the entire path. The
optimal profit function on this path is fo(θ∗(t)) = 400 + 40t√

41
with the highest value

fo(θ∗(1)) = 400 + 40√
41

= 406.25 which is achieved at the path’s end θ∗(1).
Suppose that the store owner wants to increase his profit further by finding a

“globally optimal” pricing policy. He finds that this policy, from the initial θ∗ =
θ∗(1), is achieved at the end of the path

θ†(t) = (θ†i t)) = θ∗ + t

(
−10− 1√

41
, 30− 2√

41
,− 1√

41

)T

, 0 < t ≤ 1.
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It is θ†(1) = (0, 50, 0)T . The optimal value function on this new path is fo(θ†(t)) =
400 + 40√

41
+ 20t

(
30− 2√

41

)
, 0 < t ≤ 1. Its graph on the two paths is depicted in

Figure 5:

Figure 5. Stable model: Continuity of the profit function

However, for any pricing policy chosen on the second path θ†(t), 0 < t ≤ 1, the
optimal solution (sales) profile is uniquely determined and essentially different from
the previous one. It was x∗ = (40, 0, 0)T . Now it is x† = (0, 20, 0)T ! The owner
may expect to achieve the maximal possible profit if he sells only 20 items x2 at the
price of θ2 = 50 per unit. Then his globally optimal profit would be 1000.

Remark 3. The jump occurs because the set of optimal solutions in the decision
variable x does not depend on the parameter θ continuously. Indeed, the set of
optimal solutions for perturbations along θ∗(t), 0 ≤ t ≤ 1 is not unique. It is the
set x1 = 40(1 − λ), x2 = 20λ, x3 = 0, for all 0 ≤ λ ≤ 1. This set includes both
x∗ = (x∗i ) and x† = (x†i ) as special cases of λ and it is the same set for every choice
of the parameter taken on θ∗(t), 0 ≤ t ≤ 1. However, there is only one optimal
solution for the parameter chosen from the path θ†(t), 0 < t ≤ 1 and it is x† = (x†i ).

Figure 6 below depicts discontinuity of the set of optimal solutions:

Figure 6. Stable model: Discontinuity of optimal solutions
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The fact that the set of optimal solutions in x can be discontinuous in a stable
model, as the parameter changes, is the cause of instability in the models with
“enforced optima”. These are models whose feasible sets are the sets of optimal
solutions of some other models. A model with enforced optima follows.

4. Instability

A simple unstable linear model in one scalar variable follows:

Illustration 2. Consider the model

minx1, subject to θ x1 = 0, −1 ≤ x1 ≤ 1.

If θ = 0, then the feasible set is F (0) = [−1, 1] and the optimal solution is
xo

1 = −1. For any perturbation θ �= 0, F (θ) = {0} and the optimal solution is
xo

1 = 0.

Examples of unstable linear models on the canonical form with a full row rank
coefficient matrix are given and studied in, e.g., Zlobec [45]. An illustration of
instability in a situation of “enforced” optima is given next.

Illustration 3. Let us consider the optimal pricing problem from Illustration 1..
The owner of the corner store knows the optimal choice of prices and what and

how many unit products he should sell to maximize the profit. Now suppose that he
reports his sales to a higher level authority, say, the government (internal revenue)
for taxation. Suppose that the authority wants to encourage the store owner to
achieve the highest possible profit. However the store owner will be taxed by the
number of unit products than he can optimally sell (not by how many units he
actually sells). If the tax per unit product x1, x2 and x3 is 3, 2, 1 monetary units,
respectively, then the authority’s objective is to maximize 3x1 + 2x2 + x3 and his
model is

max3x1 + 2x2 + x3, where x = (xi) is an optimal solution of the program

max
(x)

θ1x1 + θ2x2 + θ3x3

x1 + x2 + 2x3 ≤ 60
2x1 + 4x2 + x3 ≤ 80
θ1 + 2θ2 + θ3 ≤ 100
θ1 − θ3 ≤ 10

θ23(x1 + 1) ≤ 1, xi ≥ 0, i = 1, 2, 3; θi ≥ 0, i = 1, 2, 3.

In this situation, the feasible set of the higher-level authority is the shop owner’s
set of optimal solutions. Hence the higher-level authority’s model is unstable when-
ever the shop owner’s set of optimal solutions experiences a discontinuity. The
instability at the higher level manifests itself in jumps of the optimal solutions and
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the optimal value as the prices are perturbed. Let us identify one such “critical” set
of prices. For any price from the path

θ∗(t) = (10, 20, 0.5)T + t

(
1√
41
,

2√
41
,

1√
41

− 1
2

)T

, 0 ≤ t ≤ 1

the set {(40(1− λ), 20λ, 0)T : 0 ≤ λ ≤ 1} represents the shop owner’s optimal solu-
tions; recall Figure 6. Hence the higher level’s authority optimal solution uniquely is
x∗ = (40, 0, 0)T giving him the optimal value 120. However, on the continued path

θ†(t) = θ∗(1) + t

(
−10− 1√

41
, 30− 2√

41
,− 1√

41

)T

, 0 < t ≤ 1

the shop owner’s optimal solution is unique: x† = (0, 20, 0)T . This is the only
solution that he can offer to the authority; hence this is also the authority’s optimal
solution. The authority’s optimal value now drops to 40. The authority’s optimal
value function is depicted in Figure 7.

Figure 7. Unstable model: Discontinuity of the revenue function

The above is an example of a lexicographic programming model or a bi-level
model. In these models a higher level decision maker finds its optimal solution on
the set of optimal solutions of a lower level decision maker. These models typically
appear in market economy, where they are also called von Stackelberg games. The
identification of stable and unstable perturbations is a non-trivial task even in linear
models.

5. Von Stackelberg games

These are bi-level (or multi-level) decision making processes. The upper level deci-
sion maker is referred to as the “leader” and the lower level decision maker is the
“follower”. The leader offers a set of rules (e.g., numerical values of the parameter
θ) to the follower and requests from him to produce a complete set of optimal solu-
tions. The follower obliges and the leader then chooses a point x from this set that
he thinks is locally best for his objective. The leader wants to improve the current
value of his objective. He offers another parameter to the follower and the process
repeats until the leader finds an optimal parameter θ. Note that, for a specified
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value of the parameter, the feasible set of the leader is the set of optimal solutions
of the follower. Complications (instability) occur when the follower does not find a
unique optimal solution. Then we have situations depicted, essentially, in Figure 6
and Illustration 3. Let us illustrate one such situation by a simple example.

Illustration 4. (The leader influences the feasible set of the follower) Sup-
pose that the leader wishes to maximize the objective Φ1(x, θ) = x1

θ and that the
follower wishes to maximize his own objective Φ2(x, θ) = x1+x2. Let θ > 0 and the
feasible set of the follower be determined by x1+θx2 ≤ 1, x1 ≥ 0, x2 ≥ 0. The game
begins by the leader offering the value of the parameter, say, θ = 1 to the follower.
The follower is required to respond by producing the set of all optimal solutions. He
finds that this set is the segment {[x1 x2] : x1 + x2 = 1, x1 ≥ 0, x2 ≥ 0}. The
leader then chooses the best point for him from this set, which is x0(1) = [1, 0]T

and the value of his objective is thus 1
1 = 1. He now realizes that this value might

increase if the parameter θ is decreased, so he offers some θ < 1 to the follower.
But with this value the follower finds only one optimal solution: x0(θ) =

[
0, 1

θ

]T .
The leader’s feasible set has shrunk. He has no choice but, according to the rules
of the game, to accept this point as an optimal solution. The value of his objective
now drops to 0

θ = 0! (The situation is depicted by Figure 8.)

Figure 8. Instability caused by discontinuity of the follower’s set of optimal
solutions.

In some von Stackelberg games the leader influences the objective of the follower
and not his feasible set. Interesting games are those where there is one leader (say,
the central bank of a country) and several followers (other banks and companies)
looking for equilibrium points (e.g., Pareto solutions).

6. Optimality conditions

Optimality conditions are mathematical statements that describe optimal states of
a system. Optimality of a feasible decision variable x (for a given parameter θ) or,
more generally, of a parameter θ, can be fully characterized (without “regularization
assumptions”) only for simple classes of programs and models (linear and some
convex !). Otherwise one needs restrictive assumptions and uses first or second
order optimality conditions to obtain either necessary or sufficient conditions for
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optimality. Before studying convex models, let us recall the more familiar situation
of convex programs (i.e., the fixed parameter case):

(CP)
min f(x), f i(x) ≤ 0, i ∈ P = {1, ...,m}.

Here the objective function f : R
n → R and the constraints fi : R

n → R, i ∈ P
are convex functions. (Recall that a function f : R

n → R is said to be convex if
f [λx + (1 − λ)y] ≤ λf(x) + (1 − λ)f(y) for every x ∈ R

n, y ∈ R
n, and 0 ≤ λ ≤ 1.

In order to concentrate on the essentials, we assume that the functions are defined
on the entire space R

n.)
The following result is an extension of the classical method of Lagrange from

equations to convex inequalities: (Notation: P (x∗) = {i ∈ P : fi(x∗) = 0} denotes
active constraints at x∗.)

Theorem 3. (Karush-Kuhn-Tucker conditions) Consider the convex program
(CP) where all functions are assumed to be differentiable. Also assume that the
constraints satisfy Slater’s condition. Then a feasible point x∗ is optimal if, and
only if, the system

∇f(x∗) +
∑

i∈P (x∗)

ui∇f i(x∗) = 0, ui ≥ 0, i ∈ P (x∗)

is consistent.

The Slater condition assumption can be omitted in Theorem 3. if the active
constraints are “functions with a locally flat surface” (abbreviated: LFS functions).
These are possibly the simplest nonlinear functions that retain many properties of
linear functions. We will introduce this class for differentiable functions. (Notation:
D=

f (x
∗) = {d ∈ R

n : f(x∗ + αd) = f(x∗), 0 < α < α′ for some α′ > 0 denotes
the cone of directions of constancy of f at x∗; N(∇f(x∗)) is the null-space of the
gradient)

Definition 2. A differentiable convex function f : R
n → R is said to have a locally

flat surface at x∗ ∈ R
n if N(∇f(x∗)) = D=

f (x
∗).

All linear functions are LFS at every x∗ ∈ R
n, so are many nonlinear functions,

e.g., f(t) = et.
Sometimes optimality conditions have clear physical interpretations:

Physical interpretation of the KKT conditions (G. I. Joe Minimizes travel
time over two regions) Suppose that G.I. Joe (or an object) can move freely in a
plane between two fixed points A and B belonging to two different regions. Let his
velocities in these regions be v1 and v2, respectively. We study the movement in the
space R2 using the Euclidean distance. Suppose that the coordinates of A and B in
the (x1, x2)-plane are (0, a) and (b1 + b2, 0), respectively, and that the two regions
are separated by a straight line parallel with the x2 axis and passing through the
point (b1, 0). (See Figure 9) An important question is: How should G.I. Joe move
from A to B in order to minimize his travel time? Note that the variables a, b1, b2,
v1 and v2 could be considered as “parameters”, but we will not go into this here.
The angles of incidence α and refraction β are “decision variables”. Given some
numerical values of the parameters, we wish to determine an optimal solution α∗

and β∗.
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Figure 9. Travelling over two regions

This problem can be formulated as a convex program. Let us denote by T a
point on the border between the two regions where the object crosses from one
region into the other. Then denote by AT the distance between the points A and T
and by TB the distance between T and B. Since b1 = AT sinα and b2 = TB sinβ,
the time of travel from A to B is

f(α, β) =
AT

v1
+
TB

v2
=

b1
v1 sinα

+
b2

v2 sinβ

subject to the constraint b1cotα + b2cotβ = a. Rather than working with trigono-
metric functions, we use the substitution x1 = cotα and x2 = cotβ. Since sin2 α =

1
1+x2

1
and sin2β = 1

1+x2
2
, the problem is formulated as the convex program

min f(x1, x2) =
b1
v1

√
1 + x2

1 +
b2
v2

√
1 + x2

2 (6.1)

b1x1 + b2x2 = a.

For the sake of simplicity, we consider only the angles from the interval 0 < α, β < π
2 ;

hence the non-negativity constraints on the variables x1 and x2 are omitted. Note
that the constraint is linear, hence LFS. An optimal solution of the minimal travel
time program, formulated above, is unique and it is characterized by the KKT
conditions, which are here

b1x1

v1
√
1 + x2

1

+ λb1 = 0,
b2x2

v2
√
1 + x2

2

+ λb2 = 0

for some multiplier λ ∈ R. The elimination of the multiplier yields the well-known
“law of refraction”:

v1
v2

=
cosα
cosβ

.

The solution of the above problem requires solving fourth degree polynomials.
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Instead of a G.I. Joe, one can consider a ray of light passing between two media.
Since the ray of light travels “optimally”, by the “generalized” Fermat’s principle,
it must satisfy the above law of refraction. In this case the law is called the Snell
law. (See also Collatz and Wetterling [75].)

The conditions for globally optimal parameters are significantly simplified also
for convex models if the constraint functions are LFS functions in the decision
variable x. We consider a convex LFS model

(P, θ)
min(x) f(x, θ) subject to

f i(x, θ) ≤ 0, i ∈ P.

Here all constraint functions f i(·, θ) : R
n → R, i ∈ P are assumed to be LFS

at every x ∈ F o(θ), θ ∈ F . (F o(θ) denotes the set of all optimal solutions of the
program (P, θ) for a fixed θ from the feasible set of parameters F .) Optimality of
parameters for such models can be described using the classical Lagrangian:

L(x, u; θ) = f(x, θ) +
∑
i∈P

uif
i(x, θ).

Theorem 4. (Characterizing globally optimal parameters for convex LFS
models) Consider a convex LFS model (P, θ) around some θ∗. Assume that the
optimal value function fo : R

p → R exists on the entire feasible set F . Let x∗ be an
optimal solution of the program (P, θ∗). Then θ∗ minimizes fo on F if, and only
if, there exists a non-negative vector function u∗ : F → R

m
+ such that

L(x∗, u; θ∗) ≤ L(x∗, u∗(θ∗); θ∗) ≤ L(x, u∗(θ); θ)

for every u ∈ R
m
+ , every x ∈ R

n, and every θ ∈ F .

What does the above result give, when it is applied, say, to the projectile motion
model?

Illustration 5. (“Caveman’s rule”) Consider the projectile motion model (2.1)
introduced in Section 2. This is a convex LFS model! For any θ > 0, the optimal
t is t = 2v

g sin θ. An angle θ∗ is globally optimal, according to the above theorem
if, and only if, g2 cos θ · t2 − 2gv sin 2θ · t + 2v2 sin θ · sin 2θ∗ ≥ 0 for every θ > 0
and every t ∈ R. The values of this quadric are non-negative if, and only if, its
minimal value is non-negative. This is the case if, and only if, sin 2θ∗ ≥ sin 2θ
for every θ > 0. Hence the maximum range of the projectile, say, the caveman’s
arrow, launched from the height h = 0, is achieved if, and only if, θ∗ maximizes the
function f(θ) = sin 2θ.

7. Duality

With every convex model (P, θ) one can associate one or more “dual” models. A
dual model, essentially, is a statement that the saddle point of a Lagrangian can
be reached by minimizing the Lagrangian relative to x, and then by maximizing it
relative to a suitable u. First let us explain the idea for the convex program
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(CP)
min f(x) f i(x) ≤ 0, i ∈ P.

We use the Lagrangian

L<(x, u) = f(x) +
∑

i∈P\P=

uif
i(x).

Here P= = {i ∈ P : x ∈ F ⇒ f i(x) = 0} is the minimal index set of active
constraints. This index set generates the set of decision variables

F= = {x : f i(x) ≤ 0, i ∈ P=} = {x : f i(x) = 0, i ∈ P=}.

For non-negative vectors u ∈ R
card(P\P=)
+ , the minimization of the Lagrangian

over F= defines the subdual function

ϕ
P= (u) = min

x∈F=
L<(x, u).

Let us consider only those u’s for which an optimal solution x = xo(u) ∈ F= exists.
Then, with such u’s, the “dual program” is

maxϕ
P= (u)

u ∈ R
card(P\P=)
+ .

Since we know how to characterize optimality of xo(u) on the convex set F=, the
dual of the convex program can be written as follows:

(D)
max{f(x) +

∑
i∈P\P=

uif
i(x)}

u ∈ R
card(P\P=)
+

∇T f(x) +
∑

i∈P\P=

ui∇T f i(x) ∈ {
⋃

i∈P=

D=
i (x)}+

x ∈ F=

(Here M+ denotes the polar set of M .) If the constraints satisfy Slater’s condition,
then P= = ∅, F= = R

n, and the dual is significantly simplified:

7.1. Dual in the presence of Slater’s condition

If the constraints of the convex program (CP) satisfy Slater’s condition then the
dual is

max{f(x) +
∑
i∈P

uif
i(x)}

∇f(x) +
∑
i∈P

ui∇f i(x) = 0, u ∈ R
m
+ .



18 S. Zlobec

In order to formulate the dual of the convex model (P, θ), one must resolve the
obstacle presented by the variable index set P=(θ) that appears in the Lagrangian.
This set determines the number of constraint functions in the Lagrangian. One can
proceed as follows: Denote all subsets of P=(θ), obtained by varying θ, by Π:

Π = {Ω ⊂ P : Ω = P=(θ) for some θ ∈ F}.

Now, given an Ω ⊂ Π, the set of all feasible parameters θ for which P=(θ) = Ω is
denoted by FΩ = {θ ∈ F : P=(θ) = Ω}. Note that F = ∪Ω⊂ΠFΩ.

The feasible set F is thus divided into disjoint regions FΩ, each determined by
an index set Ω. Each subset Ω ∈ Π generates a subdual function and a subdual,
using the Lagrangian

LΩ(x, u; θ) = f(x, θ) +
∑

i∈P\Ω
uif

i(x, θ)

and a point-to-set mapping FΩ : FΩ 
→ R
n defined by FΩ(θ) = {x : f i(x, θ) ≤

0, i ∈ Ω}. Fix an Ω ∈ Π and a θ ∈ FΩ.

Definition 6. Consider a convex model (P, θ) and a subset Ω ∈ Π. For θ ∈ FΩ

and a non-negative vector function u : FΩ → R
card(P\Ω)
+ , the function

ϕΩ(u, θ) = inf
x∈FΩ(θ)

LΩ(x, u(θ); θ)

is called the Ω-subdual function. The dual, determined by the same Ω ⊂ Π, is
(D,Ω; θ)

supϕΩ(u, θ)

u : FΩ → R
card(P\Ω)
+

where only those functions u are considered for which the above infimum exists (has
finite value) for the Lagrangian in the variable x. We will use the terminology: Ω-
dual. The functions u = u(θ) ∈ R

card(P\Ω)
+ , θ ∈ FΩ, that solve (D,Ω; θ), are called

the solutions of the Ω-dual. These solutions have the number of components corre-
sponding to the cardinality of the set Ω. The number of Ω-duals is the cardinality
of the set Π. The collection of all these Ω-duals, i.e., the set {(D,Ω; θ) : Ω ⊂ Π},
is called the dual of the model (P, θ). Note that the dual is a model because the
parameter θ varies over FΩ and the feasible set F .

Since we know how to characterize optimal solutions of the Lagrangian for a
fixed θ, the Ω-dual for differentiable functions can be written as

(D,Ω; θ)
max{f(x, θ) + ∑

i∈P\Ω
uif

i(x, θ)}

u ∈ R
card(P\Ω)
+

∇T f(x, θ) +
∑

i∈P\Ω
ui∇T fi(x, θ) ∈ { ⋂

i∈Ω

D=
i (x, ω)}+

x ∈ FΩ(θ), θ ∈ Ω.
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The Ω-subduals are closely related to the original model (P, θ). In particular,
one can estimate the optimal value of the model on the sets FΩ by feeding the
minimum function with suitable non-negative functions u : FΩ → R

card(P\Ω)
+ . One

can also determine whether a given θ is globally optimal on FΩ. These duals are
useful in von Stackelberg games (and other models where Slater’s condition is not or
cannot be satisfied). The components of the dual solution are functions in θ; they
provide sensitivity information and can be considered as the “values” (or “value
functions”) of the constraints as θ varies.

Let us illustrate the above ideas on the model introduced in Section 2.

Illustration 6. (The dual of the projectile motion model) Consider the mo-
del (2.1). Since t denotes the time variable, we use the notation x = t. The con-
straint satisfies Slater’s condition at every t > 0, so the set Π is just the empty set
Ω = ∅. Hence the dual model is

max
u≥0

−vt cos θ + u[
g

2
t2 − vt sin θ] subject to

−v cos θ + u[gt− v sin θ] = 0.

The only u for which the subdual function has a minimum is u = v cos θ
gt−v sin θ . But t

appearing in u minimizes the Lagrangian. Substituting u into the objective function,
and setting the derivative with respect to the variable t to zero, yields t = 2v

g sin θ.
The back substitution gives the dual solution u = cotθ. (This solution was obtained
earlier by sensitivity analysis).

Another illustration is taken from underwater navigation:

Illustration 7. (Zermelo’s problem under the water) The dynamics of an ob-
ject (say, a torpedo) with a velocity of unit magnitude relative to a three-dimensional
medium is described by a system of differential equations

dz1/dt = u+ cosΦ cosϕ

dz2/dt = v + cosΦ sinϕ

dz3/dt = w + sinΦ.

Here u, v, w are components of the constant velocity vector of the medium; Φ
denotes the angle between the velocity vector of the object and its projection on the
(z1, z2) plane and ϕ is the angle between the projection and the z3 axis. The problem
of finding the steering angles Φ and ϕ that minimize the time of reaching a convex
target can be formulated as a convex LFS model: Assume that the object, at time
t = 0, is at the origin, that the components of the velocity vector of the medium are,
say, u = 2, v = 0, w = 0 and that the target is the unit sphere

T = {[z1z2z3]T : (z1 − 10)2 + (z2 − 1)2 + (z3 − 2)2 ≤ 1}.
Then, after solving the system with the initial condition and substitution, the min-
imal time problem is described by the convex model

min
(Φ,ϕ)

t subject to



20 S. Zlobec

(2t+ t cosΦ cosϕ− 10)2 + (t cosΦ sinϕ− 1)2 + (t sinΦ− 2)2 ≤ 1. (7.1)

The dual solution (obtained from the KKT condition for fixed Φ and ϕ) is

U(Φ, ϕ) = 1
2

[−116− 16 cosΦ cosϕ+ 40 cosΦ sinϕ+ 80 sinφ+ 99 cos2 Φcos2 ϕ

+10 cos2 Φ sin 2ϕ+ 20 sin2Φ cosϕ− 3 cos2 Φ+ 2 sin 2Φ sinϕ
]− 1

2 .

Its graph is depicted in Figure 10. It describes sensitivity (rate of change, deriva-
tive) of the optimal sailing time to reach the target relative to small perturbations of
the radius of the target. The points that minimize the dual function are the steering
angles for which the optimal sailing times are least sensitive to small perturbations
of the radius of the target, i.e., for these perturbations, these are the most “ro-
bust” steering angles. (One can verify the claims directly by performing sensitivity
analysis on the right-hand side of (7.1).)

Note: The most robust steering angles obtained from duality generally are dif-
ferent from the angles that steer a torpedo to the target in least time. They are also
different from the most robust steering angles for other kinds of perturbations of the
target. Zermelo’s problems are easily adjusted to situations when both the target
and the object are moving.

Figure 10. Dual solution for Zermelo’s problem

8. Input optimization

Input optimization is a term used to describe a collection of numerical methods
that optimize the optimal value function using only stable perturbations of the pa-
rameters. The methods are applied from some “initial” input θ = θo, hence they
are designed to solve

min fo(θ)

θ ∈ π(θo).

Here fo(θ) is the optimal value function and π(θo) is a prescribed class of all “stable”
paths emanating from θo, i.e., paths on which the point-to-set mapping F : θ 
→
F (θ) is lower semicontinuous at every point. A solution to an input optimization
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problem is both: a stable path emanating from θo and its end point θ∗ which locally
optimizes the optimal value function relative to the region of stability at θ∗. (This
region is a collection of all continuous paths emanating from θ∗ on which F (θ) →
F (θ∗) as θ → θ∗.) The solution generally depends on the initial choice θo and the
prescribed class of paths. In particular, if there are two or more disjoint feasible
or stable regions, then an input optimization process cannot leave the region where
the iteration has begun from θo. (Such situations typically occur in, e.g., Zermelo’s
navigation problems. Depending on various parameters, such as the speed of water,
torpedo or a boat, the feasible region consists of various disjoint sets.)

In order to simplify calculations, let us work only with the class of linear per-
turbations, i.e., perturbations of the form θ = θk + αdk, α ≥ 0, k = 0, 1, 2, .... This
restriction generally sacrifices optimal inputs (parameters) that can be reached only
by nonlinear perturbations from θo. It may also increase the number of iterations.
Lower semi-continuity of the mapping F : θ 
→ F (θ) on the entire path between
two inputs, say, between an “initial” θo and a “final” θ∗, including continuity at θ∗

“from the left”, is guaranteed under rather restrictive assumptions.
Input optimization problems are solved iteratively. They are modelled after the

feasible direction methods of mathematical programming: Given a feasible input
approximation θk ∈ F , k = 0, 1, ...; a new input θk+1 is obtained in two stages. In
the first stage, a “stable improvable feasible direction generator” is used to produce
a direction d with the following local properties:

(i) θk + αd ∈ F , for every 0 ≤ α ≤ α′, and some α′ > 0;

(ii) the feasible set mapping F is lower semicontinuous relative to F at every θk +
αd, 0 ≤ α ≤ α′;

(iii) the optimal value function is improvable, i.e., fo(θk + αd) < fo(θk) for α > 0
close to 0.

The direction generator uses an appropriate marginal value formula like the one
described below:

We study a convex model (P, θ) around some feasible θ∗ with a realistic objective
function at θ∗. Let us consider the region of stability S at θ∗. Along some path in
S consider a sequence θ ∈ S, θ → θ∗, and then the sequence fo(θ) → fo(θ∗). A
formula for the limit

lim
θ∈S,θ→θ∗

fo(θ)− fo(θ∗)
‖θ − θ∗‖

is called the marginal value formula at θ∗. The limit generally depends on the point
θ∗ and on the path. The marginal value formula at θ∗ can be expressed in terms of
the first derivative of the Lagrangian function

L<
∗ (x, u; θ) = f(x, θ) +

∑
i∈P\P=(θ∗)

uif
i(x, θ)

and the two limits:

s = lim
θ∈S,θ→θ∗

θ − θ∗

‖θ − θ∗‖
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and

z = lim
θ∈S,θ→θ∗

xo(θ)− xo(θ∗)
‖θ − θ∗‖ .

Here xo(θ) is an optimal solution of the program (P, θ) for a fixed θ. Typically,
the required assumptions are: continuous differentiability of functions in the model
(P, θ), lower semi-continuity of the point-to-set mapping

F=
∗ : θ 
→ F=

∗ (θ) = {x : f i(x, θ) ≤ 0, i ∈ P=(θ∗)}
and uniqueness of the saddle point {xo(θ∗), Uo(θ∗)} for the program (P, θ∗). This
saddle point is defined as

L<
∗ (x

o(θ∗), u; θ∗) ≤ L<
∗ (x

o(θ∗), Uo(θ∗); θ∗) ≤ L<
∗ (x, U

o(θ∗); θ∗)

for every u ∈ R
c
+ and every x ∈ F=(θ∗) = {x : f i(x, θ) = 0, i ∈ P=(θ∗)}. The fact

that lower semi-continuity of the mapping F=
∗ implies lower semi-continuity of F is

used in the proof of the following the marginal value formula:

Theorem 5. (The basic marginal value formula) Consider the convex model
(P, θ) with a realistic objective function at some θ∗. Let us assume that the mapping
F=∗ is lower semicontinuous at θ∗, relative to a set S containing θ∗, and that the
saddle point {xo(θ∗), Uo(θ∗)} is unique. Also suppose that the gradients ∇f(x, θ),
∇f i(x, θ), i ∈ P\P=(θ∗) are continuous at (xo(θ∗), θ∗). Then for every sequence
θ ∈ S, θ 
→ θ∗, and for every path xo(θ) → xo(θ∗), for which the limits s and z
exist, we have

lim
θ∈S,θ→θ∗

fo(θ)− fo(θ∗)
‖θ − θ∗‖ = ∇xL

<
∗ (x

o(θ∗), Uo(θ∗); θ∗)z+∇θL
<
∗ (x

o(θ∗), Uo(θ∗); θ∗)s.

Remark 4. Under Slater’s condition this formula uses the classical Lagrangian
and the first term can be omitted. In this case one does not have to worry about the
stability requirement and can pick any improvable direction for the step-size search.
Such stable improvable feasible direction d = (di) is

d = −∇θL(xo(θk), Uo(θk); θk).

In this case the optimal value function locally decreases along d in the direction
α ≥ 0 and the limit s is s = d

‖d‖ . This approach appears to work well in practice.

In the second stage, once d is determined, one solves the “step-size problem”,
i.e., one determines a step-size αk ≥ 0 that minimizes (or at least decreases) the
optimal value function on a segment {θk + αd : 0 ≤ α ≤ α′} ∩ F , for some α′ > 0.
The substitution of θ = θk + αd = θ(α) into (P, θ), yields the problem in n + 1
variables (x and α):

(P, θ)
min
(x,α)

f(x, α)

f i(x, α) ≤ 0, i ∈ P

α ≥ 0.
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For every fixed α this is a convex program in the variable x. Denote its optimal
value by fo(α). Then the step-size problem is

min
(α)

fo(α)

θk + αd ∈ F, α ≥ 0.

One can approximate a minimum of fo(θ) on the interval θk +αd ∈ F , α ≥ 0 using
a search method, such as the Fibonacci Method or the Golden Section Search. For
each α used in the search, one solves the convex program (P, θ) in the variable x
in order to obtain an optimal solution xo = xo(α) and then fo(α) = f(xo(α), α).
When an optimal solution (step-size) αk is found, then the new approximation is
θk+1 = θk + αkd ∈ F . (Instead of insisting on optimality one is often satisfied with
a feasible step size αk for which fo(αk) < fo(0).)

Let us demonstrate how input optimization works in practice. We have solved
two real-life problems:

Case study 1: Restructuring in a textile mill. A case study of a textile mill
has been described by Naylor et al. [27] using a linear program. We will reformulate
their program as a linear model, by allowing three most sensitive matrix coefficients
to vary. Then globally optimal parameters are determined by input optimization.
The solution will require a restructuring of the work force in the mill leading to
a significantly higher profit. Naylor et al. study a company that is purchasing
rough cotton and, through a series of twelve operations, it produces seven styles of
materials. The production rate of required operations (expressed in hundred meters
per hour) for each of the seven styles, is given in the following table:

PROCESS B P1 P2 P3 P4 D1 D2 Available
Hours

Singeing 90 60 90 70 80 90 80 150
Desizing 130 100 90 110 80 130 120 150
Kier Boiling 15 9 10 8 9 13 12 900
Bleaching 10 11 10.5 11 11 11 12 1500
Drying 130 100 100 120 110 110 120 140
Mercerizing 8 5.5 6 6.5 7 7 8 2490
Printing − 3 3 2 2.5 − − 1800
Aging − 50 40 40 60 − − 150
Dyeing (blue) − − − − − 40 − 150
Dyeing (red) − − − − − − 3 5140
Starching 20 18 18 16 15 20 15 500
Calendering 40 50 30 25 40 32 35 450

Here the process B refers to the bleached style, Pk, k = 1, ..., 4 to the printed styles
and D1 and D2 to the dyed styles. The available amount of hours for each operation
(in hundreds of hours) is given in the last column. The amount of time available
for mercerizing is divided equally between three styles: bleached, printed, and dyed
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(each with 830 hours). The estimated profit for the seven styles (per meter) is

B 0.40($)
P1 0.60($)
P2 0.80($)
P3 1.00($)
P4 1.25($)
D1 1.20($)
D2 1.30($)

A corresponding linear program for profit maximization is

max 0.40B + 0.60P1 + 0.80P2 + 1.00P3 + 1.25P4 + 1.20D1 + 1.30D2

B
90 +P1

60 +P2
90 +P3

70 +P4
70 +D1

90 +D2
80 ≤ 150

B
130 + P1

100 +P2
90 + P3

110 +P4
80 + D1

130 + D2
120 ≤ 150

B
15 +P1

9 +P2
10 +P3

8 +P4
9 +D1

13 +D2
12 ≤ 900

B
10 +P1

11 + P2
10.5 +P3

11 +P4
11 +D1

11 +D2
12 ≤ 1500

B
130 + P1

100 + P2
100 + P3

120 + P4
110 + D1

110 + D2
120 ≤ 140

B
8 ≤ 830

P1
5.5 +P2

6 + P3
6.5 +P4

7 ≤ 830
D1
7 +D2

8 ≤ 830
P1
3 +P2

3 +P3
2 + P4

2.5 ≤ 1800
P1
50 +P2

40 +P3
40 +P4

60 ≤ 150
D1
40 ≤ 150

D2
35 ≤ 140

B
20 +P1

18 +P2
18 +P3

16 +P4
15 +D1

20 +D2
15 ≤ 500

B
40 +P1

5 +P2
30 +P3

25 +P4
40 +D1

32 +D2
35 ≤ 450.

There are also the demand restraints P1 ≥ 50, P2 ≥ 50, 50 ≤ P3 ≤ 1000, 50 ≤ P4 ≤
500 and, of course, B ≥ 0, D1 ≥ 0, D2 ≥ 0. The sixth to eighth inequalities describe
the constraints in the mercerizing department for each of the three styles (bleached,
printed and dyed). The eleventh and the twelfth inequalities describe the constraints
in the dyeing department (one for blue and one for red dyed style). Using shadow
prices one finds that a “bottle-neck” of production (most sensitive technological
coefficient) for the profit occurs in the mercerizing department where the blue dyed
style D1 has been processed. It also occurs in the starching department in the
production of the printed style P2 and the blue dyed style D1.

The management has decided to modernize the production. In particular, it
wants to purchase new, more efficient machines for the two bottle-neck departments.
Several different types of machines are available with different production rates.
Which of these should be purchased? Should one invest only in the most efficient
(most expensive) machines? Let us formulate this problem as a linear programming
model. First, we denote the increased production rates in the two departments for
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the three processes by θ1, θ2 and θ3, respectively. The new matrix coefficients,
at the bottle-neck of production level, thus assume the form a8,6 = (7 + θ1)−1,
a13,3 = (18 + θ2)−1, a13,6 = (20 + θ3)−1. It is found that the available machines
can operate with rates 0 ≤ θ1 ≤ 4, 0 ≤ θ2 ≤ 7, 0 ≤ θ3 ≤ 10. The introduction of
the parameters θ1, θ2 and θ3 is a departure from a linear program to a linear model.
Since the constraints satisfy Slater’s condition (one can verify this with, e.g., B = 1,
P1 = P2 = P3 = P4 = 50.01, D1 = D2 = 1) and the feasible set F (θ) is bounded
for every θ from the above feasible box, the model is globally stable relative to the
feasible set, and an input optimization method is applicable. Input optimization
starts here from the origin θ = 0 ∈ R

3, and only linear paths are used. The
step-size problems are solved using only three (!) searches per iteration. After 14
iterations, the globally optimal input θ∗1 = 4, θ∗2 = 6.572, θ∗3 = 6.572 is found. Hence
every piecewise linear path leading from the origin to θ∗, and remaining entirely in
the above stable box, is a global solution of the input optimization problem. For
example, one can first improve the rate of production for the mercerizing operation
by 4 units (400 meters) and than improve the two starching operations by 6.572
units (657.2 meters) each.

An “old” linear programming solution and a “new” solution that corresponds
to the optimal parameter are compared below:

“Old” “New”
Bo = 0 B∗ = 0
P o

1 = 50 P ∗
1 = 50

P o
2 = 1996 P ∗

2 = 1814
P o

3 = 1000 P ∗
3 = 50

P o
4 = 500 P ∗

4 = 500
Do

1 = 5810 D∗
1 = 6000

Do
2 = 0 D∗

2 = 2276.

The corresponding optimal values are fo = 1 022 380 and fo(θ∗) = 1 231 550, which
represents an improvement of about 20% (before deducting the cost of improving
the efficiency, e.g. the cost of the new machines).

The input optimization solution suggests that the production of the printed style
P3 be reduced from 1000 units to only 50 and that the mill should start producing
2276 units of the dyed style D2. (With the old machines, the optimal profile of
production did not include that particular style.) The mill should restructure the
work force to meet the new optimal requirements. The workers who work in the
printed style 3 department, should be trained to work on the dyed style 2. The
result obtained by input optimization shows that one does not have to purchase
the most efficient (expensive) machines to achieve optimal results. Only one “best”
machine (for mercerizing) available on the market should be purchased, the other
two (for starching) could be “sub-optimal”. The restructuring can be done in several
stages. It is a stable process as long as the parameters “move” within the feasible
box.

When the model does not satisfy Slater’s condition (e.g., if the model is bilevel),
then the marginal value formula has to be modified. This was done in solving the
next real-life problem. (It is assumed that the reader is familiar with the basic idea
of data envelopment analysis: DEA).
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8.1. Input optimization in DEA

Consider N decision making units each with m “inputs” X i ∈ R
m and s outputs

Y i ∈ R
s, i = 1, ..., N . The basic objective of DEA is to estimate the “efficiency” of

a given decision making unit relative to the set of all decision making units. This
can be done by estimating a meaningful “ratio” of outputs over inputs which leads
to the Charnes, Cooper and Rhodes tests:

(CCR, k)
max
(x,y)

(y, Y k)

(y, Y j) ≤ (x,Xj), j = 1, ..., N

(x,Xk) = 1

x ≥ 0, y ≥ 0; k = 1, ..., N.

We use the notation (u, v) = uT v for the inner product. For the sake of simplicity
we omit a non-Archimedean quantity in the tests. This may lead to more efficient
decision making units than obtained by the original formulation. The optimal value
of (CCR, k) is called the efficiency ratio of the decision making unit DMUk. If the
ratio is equal to one, then DMUk is efficient. One can show that these tests are
globally stable relative to positive input and output data. One of the difficulties with
the CCR tests is that they may identify too many units as efficient. In that case
one may wish to rank the efficient units by some other criterion, such as “rigidity to
data”. The idea is, for each efficient DMUk, k = 1, ...,K, to solve an optimization
problem such as

(k, θ)
max(x,y,θ) ‖θ‖
(Y j(θ), y) ≤ (Xj(θ), x), j = 1, ..., N, j �= k

(Xk, x) = 1, (Y k, y) = 1, x ≥ 0, y ≥ 0.

Here θ ∈ R
p is considered to be a parameter such that, at θ = 0, (k, θ) is the

unperturbed program (CCR, k). The most interesting perturbations are

[Xj(θ)]i = [Xj]i − θi, j = 1, ..., N, i = 1, ...,m,

[Y j(θ)]l = [Y j ]l + θl, j = 1, ..., N, l = 1, ..., s,

for non-negative θi ≥ 0, θl ≥ 0. (Here the remaining N − 1 units, including
possibly the inefficient ones, are “attempting” to improve their efficiency standing.)
In order to make the results meaningful, the perturbations are required to preserve
positivity of the inputs. This is achieved by fixing some positive lower bounds. Also,
for the sake of comparison, each input and output is scaled down to the range of
numbers between 0 and 1. In the program (k, θ) one is looking for uniformly largest
perturbations in θ of all remaining N−1 units that preserve the efficiency of DMUk.
(Note that the efficiency of DMUk is guaranteed by the constraint (Y k, y) = 1.)
For the sake of simplicity, the norm ‖θ‖ can be chosen to be l1 or l∞,, in which case
(k, θ) can be written as a linear program for every fixed θ. For any choice of the
norm, (k, θ) is a “partly linear program”. The optimal value of the program (k, θ)
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is called the radius of rigidity of the efficient DMUk. One can calculate this radius
by input optimization. Then, instead of solving the nonlinear program in (x, y, θ),
one maximizes the optimal value function in θ using an appropriate marginal value
formula. A major difficulty with this approach is that Slater’s condition is not
satisfied for any feasible fixed θ (because of the equality constraints). However,
one can derive an appropriate marginal value formula that is suitable for models
occurring in DEA. We will derive it for models of the form

(L, θ)
min
(x)

f(x, θ)

f i(x, θ) ≤ 0, i ∈ P

A(θ)x = b.

Here we assume that f , f i : R
n×R → R, i ∈ P are continuous functions, also f(·, θ),

f i(·, θ) : R
n → R, i ∈ P are convex functions for every fixed θ ∈ R

p; A : R
p →

R
m×n is a continuous matrix function, while b ∈ R

m is fixed. For every θ ∈ R
p, we

use the familiar notation: the feasible set is denoted by F (θ) = {x : f i(x, θ) ≤ 0,
i ∈ P , A(θ)x = b]} and the set of all optimal solutions xo(θ) by F o(θ) = {xo(θ)}.
Also, for every feasible θ ∈ F = {θ : F (θ) �= ∅},

P<(θ) = {i ∈ P : f i(x′, θ) < 0, A(θ)x′ = b for some x′} and

F=(θ) = {x ∈ R
n : f i(x, θ) = 0, i ∈ P\P<(θ)} ∩ {x : A(θ)x = b}.

We study the behaviour of the optimal value function fo(θ) = f(xo(θ), θ) of the
model (L, θ) around an arbitrary but fixed θ∗ ∈ F . We will study perturbations in
the set

S = {θ : F o(θ∗) ⊂ F=(θ), F o(θ) ⊂ F=(θ∗)}.
Also, we will use the Lagrangian

L<
∗ (x, u; θ) = f(x, θ) +

∑
i∈P <(θ∗)

uif
i(x, θ).

and its saddle point {xo(θ∗), Uo(θ∗)}. This is a point satisfying

L<
∗ (x

o(θ∗), u; θ∗) ≤ L<
∗ (x

o(θ∗), Uo(θ∗); θ∗) ≤ L<
∗ (x, U

o(θ∗); θ∗)

for every u ∈ R
c, u ≥ 0, where c = cardP<(θ∗), and for every x ∈ F=(θ∗).

If the constraints satisfy the generalized Slater condition at θ∗ (i.e., if there is an
x such that A(θ∗)x = b and f i(x, θ∗) < 0, i ∈ P ) and if the matrix A(θ∗) has the full
row rank, then the two mappings F and F= are lower semicontinuous at θ∗ relative
to the set S ∩ F . The optimal value function fo(θ) can be locally decreased from
an arbitrary, but fixed, θ∗ along a path for which the limit s = limθ∈S,θ→θ∗ θ−θ∗

‖θ−θ∗‖
exists if, along this path, ∇θL

<
∗ (x

o(θ∗), Uo(θ∗); θ∗)s < 0. This follows from the
following theorem:

Theorem 6. (Simplified marginal value formula for input optimization
in DEA) Consider the convex model (L, θ) around some θ∗ ∈ F . Assume that
the objective function is realistic at θ∗ and that the saddle point {xo(θ∗), Uo(θ∗)}
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is unique. Also assume that the gradients ∇θf(x, θ), ∇θf
i(x, θ), i ∈ P exist and

that they are continuous at {xo(θ∗), Uo(θ∗)}. Finally, assume that the constraints
of the program (L, θ∗) satisfy the generalized Slater condition and that the matrix
A(θ∗) has a full row rank. Then, for every sequence θ ∈ S ∩ F , θ → θ∗, for which
the limit s exists, we have the marginal value formula

lim
θ∈S∩F,θ→θ∗

fo(θ) − fo(θ∗)
‖θ − θ∗‖ = ∇θL

<
∗ (x

o(θ∗), Uo(θ∗); θ∗)s.

A bad news is that, when input optimization is applied, the generalized Slater
condition assumption may be satisfied at some “old” iteration θi, but not at a “new”
one θi+1. Another difficulty with applying it is that, typically, the saddle point is
not unique.

Assume that the above programs (k, θ), k = 1, ...,K, for the K efficient decision
making units, are solved by input optimization. The K globally optimal values of
these programs are their radii of rigidity. The efficient units can now be ranked by
these radii: a unit with the largest radius of rigidity is ranked first, the one with
the smallest radius of rigidity is ranked last. Note that the unit with the largest
radius of rigidity will keep its efficiency under the largest uniform perturbations of
all other N − 1 units. The ranking depends on a particular type of perturbations
used in the programs (k, θ), k = 1, ...,K. Also, for different types of perturbations
one generally obtains different rankings.

Instead of perturbing several or all parameters at the same time, one can simplify
the numerical effort by perturbing the same type of inputs or outputs for every
DMU, except the efficient one under the consideration. In particular, one can focus
on only one specific input or output for every unit. In this case, there is only one
direction (non-negative) of improvement in θ of the optimal value function (which
is now a function of a scalar variable).

Comment 1. (Cooper’s comment) It was pointed out by Cooper [11] that the
classification with respect to robustness is “worthwhile because the usual CCR ...
models do not admit ranking for either or both of the following reasons:

(1) the measure may be incomplete because of the omission of inefficiencies repre-
sented by the non-zero slacks and/or

(2) the evaluations may be coming from different facets. This means that the eval-
uations are being affected by reference to different peer groups. For example,
a DMU which is 75% efficient relative to one peer group is not necessarily less
efficient than another DMU which is rated at 80% as efficient as another peer
group.

These points were first noted explicitly in Charnes et al. [8]. In a situation
described in that paper, the unit costs of excessive inputs and unit prices of revenues
losses led to the use of total opportunity cost as a basis for ranking to guide the
choice of decision making units which were to be subjected to efficiency audits by
the Texas Public Utility Commission. However, such costs prices are not always
available, especially in not-for-profit entities, in which case an approach like the
robustness tests could be found useful.
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Case study 2: Ranking efficiently administered university libraries Let
us illustrate the radius-of-rigidity method on a set of 15 university libraries listed
below. First, CCR tests are applied with two input (staff and expenditures) and
four output (volumes, volumes added, serials, microforms) data for the academic
year 1994–95. Five libraries are found to be efficiently administered in that set
(Alberta, California at L.A., Hawaii, Illinois at Urbana-Champaign, and Louisiana
State.) We wish to perform a post-optimality analysis and rank these five libraries
by their rigidity to data. First, each input and output data for all fifteen libraries is
normalized to one. Then, for each efficient library , we have found simplified (one
parameter) radii of rigidity relative to non-negative perturbations of each input
and output. Bounds were imposed to ensure positivity of the input data. Thus, for
input X1 (number of staff), we set 0 ≤ θ ≤ 0.3302, and for input X2 (expenditure),
0 ≤ θ ≤ 0.1914. For the outputs, upper bounds of 100 were imposed on θ. (This was
deemed sufficiently large, given that the data was normalized. When this bound
was achieved, we denote it by the sign ∞ in the table.) The radius of rigidity often
attained these prescribed bounds. It is interesting to note that situations with zero
radii of rigidity also occur. The numerical results are given in Table 1 below. They
are borrowed from the master’s thesis Mann [24].

Table 1. Ranking of efficiently administered libraries

After determining the radius of rigidity for each variable in turn, the follow-
ing ranking of the five efficient libraries is produced: The universities of Illinois at
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Urbana-Champaign and British Columbia are ranked tops, since the radius of rigid-
ity reaches the imposed bounds for all variables. Hawaii would rank below these
two, since the bounds were reached in all cases except one and, in that case, the
radius of rigidity was better than in all other instances. Louisiana State is next,
followed by California since two radii of rigidity of 0 would suggest a precarious ef-
ficiency evaluation. The zero radius for University of California library in the third
output and the first input means that this library would lose its efficient status if
every other library in the group of 15 libraries increases its serials or if every library
decreases its staff by any number. On the other hand its efficiency would not change
if the number of volumes or volumes added changes in any other library. No other
efficient library in this group is so highly sensitive to perturbations of data.

The efficiency testing and ranking by rigidity of the university libraries could
possibly be made more realistic if one distinguished between universities with and
without medical schools. One could also include data such as the number of books
circulated and the number of students who actually use the library. (These sug-
gestions were made by Ms. V. Blažina, a professional librarian at Universit de
Montréal.) The above ideas can also be applied internally, within a university, to
its smaller departmental or faculty libraries. The library statistics is readily avail-
able from compilations such as the one by Kyrillidou et al. [20]. Studies of libraries
using factor analysis use other criteria and generally produces different rankings.

9. Semi-abstract parametric programming

Problems of the form min
(x)

f(x, θ) subject to x ∈ F (θ) where f : X × R
p → R is

some continuous function, X is a normed linear vector space, and θ ∈ R
p is allowed

to vary over some set F ∈ R
p, are called semi-abstract parametric programming

models. Semi-abstract parametric programming is the study of these models.

Illustration 8. (Minimal resistance to a gas flow) A well-known problem (see,
e.g., the text by Krasnov et al. [19]) is to determine the shape of a solid (one can
think of the nose of an airplane) that makes the least resistance to a gas flow. As-
suming that the solid is obtained by rotation of some shape x = x(t) around the
t-axis (see Figure 11) one can show, under “idealized” assumptions, that the total
force acting on the solid in the positive direction t is

f = 4πρv2

a∫
0

(
dx

dt

)3

xdt.

Here ρ is the gas density and v is the velocity of the gas relative to the solid.
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Figure 11. Optimal shape problem

We are imposing an extra requirement: The radius r of the solid and its length
a should satisfy the conditions 1 ≤ a ≤ 5, 1 ≤ r ≤ 5. Consider θ = (a, r)T ∈ R

2 as
the parameter and x = x(t) as the “decision variable”. The optimal shape problem
is the semi-abstract parametric model:

min
(x)

f(x, θ) = 4πρv2
a∫
0

(
dx
dt

)3
xdt

x ∈ F (θ) = {x(t) : (
dx
dt

)3 − 3 · d
dt

[
x · (dx

dt

)2
]
= 0, x(0) = 0, x(a) = r}.

The differential equation constraint is the Euler-Lagrange equation from calculus of
variations, applied to the functional f(x, θ). This equation, under weak assump-
tions, is a necessary condition for optimality of a function defined on an abstract
space.

A globally optimal parameter θ∗ can be found here in two stages. First, for
a fixed θ, the differential equation is solved and one obtains an optimal decision
variable (function) xo = xo(t) = r

(
t
a

) 3
4 . After substituting this solution into the

objective function f and integration, we find that the optimal value function is
fo(a, r) = 27

16πρv
2 r4

a2 . Minimization of this function on the constrained set yields
the optimal parameters a∗ = 5 and r∗ = 1. From here, after a back-substitution,
one finds that x∗ = x∗(t) =

(
t
5

) 3
4 is the optimal shape of the solid satisfying the

constraints and that the least resistance to the gas flow, i.e., the optimal value of
the model, is f∗ = fo(a∗, r∗) = 27

400πρv
2.
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10. General applications

There are two kinds of general applications of parametric programming. Given an
applied mathematics model, parametric programming provides a methodology to

(1) search for an optimal parameter, i.e., to “optimize” the model and/or

(2) study stability (reliability) of the model. (An objective function may not be
required).

The two objectives ideally can be combined into “stable parametric program-
ming”. Here one optimizes the optimal value function by stable perturbations of
the parameter. An optimal parameter depends on the initial condition (starting
parameter) and on a particular class of perturbations used.

Concrete applications of parametric programming include problems from

• physics, especially mechanics and equilibria problems. Classical problems, such
as the least gas or water resistance achieved by varying the shape of an object,
or finding the shortest time of descent subject to an obstruction, are usually
studied in calculus of variations. Many of these can be formulated as semi-
abstract parametric programming.

• chemistry. Problems here involve multi-stage heat exchanger designs (often
formulated as partly linear or partly convex programs, e.g., Avriel and
Williams [1], Mustapić et al. [28]) and configuration of clusters of atoms
and molecules (minimization of Lennard-Jones interaction potential among
spherical particles, e.g., Maranas and Floudas [27].)

• ill-posed problems in the sense of Hadamard (including problems with differen-
tial and integral equations). It has been observed by Tikhonov and Arsenin
[39] p.xi that there are many such important problems. We quote the authors:
“ ...we shall show in the present book that the class of ill-posed problems in-
cludes many classical mathematical problems and, most significantly, that
such problems have important applications..”. In the introduction of their
book Fritz John says: “One might say that the majority of applied problems
are, and always have been, ill-posed, particularly when they require numeri-
cal answers.” We note that ill-posed problems are described by models that
are unstable or do not have unique (optimal) solutions. In the latter case, a
higher level model is generally unstable.

• linear and nonlinear programming. This is a traditional area of parametric
programming. Sample topics include: sensitivity analysis, shadow prices,
DEA, degenerate linear programs, problems of simultaneously finding optimal
prices and decision variables, pooling and blending in oil refineries (these
are partly linear programs), understanding “ambiguities” when the optimal
solutions jump but the optimal values remain relatively close, etc. (The latter
is a consequence of the fact that the optimal solutions mapping is closed, but
not necessarily continuous. These phenomena were reported in solving power
system problems in electrical engineering, also in Tikhonov and Arsenin [39],
Chapter vii.)



Parametric programming: An illustrative mini encyclopedia 33

• zero-one linear programs. Mixed zero-one linear programs can be formulated
as convex models.

• convergence of numerical algorithms. The rate of convergence of various al-
gorithms can be determined using continuity properties of point-to-set map-
pings. Also, one can study convergence of discretization schemes for general
abstract problems.

• parameter identification problems. This is another huge area that spans from
parameter identification problems in differential equations, e.g., Scitovski
and Jukić [34] to determination of kinetic constants in biological sciences,
e.g., Dikšić [12], and study of mathematical models in hemodialysis , e.g.,
Sotirov et al. [37]. The area also includes generalized best approximation
problems, e.g., Golub and Van Loan [15] and Jukić et al. [18]. Here the
“parameters” (data) are optimized within specific bounds to find a best fit.

• economics, finance, management. These are “standard territories” for applica-
tions of parametric programming. Applications include the study of multilevel
models, including von Stackelberg games, Leontiev models, e.g., Jemrić [17],
and methods in portfolio optimization , e.g., Dupačova [13]. In particular,
one could use stability aspects of parametric programming to understand and
decrease “nervousness” of dynamic models used in dynamic lot-size algorithms
where forecasts of future parameter values are frequently updated, e.g., Charl-
son et al. [6].

11. Some open problems

There are many open problems and territories yet to be studied in parametric
programming. We are going to mention only some of those that are closely related
to the topics introduced in this tutorial.

• Connection with nonlinear programs. It is shown by Liu and Floudas [23] that
every nonlinear program with twice continuously differentiable functions can
be transformed into a partly convex program. These programs are closely
related to convex models. This means that by studying convex models one can
actually study a large class of general optimization problems. The constructive
aspects of the link (optimality, stability, numerical methods) are still mainly
unexplored. (Unfortunately, some nice and useful properties of convex models
are lost in the transformation.)

The next two problems are related to linear programming and, so far, they have
been only partly solved in a constructive way:

• Basic problem I: Given a linear program in the canonical form with a full row
rank coefficient matrix. Choose coefficients to be perturbed (e.g., several tech-
nological coefficients in the matrix). It is required to construct perturbations
for which the feasible set mapping is (not) lower semicontinuous.

Remark 5. Robinson [32] considers simultaneous perturbations of all coefficients
and shows that, essentially, the existence of a positive x > 0 feasible point (i.e., the
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generalized Slater’s condition) is necessary and sufficient for stability (also called
“regularity”). However, his result is only sufficient for lower semi-continuity of the
feasible set mapping for perturbations of specific coefficients. A stronger sufficient
condition for lower semi-continuity (that implies regularity) is the existence of at
least one non-degenerate basic feasible solution. A constructive necessary condition
for lower semi-continuity for perturbations of specific coefficients can be given in
terms of a subset of the index set of the decision variable, called the “minimal index
set of active variables”. This result appears to have a potential for developing nu-
merical methods for identifying unstable perturbations of specific coefficients. (This
author gave a talk on this topic at the Sixth International Conference on Parametric
Optimization and Related Topics, Dubrovnik, Croatia, October 4-8, 1999.).

The second problem is related to the “partly” linear program

(PL, θ)
min
(x,θ)

f(x, θ) subject to

f i(x, θ) ≤ 0, i ∈ P = {1, ...,m}.
Here f(·, θ), f i(·, θ) : R

p → R, i ∈ P , are linear functions for every θ ∈ R
p.

• Basic problem II: Given an optimal solution (x∗, θ∗) of the partly linear pro-
gram (PL, θ). Specify coefficients to be perturbed. For what perturbations
of θ ∈ R

p, emanating from θ∗, the point (x∗, θ∗) remains globally optimal for
the program (PL, θ)?

• Stable planning is a term used to describe a particular type of stable paramet-
ric programming: Consider a convex model (P, θ) running with some fixed
parameter θ′. Suppose that one wishes to achieve a prescribed goal (e.g., a
prescribed plan or a profile of production) x∗ which is not in the feasible set
of the program (P, θ′), i.e., x∗ �∈ F (θ′). One wishes to achieve the goal by
perturbing the parameters. The stable planning problem is the problem of how
to change prescribed coefficients in a stable way from the initial θ′ to some θ∗,
so that x∗ become feasible: x∗ ∈ F (θ∗).

The problem can be formulated as a stable parametric model of the form

(SP, θ)
min
(x)

‖x− x∗‖
f i(x, θ) ≤ 0, i ∈ P.

Here the objective function is a norm that measures the distance between
the prescribed point x∗ and the feasible set F (θ). If, at a globally optimal
input θ∗, the optimal value function has a positive value, then the goal x∗

cannot be reached by a stable path emanating from θ′, i.e., x∗ �∈ F (θ∗). A
corresponding optimal solution xo = xo(θ∗) ∈ F (θ∗) of the program (SP, θ∗)
then is a “best approximate solution” (relative to the initial θ′, the norm, and
the class of stable perturbations used). If the optimal value is zero at θ∗, then
xo(θ∗) = x∗ ∈ F (θ∗) and θ∗, together with the path θ′ → θ∗, is an optimal
solution of the stable planning problem. (Some case studies have been solved,
e.g., “stable planning of university admission”; e.g., Leger [21].)
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• Inverse stable planning: Consider a convex model (P, θ) running with some
parameter θ′. Let x′ be its fixed feasible decision variable. Assume that x′

is a point which is not an optimal solution of the program (P, θ′), but it is a
“desirable” point which one wants to make optimal by changing parameters.
In “stable inverse programming” one attempts to determine a stable path,
leading from θ′ to some θ∗, such that x′ become an optimal solution of the
program (P, θ∗).

This problem can be formulated as a stable programming problem and solved
by input optimization. One can use the model

min
(d,δ)

∇f(x′, θ)d
∇f i(x′, θ)d+ ε‖d− δi‖ ≤ 0, i ∈ P (x′, θ)

‖d‖ ≤ 1, δi ∈ D=
i (x

′, θ), ‖δi‖ ≤ 1, i ∈ P (x′, θ).

Here ε > 0 is an auxiliary scalar parameter, P (x′, θ) is the set of active
constraints at x′ of (P, θ), and D=

i (x
′, θ) is the cone of directions of constancy

of f i(x, θ) at x′, i ∈ P (x′, θ); all for a fixed θ. We know that, for a fixed θ,
the point x′ is an optimal solution of the program (P, θ) if, and only if, there
exists a positive scalar ε∗ > 0 such that the optimal value of the program
(P, θ; ε) is zero for every 0 < ε ≤ ε∗. Hence, in order to make x′ optimal, one
should bring the optimal value of the model to zero for all sufficiently small
ε > 0, by stable perturbations of θ, starting from, say, θ′. If the constraints are
LFS (in particular linear) in the x variable, then the problem is significantly
simplified. In this case, instead of the above model, one can use the model

min
(d)

∇f(x′, θ)d
∇f i(x′, θ) ≤ 0, i ∈ P (x′, θ), ‖d‖ ≤ 1.

Now one has to find a path connecting the initial θ′ to some θ∗ at which the
optimal value of the program

min(d) ∇f(x′, θ∗)d
∇f i(x′, θ∗) ≤ 0, i ∈ P (x′, θ∗), ‖d‖ ≤ 1

is equal to zero. Then x′ ∈ F (θ∗) is an optimal solution of the program
(P, θ∗).

• Efficient input optimization methods, especially for bilevel models (von Stack-
elberg games) and multi-objective multilevel stable models, are yet to be
developed.

Remark 6. Path-following methods, based on nonlinear programming opti-
mality conditions, are described in, e.g., Guddat et al. [16].

• Inverse multi-objective multilevel stable models; this is, essentially, terra incog-
nita even for linear and convex models.
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• Constructive study of optimality and stability in abstract formulations of paramet-
ric programming. Some results do exist for abstract von Stackelberg games;
e.g., Lignola and Morgan [22].

• Controls and differential games. An important problem (the feedback law) can
be formulated as follows: Given T ∈ R and (τ, α) ∈ (−∞, T ]×R

n, f : R
n → R

and G : R
n+1 → R

n, solve

mins.t. f(x(T ))
dx
dt ∈ G(t, x(t)), x(τ) = α.

This is, essentially, a semi-abstract parametric programming model where the
initial condition (τ, α) = θ can be considered as a parameter. Very little is
known about the optimal value function and stability (in the sense of Defini-
tion 7.) and virtually nothing about optimal parameters; e.g., Clarke et al. [9].
General optimal control problems can be formulated as abstract parametric
programming models. Then an optimal control is identified as an optimal pa-
rameter. Stable abstract parametric programming recovers “ stable optimal
control theory”. This approach does not yet seem to have been studied.

• Study of LFS functions. LFS functions are all linear and many nonlinear
convex functions. These are important functions for optimization, because
optimality conditions in convex modelling with LFS constraints do not require
a “regularization condition”. Many of these functions f have a property that
∇f(x) = α(x)c, where α(x) is a scalar function and c is a constant vector
depending only on f . LFS functions are not yet fully explored; e.g., Sharifi
Mokhtarian and Zlobec [36], Neralić and Zlobec [31], and Trujillo-Cortez [41].
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