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 Training and topology design of artificial neural 

networks are important issues with large 

application. This paper deals with an improved 

algorithm for feed forward neural networks (FNN)s 

training. The association of an incremental 

approach and the Lyapunov stability theory 

accomplishes both good generalization and stable 

training process. The algorithm is tested on wind 

turbine modeling. Compared to the incremental 

approach and to the Lyapunov stability based 

method, the association of both strategies gives 

interesting results. 
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1 Introduction 
 

Wind energy is currently experiencing an unrecorded 

growth as the cost price of this energy form has 

become competitive and considerable technological 

progress has been achieved in the field of wind 

turbine. More intelligence is being introduced in 

modeling and control of these systems [1], [2], [3] 

and [4]. The objective is to optimize the power 

efficiency of these systems and to improve quality 

during operating conditions. 

Variable-speed wind turbines exhibit a number of 

significant advantages with respect to fixed-speed 

turbines. Fixed-speed operation means that the 

maximum performance coefficient has been reached 

only for a specific wind speed, while the performance 

has been significantly degraded for all other wind 

speed regimes. Variable-speed wind turbines have 

the ability to adapt operation conditions to different 

wind speed regimes, thus improving overall 

performance. This provides higher energy yields with 

fewer grid connection power peaks. Nonetheless, 

these benefits generally come at the cost of more 

sophisticated control systems and power electronics 

on the generator part. 

Modeling and the simulation of wind turbines aim at 

analyzing and optimizing the power extraction rate 
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[5], [8] and [9]. These tasks are complex since they 

include descriptions of aerodynamic interaction, 

elastic mechanical coupling, electrical and pith 

actuator subsystems. 

The aerodynamic forces acting on wind turbines are 

turbulent in nature. Moreover, wind speed is known 

to vary stochastically [7]. As a result, it is impossible 

to predict the captured aerodynamic torque from 

single point wind speed measurements. Therefore, 

one is lead to elaborate more adequate control 

procedures such as neural networks controllers for 

wind turbines which enable to deal with the presence 

of uncertainties [6].This step can be accomplished as 

well as the model describes the system dynamics 

correctly, which shows the importance of the choice 

of modeling strategy. 

In this work, modeling of the turbine is provided via 

a neural model whose architecture is selected based 

on an approach arising from the association of two 

strategies for synthesis of neural networks. This 

approach leads to a new incremental learning 

algorithm based on Lyapunov stability theory. 

The rest of this paper is organized as follows. In 

section 2 the modeling of an aerodynamic action on 

wind turbines is described. In section 3 the neural 

method for the speed modeling of wind turbines is 

represented. Section 4 illustrates the obtained 
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simulation results. Finally, the conclusion is 

presented in section 5. 

 

2 Modeling aerodynamic action on wind 

turbines  
 

The rigid model with only one degree of freedom [26-

28] is described by the following equation: 

 

.kTTJ atgaat     (1) 

For this model g=nga is satisfied, where: aa    

is the rotor rotational speed and gg   is the 

rotational speed of the high speed shaft, while ng 

designates the gear ratio between the primary shaft 

and the secondary shaft, a and g are the azimuthally 

rotor position and the azimuthally position of the high 

speed shaft. 

The captured aerodynamic torque Ta is given [10] in 

terms of the power coefficient Cp(,) as:  
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where  is the specific speed defined as: 
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v is the effective wind speed,  is the air density, and 

R designates the blades rotor radius. 

The power coefficient Cp(,) is estimated using 

aerodynamic data obtained from wind tunnel 

measurements. It is generally represented under the 

form of an analytical formula which gives Cp() for 

various values of the pitch angle . 

In the literature [11] one finds the following 

approximation: 
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coefficients ci, i=1... 6 are identified from real Cp 

curves. 

The point (.) designates the first order time 

derivative, Tg is the generator torque and Jr, Jg, kr, kg
 

are the moment of inertia of rotor side masses, the 

moment of inertia of generator side masses, the 

mechanical damping in the rotor side and the 

mechanical damping in the generator side 

respectively, where: 

ggrt JnJJ 2
 
is the total inertia of generator side 

masses, 

ggrt knkk 2
 

is the equivalent mechanical 

damping. 

Using the Euler approximation, the discrete model 

describing the wind turbine can be expressed as 

follows: 
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(5) 

t denotes the sampling period.  

 

3 Neural modeling and synthesis  
 

3.1 Introduction  
 

Neural networks are extraordinary computing and 

information processing methods can be used to 

handle the complicated tasks such as pattern 

recognition, function approximation, time series 

forecasting and identification of complex systems 

[12] and [13]. 

There are various types and architectures of neural 

networks depending fundamentally on the way they 

learn. In this work, the multi-layer perceptron 

approach is used. 

Many researchers have studied the problem of 

learning neural networks and several algorithms have 

been developed. Faster convergence and function 

approximation accuracy are two key issues in 

selecting a training algorithm. 

The popular method for training multilayered (FNNs) 

is the back propagation (BP) algorithm [14] and [15]. 

The use of this algorithm is not always successful due 

to its sensitivity to learning parameters, initial state 

and perturbation [16]. There has been much work on 

the convergence of (BP) algorithm by using the 

gradient method [17] and [18]. Also, different 

versions of (BP) learning algorithms have been 

proposed, such as on-line algorithm for dealing with 

time varying inputs [19] and the Levenberg-

Marquardt-algorithm [20]. 

Modeling using neural networks requires the phase of 

model selection, which is a crucial stage in the design 

of a neural network. This phase must lead to choose 

a model that is complex enough to be adjusted with 

the data but not too excessive. 

In this paper, we will develop an improved 

constructive training algorithm for feedforward 

neural network using Lyapunov stability theory. It 

employs an incremental training procedure where 

training patterns are learned one by one. The 
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Lyapunov stability theory has been introduced to 

adjust the learning rate, assuring the stability of 

training process. 

 

3.2 Training algorithm based on Lyapunov 

stability theory 

 

Learning based on (BP) algorithm can lead to 

unsatisfactory results.  In addition, this algorithm has 

unavoidable disadvantages such as its slow 

convergence and its inability to establish a global 

convergence. To overcome this problem, the 

Lyapunov stability theory has been used to provide 

an adaptive learning rate for improving the 

convergence speed. 

A simple (FNN)s with a single output is represented 

in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Feedforward Neural Network. 

 

This neural network is parameterized in terms of its 

weights, where:  

   

   mT
mwwww  ,...,, 21  (6) 

The training data consists of N patterns {xi, yi}, 

i=1,2,…,N. 

In order to derive a weights update law, a Lyapunov 

function candidate has been defined as:  
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where r denotes the difference between the real 

output and the desired output, as:  
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 The stability conditions  0V 
 
give the weights 

update law with an adaptive learning rate which can 

be expressed as:  
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where: 

 ri designates the error signal for sample i, as : 

    ii
di yyr  (10) 

 Ji is the instantaneous value of the Jacobian, 

as:  
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 ,  are a constant and a very small constant 

to avoid numerical instability when error 

signal goes to zero respectively, which are 

selected heuristically. 

More details about this algorithm noted LF1 can be 

found in Laxmidhar et al. [25].  

In the following section, we present some 

improvements on the above algorithm to deal with an 

incremental structure of the (FNN)s. 

 

3.3 Improved incremental algorithm based on 

Lyapunov stability theory 

 

Liu et al. [21] elaborated a constructive training 

algorithm for determining the network size. In his 

approach, the training begins with a single training 

pattern and a single hidden layer neuron. The aim is 

to get such a neural network topology that the overall 

error of training is less than a specified error 

tolerance. 

Although the constructive learning strategy can lead 

to a neural network with minimal structure, the neural 

model is risking being over trained. To solve this 

problem, a modified version of this algorithm that 

helps in avoiding poor generalization performances 

based on regularization technique (early-stopping) 

has been proposed in Abid et al. [22]. Early-stopping 

consists on stopping the training when a moderate 

value of training error is reached. Indeed, in the first 

step, learning and generalization criteria begins to 

decrease. In a following step, the learning criterions 

continue to decrease nevertheless the generalization 

one starts to increase. In this moment, the training 

should be stopped [23] and [24]. 

It is to be noted that we are interested in a multi input-

single output (MISO) model and the weights update 

is based on the equation (9).  

The proposed incremental training algorithm can be 

described as follows: 

Step 1: choose one pattern from the training base 

(L=1). Train the neural network with one hidden 

node using the chosen pattern and calculate the 

EQMA(1), where: EQMA represents the average 

quadratic error of training, which is defined as: 
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Here: NA and ri indicates the number of samples in the 

training set and the difference between the real output 

of sample i and output estimated by the neural model, 

respectively. 

 

Step 2: if (L<NA), choose the next pattern (L=L+1) 

and go to step 3 for training; else (L= NA), end of the 

algorithm. 

 

Step 3: train the neural network with Nc hidden nodes 

using L patterns from the training set and calculate 

the values of EQMA(L) and EQMV(Nc), where 

EQMV designates the average quadratic error of 

validation, 
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Here: Nv indicates the number of samples in the 

validation set. 

If (EQMA(L)<EQMAtol), go back to step 2; 

otherwise, go to step 4 for growing where EQMAtol 

represents a tolerated value of the average quadratic 

error of training. 

 

Step 4: if (Nc=1), then, (Nc= Nc+1) and go back to 

step 3; else (Nc>1), two tests should be done to decide 

about the evolution of the network structure. 

In the case of the growth of the generalization 

criterion (EQMV) with a value greater than a 

tolerated threshold (EQMVtol), the algorithm should 

go to step 5. The same step will be executed when the 

generalization criterion decreases. These cases are 

summarized as follows: 

if
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, then go to step5. 

These tests are particularly satisfied in the beginning 

of the learning step when the generalization criterion 

can have an oscillatory behaviour. 

In the third case and when the generalization criterion 

grows with a value lower than EQMVtol, then increase 

slightly the EQMAtol and re-execute the step 3. This 

case is summarized by: 

if
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 toltol EQMAEQMA   
where  is a constant slightly 

higher than 1, and go back to step 3. 

In this case, the network structure has a sufficient 

hidden nodes and neural network accomplishes good 

learning performance with generalization error 

tending to increase. In this case, the (EQMAtol) is 

increased so as to slow down the recruitment of 

hidden nodes. 

 

Step 5: keep the weights of the last successfully 

trained neural network, increase the number of 

hidden neurons by one and assign its initial weights. 

Go to step 3. 

These steps can be summarized by the flowchart 

presented in Fig. 2. 

 

4 Experiments and discussions 

 
In this section, we present the simulation results. The 

capacities of the proposed algorithm are analyzed. 

We use this algorithm for the neural identification of 

a wind turbine. 

The goal of our simulation is to determine the 

adequate structure of the input-output neural model 

which describes the dynamics of the wind turbine by 

using the approach presented in section 3. 

The wind turbine parameters used in simulations are 

the following [29]: 
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The input-output neural model describing the wind 

turbine is represented in Fig. 3. 

The model input vector is constituted by the actual 

and previous torque generator (Tg(k) and Tg(k-1)), the 

actual and previous rotor rotational speed (a(k) and 

a(k-1)) and the actual value of wind speed v(k). The 

model output is the future value of the rotor rotational 

speed a(k+1). 

Based on several simulations, the input vector and the 

value of sampling period (t=0.1s) are selected to 

obtain the best performance. 

The chosen mean wind speed was set at vmoy=12ms-1. 

Fig. 4 and 5 represent the input signals Tg(k) and v(k) 

respectively, used in the training and validation 

phases.  

The simulation results describing the performances 

of algorithms presented in this paper are illustrated in 

Table 1.  

 

  



Engineering Review, Vol. 33, Issue 3, 165-172, 2013.  169 
________________________________________________________________________________________________________________________ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Improved incremental algorithm based on 

Lyapunov stability theory. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

Figure 3. Input-output neural model. 

 

It can be seen that the proposed algorithm provides 

better convergence properties in training and 

validation phases when compared to LF1 and 

incremental algorithms. 

 

Table 1 shows the contribution from the mixture of 

the constructive approach and the algorithm LF1. In 

fact we note that the incremental algorithm leads to 

satisfactory performances but with a slow 

convergence time. Moreover, the algorithm LF1 

presents a minimal convergence time with 

performances degradation of the obtained model. The 

proposed algorithm guarantees both fast convergence 

and better learning and generalization abilities.  

 

The simulation results, which relate to the selection 

of hidden neurons number using the incremental 

training algorithm and Lyapunov stability theory, are 

presented in Fig. 6. 
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(a) (b) 

  

 

Figure 4.Tg (k) used in the training and validation phases ((a): training, (b): validation). 

 

(a) (b) 

  

 
Figure 5. v(k) used in the training and validation phases ((a): training, (b): validation). 

Table 1. Performances of algorithms 

 

Algorithm Numerical simulation parameters EQMA EQMV Nc Run time 

LF1(fixed structure) =0.6, =0.001 0,0047 0,004 5 9' 

Incremental algorithm =1,01, EQMAtol=0,035, EQMVtol=0,045 0,0032 0,0027 5 17'43" 

Incremental algorithm 

combined with LF1 
=0,6, =0,001, =1,01, EQMAtol=0,035, 

EQMVtol=0,045 
0,0032 0,0023 5 13' 
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Figure 6. Training and validation performances for the proposed algorithm ((a): training, (b): validation, 

(c): EQMA and EQMV, (d): EQMV(Nc)).

 

5 Conclusion  
 

In this paper, an improved approach for neural 

models selection is proposed. The main contribution 

of this method is to show the usefulness of the 

association of the constructive strategy and the 

Lyapunov stability theory for the synthesis of neural 

networks. To confirm the effectiveness of the 

developed algorithm, we have used to the neural 

modeling of the speed of wind turbine. The 

simulation results have demonstrated that the 

proposed algorithm not only enhance the training and  

generalization abilities but also shortens the runtime 

remarkably improving the practicability of this 

algorithm in both theoretical and real problems. 
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