About the kernel of the augmentation of finitely generated Z-modules

Marc Conrad*

Abstract

Let M be a free finitely generated \mathbf{Z}-module with basis B and ΔM the kernel of the homomorphism $M \rightarrow \mathbf{Z}$ which maps B to 1. A basis of ΔM can be easily constructed from the basis B of M. Let further R be a submodule of M such that $N=M / R$ is free. The subject of investigation is the module $\Delta N=(\Delta M+R) / R$. We compute the index $[N: \Delta N]$ and construct bases of ΔN with the help of a basis of N. Finally, the results are applied to a special class of modules which is connected with the group of cyclotomic units.

Key words: augmentation, basis, module, cyclotomic units
AMS subject classifications: 20K05, 11R18, 20C05
Received August 20, 1999
Accepted February 28, 2000

1. Introduction

Well known in the context of group rings is the augmentation of a group ring element which is the homomorphism obtained by mapping the group elements to 1 . The augmentation defines the augmentation ideal of the group ring which denotes the kernel of the augmentation [3]. Similarly, in a free Z-module M each basis B defines a homomorphism aug : $M \rightarrow \mathbf{Z}, \sum_{b \in B} \alpha_{b} b \mapsto \sum_{b \in B} \alpha_{b}$. We denote the kernel of aug by ΔM. We consider further the module $N=M / R$ where R is a submodule of M such that N is free, and let $\Delta N=(\Delta M+R) / R$. In the following we assume that the module M is finitely generated. It is easy to see that the index $[M: \Delta M]$ is infinite. In Theorem 1. we identify the index $[N: \Delta N]$ as the greatest common divisor of the augmentation of the elements of R.

It can be seen straightforwardly that for a fixed $b_{0} \in B$ the set

$$
\begin{equation*}
B_{0}=\left\{b-b_{0} ; b \in B, b \neq b_{0}\right\} \tag{1}
\end{equation*}
$$

is a basis of ΔM. A similar result is obtained for ΔN in Theorem 2. In Section 4. we will apply this result to a class of modules which is connected to the group of cyclotomic units. This group plays an important role in the theory of cyclotomic fields [4].

[^0]
2. The index of ΔN

We use in the following the notation of the introduction.
Theorem 1. We have $[N: \Delta N]=\operatorname{gcd} \operatorname{aug}(R)$ where the greatest common divisor of $\{0\}$ is defined as ∞.

Proof. Let $b_{0} \in B$. Because $b \equiv b_{0} \bmod \Delta M$ for all $b \in B$ we see that $N / \Delta N$ is cyclic and generated by b_{0}. The index is the smallest positive number such that $m b_{0} \in R+\Delta M$. Note that $\operatorname{aug}\left(m b_{0}\right)=m$ for $m \in \mathbf{Z}$.

In the case $R \subseteq \Delta M$ we have aug $R=\{0\}$. From $m b_{0} \notin \Delta M$ for all $m \neq 0$ we see $[N: \Delta N]=\infty$ as it was claimed in the Theorem.

For $R \nsubseteq \Delta M$ there exists an element $r \in R$ with minimal positive augmentation ρ. Noting that $\rho b_{0} \equiv r \bmod \Delta M$, it follows $[N: \Delta N] \leq \rho$.

On the other hand, if we have $k \in \mathbf{Z}$ and $r^{\prime} \in R$ such that $k b_{0} \equiv r^{\prime} \bmod \Delta M$, it follows $\rho \leq k=\operatorname{aug}\left(r^{\prime}\right)$ because of the minimality of ρ, and we obtain $[N: \Delta N]=\rho$.

It remains to show that $\rho=\operatorname{gcd} \operatorname{aug}(R)$. Suppose there exists $r^{\prime} \in R$ such that ρ is not a divisor of $\rho^{\prime}=\operatorname{aug}\left(r^{\prime}\right)$. Then by computing $\delta=\operatorname{gcd}\left(\rho, \rho^{\prime}\right)$ we find numbers $\alpha, \beta \in \mathbf{Z}$ with $\delta=\alpha \rho+\beta \rho^{\prime}$. But $\alpha r+\beta r^{\prime} \in R$ is an element with positive augmentation $\delta<\rho$ which is a contradiction to the minimality of ρ.

We show in the next lemma how the index $[N: \Delta N]$ can be explicitly computed.
Lemma 1. If $E \subseteq R$ generates R, then $\operatorname{gcd} \operatorname{aug}(R)=\operatorname{gcd} \operatorname{aug}(E)$.
Proof. For $[N: \Delta N]=\infty$ there is nothing to show. In the case when $\rho=[N:$ $\Delta N]<\infty$, the claim follows from the existence of $r \in R$ and $\alpha_{e} \in \mathbf{Z}$ such that $\rho=\operatorname{aug}(r)=\sum_{e \in E} \alpha_{e} \operatorname{aug}(e)$. With this we obtain

$$
\begin{equation*}
\operatorname{gcd} \operatorname{aug}(R)=\rho=\operatorname{gcd}(\operatorname{aug}(E) \cup\{\rho\})=\operatorname{gcd} \operatorname{aug}(E) \tag{2}
\end{equation*}
$$

Remark 1. Similarly to ΔM, we can identify ΔN as a kernel of a homomorphism. With $k=[N: \Delta N]$ for a finite and $k=0$ for an infinite index we have a homomorphism

$$
\begin{equation*}
\overline{\operatorname{aug}}: N \rightarrow \mathbf{Z} / k \mathbf{Z}, a+R \mapsto \operatorname{aug}(a)+k \mathbf{Z} \tag{3}
\end{equation*}
$$

and $\Delta N=\operatorname{ker}_{N} \overline{\text { aug }}$.

3. Construction of a basis of ΔN

In the following, let $C \subseteq M$ induce a basis of N, i. e. let $\{c+R ; c \in C\}$ be a basis of N. We assume that there exist $\gamma \in \mathbf{Z}$ such that $\operatorname{aug}(c)=\gamma$ for all $c \in C$. Note that this is no restriction to the module N. In Algorithm 1 we will show how such a basis can be constructed from an arbitrary basis of N.

Let $\rho=[N: \Delta N]$. In the case $\rho=\infty$ it is easy to see that similarly to (1) for a fixed $c_{0} \in C$, the set $C_{0}=\left\{c-c_{0} ; c \in C, c \neq c_{0}\right\}$ is a basis of ΔN. We assume in the following $\rho<\infty$ and show in the next Lemma and the subsequent Theorem how to construct bases of ΔN in this case.

Lemma 2. Let $c_{1} \in C$. Then

$$
\begin{equation*}
C_{1}=\left\{c-c_{1} ; c \in C, c \neq c_{1}\right\} \cup\left\{\rho c_{1}\right\} \tag{4}
\end{equation*}
$$

induces a basis of ΔN.
Proof. We show that the elements $b-b_{0}$ with $b, b_{0} \in B$ are modulo R generated by C_{1}. Because C is a basis of N, we have $\alpha_{c}, \beta \in \mathbf{Z}$ such that

$$
\begin{equation*}
b-b_{0}=r+\beta c_{1}+\sum_{c \in C, c \neq c_{1}} \alpha_{c}\left(c-c_{1}\right) \tag{5}
\end{equation*}
$$

The application of aug to (5) and reducing modulo ρ gives $\beta \gamma \equiv 0 \bmod \rho$. We show in the rest of the proof that $\operatorname{gcd}(\gamma, \rho)=1$. Then we have $\rho \mid \beta$ and the claim of the Lemma follows.

We can write any $b \in B$ as $b=c+r$ with $c \in\langle C\rangle$ and $r \in R$. This gives $1=\operatorname{aug}(c)+\operatorname{aug}(r)=\nu \gamma+\mu \rho$ with $\nu, \mu \in \mathbf{Z}$ which leads to $\operatorname{gcd}(\gamma, \rho)=1$.

Compared with the basis B_{0} of ΔM in (1), the basis C_{1} from (4) has the extra element ρc_{1} added to the expected elements $c-c_{1}$. In the next theorem we give a basis which looks more similar to B_{0}.
Theorem 2. Let $c_{0} \equiv c^{\prime} \bmod R$ such that $c^{\prime} \in\langle C\rangle$ and $\operatorname{aug}\left(c^{\prime}\right)=(1-\rho) \gamma$. Then

$$
\begin{equation*}
C_{0}=\left\{c-c_{0} ; c \in C\right\} \tag{6}
\end{equation*}
$$

induces a basis of ΔN.
Proof. Let c_{1} be as in Lemma 2. and $C^{\prime}=\left\{c-c_{1} ; c \in C, c \neq c_{1}\right\}$ such that $C_{1}=C^{\prime} \cup\left\{\rho c_{1}\right\}$ induces a basis of ΔN. Because of $c_{1}-c^{\prime} \equiv \rho c_{1} \bmod \left\langle C^{\prime}\right\rangle$ we can replace ρc_{1} by $c_{1}-c^{\prime}$ in C_{1}. By replacing the other elements of C_{1} using the relation $c-c^{\prime}=c-c_{1}+\left(c_{1}-c^{\prime}\right)$ for $c \in C$ we obtain $\left\{c-c^{\prime} ; c \in C\right\}$ as a basis of ΔN. With $c_{0} \equiv c^{\prime} \bmod R$ we get the claim.

Remark 2. If we choose $c_{0}=c^{\prime}+\gamma r$ with $r \in R$ such that $\operatorname{aug}(r)=\rho$ we obtain $\operatorname{aug}\left(c_{0}\right)=\gamma$ and therefore $C_{0} \subseteq \Delta M$. So, with C_{0}, we directly obtain a basis of $\Delta M /(\Delta M \cap R)$ (which is of course isomorphic to $\Delta N)$.

In Lemma 2. and Theorem 2. we assume that there is a basis $C \subseteq M$ of N with $\operatorname{aug}(c)=\gamma$ for all $c \in C$. We give here an Euclidean-like algorithm which shows how to construct such a basis from an arbitrary basis.

Algorithm 1. Let $C \subseteq M$ induce a basis of N. The algorithm leads to $\operatorname{aug}(c)=\gamma$ for all $c \in C$ by successively replacing elements of C.

If $\operatorname{aug}(c)=0$ for all $c \in C$, there remains nothing to be done. Otherwise, we choose first c^{\prime} with $\operatorname{aug}\left(c^{\prime}\right) \neq 0$ and replace each $c \in C \backslash\left\{c^{\prime}\right\}$ by $c+\lambda c^{\prime}$ with $\lambda \in \mathbf{Z}$ such that $\operatorname{aug}(c)>0$. If $\operatorname{aug}\left(c^{\prime}\right)<0$, we also have to replace c^{\prime} by $-c^{\prime}$. After that we perform the following steps.

1. If all elements of C have the same augmentation, the algorithm is finished.
2. Pick $c, c^{\prime} \in C$ such that $\operatorname{aug}(c)<\operatorname{aug}\left(c^{\prime}\right)$ and replace c^{\prime} by $c^{\prime}-c$.
3. Go to Step 1.

The algorithm terminates because $\sum_{c \in C} \operatorname{aug}(c) \in \mathbf{N}$ decreases in every run of Step 2.

4. A special class of modules

For a finite set A we denote by ΣA the sum $\sum_{a \in A} a$ in the free module $\langle A\rangle$ generated by A. For $i=1, \ldots, r$ let A_{i} be a finite set with an involution σ operating nontrivially on each element. So we have sets H_{i} such that $B_{i}=H_{i} \cup \sigma H_{i}$ and $H_{i} \cap \sigma H_{i}=\emptyset$ for $i=1, \ldots, r$. We define further the module

$$
\begin{equation*}
Z=\left\langle B_{1}\right\rangle /\left\langle\Sigma B_{1}\right\rangle \otimes \cdots \otimes\left\langle B_{r}\right\rangle /\left\langle\Sigma B_{r}\right\rangle \tag{7}
\end{equation*}
$$

The involution on B_{i} defines an involution on Z and we may interpret Z also as a $\mathbf{Z}[\sigma]$-module. The subject of investigation is the module $N=Z / \operatorname{ker}_{Z}(\sigma+1)$.

Remark 3. The module N is directly connected with the group of cyclotomic units $C^{(n)}$. Let ϵ_{n} be a primitive $n^{t h}$ root of unity. Then $C^{(n)}$ is defined as the multiplicative subgroup of $D^{(n)}$ which are units of $\mathbf{Z}\left[\epsilon_{n}\right]$. The group $D^{(n)}$ is generated by the elements $1-\epsilon_{n}^{a}$ with $1 \leq a<n$ modulo torsion. With $\widehat{C^{(n)}}=C^{(n)} / L^{(n)}$ where $L^{(n)}=\prod_{d \mid n, d \neq n} C^{(d)}$ we have for $n=p_{1} \cdots p_{r}$ an odd, square free and not a prime isomorphism $N \cong \widehat{C^{(n)}}$ when we choose $B_{i}=\left\{1, \ldots, p_{i}-1\right\}$. For general n we have similar isomorphisms (see [1]).

Let $M=\left\langle B_{1} \times \cdots \times B_{r}\right\rangle$ and let S be the module generated by the sums

$$
\begin{equation*}
s_{i}\left(a_{1}, \ldots, a_{r}\right)=\sum_{b \in B_{i}}\left(a_{1}, \ldots, a_{i-1}, b, a_{i+1}, \ldots, a_{r}\right), \quad i=1, \ldots, r \tag{8}
\end{equation*}
$$

where $a_{j} \in B_{j}$ for $j=1, \ldots, r$. By [2] we have then for r even

$$
\begin{equation*}
N \cong M /(S+(1-\sigma) M) \tag{9}
\end{equation*}
$$

and for r odd

$$
\begin{equation*}
N \cong M /(S+(1-\sigma) M+\langle e\rangle) \tag{10}
\end{equation*}
$$

with $e=\Sigma\left(H_{1} \times \cdots \times H_{r}\right)$.
Theorem 3. For $i=1, \ldots$, r let $\beta_{i}=\left|B_{i}\right|$, the number of elements of B_{i}, and $\beta=\operatorname{gcd}\left(\beta_{1}, \ldots, \beta_{r}\right)$. Then we have for $\rho=[N: \Delta N]$ that

$$
\rho= \begin{cases}\beta / 2, & \text { if } r=1 \text { or } \\ & r \text { odd and } \beta_{i} \equiv 2 \bmod 4 \text { for } i=1, \ldots, r \\ \beta, & \text { else. }\end{cases}
$$

Proof. The claim follows for r even and $r=1$ from Lemma 1. and the isomorphisms (9) and (10). For r odd we additionally use $\operatorname{aug}(e)=\prod_{i=1}^{r}\left(\beta_{i} / 2\right)$.

A basis of N can be constructed with weak σ-bases according to [1]. We get the following result.

Lemma 3. For each $i=1, \ldots, r$ we fix $h_{i} \in H_{i}$. Let $H_{i}^{b}=H_{i} \backslash\left\{h_{i}\right\}$ and $A_{i}^{b}=$ $A_{i} \backslash\left\{h_{i}\right\}$. Then we obtain $C=F^{0} \cup F^{+}$as a basis of N where

$$
\begin{equation*}
F^{0}=\bigcup_{i=1}^{r}\left\{h_{1}\right\} \times \cdots \times\left\{h_{i-1}\right\} \times H_{i}^{b} \times B_{i+1}^{b} \times \cdots \times B_{r}^{b} \tag{11}
\end{equation*}
$$

and

$$
F^{+}= \begin{cases}\emptyset, & \text { for } r \text { odd } \tag{12}\\ \left\{h_{1}\right\} \times \cdots \times\left\{h_{r}\right\}, & \text { for } r \text { even }\end{cases}
$$

We see here that the basis C can be chosen as a subset of $B=B_{1} \times \cdots \times B_{r}$. So, all elements of C have augmentation 1, and we may apply Theorem 2. with $\gamma=1$ and $c_{0}=(1-\rho) c$, where c is any element of C. This leads to a basis of ΔN as in (6).

However, we might ask a stronger question: Can we find a basis $C \subseteq B$ of N such that we can choose $c_{0} \in B$? Up to now there is no general answer to this. We will discuss in the rest of this section some special cases where the answer is affirmative.

In the following, we call a basis C_{0} of ΔN which has the form $C_{0}=\left\{c-c_{0} ; c \in\right.$ $C\}$ with $C \subseteq B$ and $c_{0} \in B$ a handsome basis of ΔN.

Theorem 4. If there exists $a j \in\{1, \ldots, r\}$ such that $\beta_{j}=\rho$, then ΔN has a handsome basis.

Proof. In the case $F_{0} \neq \emptyset$, we rearrange the sets B_{i} such that $j=r$. Let $\left(a_{1}, \ldots, a_{r-1}, a_{r}\right)$ be any element of F^{0}. Then $\left(a_{1}, \ldots, a_{r-1}, b\right) \in F^{0}$ for $b \neq h_{r}$. So, we may choose in Theorem 2. $c^{\prime}=-\sum_{b \in B^{b}}\left(a_{1}, \ldots, a_{r-1}, b\right)$, and the claim follows with $c_{0}=\left(a_{1}, \ldots, a_{r-1}, h_{r}\right)$. In the case $F_{0}=\emptyset$, we take $c_{0}=\left(h_{1}, \ldots, h_{r-1}, \sigma h_{r}\right)$.

The converse of Theorem 2. is not true. Even if a basis of the form $C=F^{0} \cup F^{+}$ as in Lemma 3. cannot be used for the construction of a handsome basis we may have more success when starting with a different basis. We will give an example in the next Lemma.

Lemma 4. Let $B_{1}=\{a, b, \sigma a, \sigma b\}$ and $B_{2}=\{a, b, c, \sigma a, \sigma b, \sigma c\}$ be two sets of four respectively six elements with σ acting nontrivially on B_{1} and B_{2}. The module N is as in (9) given as the free module M generated over $B=B_{1} \times B_{2}$ modulo $(1-\sigma) M$ and the relations described in (8). With

$$
C=\{(a, b),(b, c),(\sigma b, a),(\sigma b, b),(\sigma b, c),(a, \sigma a),(a, \sigma b),(\sigma a, c)\}
$$

and $c_{0}=(a, a)$ we obtain $\left\{c-c_{0} ; c \in C\right\}$ as a basis of ΔN.
Proof. We show first that C is a basis of N. By Lemma 3. we obtain rank $N=$ $8=|C|$ and it is sufficient to show that C generates N. Because of $c \equiv \sigma c \bmod (1-$ $\sigma) M$ we see that σC is generated by C. The elements of $B \backslash(C \cup \sigma C)$ can then be generated by $C \cup \sigma C$ directly by relations of S.

Theorem 1. gives $[N: \Delta N]=2$. We will now apply Theorem 2. in order to construct a basis of ΔN. Let $c^{\prime}=c_{0}+r$ with

$$
\begin{equation*}
r=\sum_{x \in B_{1}}(x, c)-\sum_{y \in B_{2}}(a, y)-(1-\sigma)(\sigma a, c) . \tag{13}
\end{equation*}
$$

Because c^{\prime} satisfies the conditions in Theorem 2. the claim follows.
Without going into details, we note that a construction as in Lemma 4. can be generalized to more complicated cases. However, the problem of giving a general algorithm for the construction of a handsome basis remains open.

References

[1] M. Conrad, Construction of bases for the group of cyclotomic units, J. Number Theory 81(2000), 1-15.
[2] M. Conrad, On explicit relations between cyclotomic numbers, Acta Arithmetica, to appear.
[3] G. Karpilovski, Commutative Group Algebras, Dekker, New York, 1983.
[4] L. C. Washington, Introduction to Cyclotomic Fields, Springer, New York, 1982.

[^0]: *Universität des Saarlandes, Postfach 151150, D-66041 Saarbrücken, Germany, e-mail: marc@math.uni-sb.de, http: //simath.math.uni-sb.de/~marc

