A characterization of continuous images of arcs by their images of weight $\leq \aleph_1$

Ivan Lončar*

Abstract. The main purpose of this paper is to characterize the continuous images of arcs by their images of the weight $\leq \aleph_1$. More precisely, we will show that a compact space X is the continuous image of an arc if and only if every continuous image $Y = f(X)$ with $w(Y) \leq \aleph_1$ is a continuous image of an arc.

Key words: continuous images of arcs, inverse systems and limits

AMS subject classifications: 54B35, 54C10, 54F15

Received December 12, 1999 Accepted March 15, 2000

1. Introduction

An arc is a continuum with precisely two nonseparating points. A space X is said to be a continuous image of an arc if there exists an arc L and a continuous surjection $f : L \to X$. Let X be a non-degenerate locally connected continuum. A subset Y of X is said to be a cyclic element of X if Y is connected and maximal with respect to the property of containing no separating point of itself. A cyclic element of a locally connected continuum is again a locally connected continuum. Let

$$L_X = \{Y \subset X : Y \text{ is a non-degenerate cyclic element of } X\}.$$

If Y is a closed subset of X, we let $K(X \setminus Y)$ denote the family of all components of $X \setminus Y$. Let X be a locally connected continuum. A subset Y of X is said to be a T-set if Y is closed and $|Bd(J)| = 2$ for each $J \in K(X \setminus Y)$.

Theorem 1. [1, Theorem 1] A Hausdorff locally connected continuum S is the continuous image of an arc if and only if each cyclic element of S is the continuous image of an arc.

The following theorem is a part of Theorem 4.4 of [9].

Theorem 2. If X is a locally connected continuum, then the following conditions are equivalent:

1. X is a continuous image of an arc,

*Faculty of Organization and Informatics, Varaždin, Pavlinska 2, HR-42 000 Varaždin, Croatia, e-mail: iloncar@foi.hr
2. \(X \) is a continuous image of an ordered compactum.

3. for each \(Y \in \mathbf{L}_X \) and any \(p, q, r \in Y \) there exists a metrizable \(T \)-set \(Z \) in \(Y \) such that \(p, q, r \in Z \).

4. For each \(Y \in \mathbf{L}_X \) and each closed metrizable subset \(M \) of \(Y \) there exists a metrizable \(T \)-set \(A \) in \(Y \) such that \(M \subseteq A \).

In this paper we shall use the notion of inverse systems \(\mathbf{X} = \{ X_a, p_{ab}, A \} \) and their limits in the usual sense [2, p. 135].

The notion of approximate inverse system \(\mathbf{X} = \{ X_a, p_{ab}, A \} \) will be used in the sense of S. Mardesić [6]. See also [8].

Let \(\tau \) be an infinite cardinal. We say that a partially ordered set \(A \) is \(\tau \)-directed if for each \(B \subseteq A \) with \(\text{card}(B) \leq \tau \) there is an \(a \in A \) such that \(a \geq b \) for each \(b \in B \).

Let \(\mathbf{X} = \{ X_a, p_{ab}, A \} \) be an approximate \(\tau \)-directed inverse system of compact spaces with surjective bonding mappings and with the limit \(X \).

Proof. Let \(B \) be a basis of \(Y \), \(\text{card}(B) = \tau \) and let \(\mathcal{V} \) be the collection of all finite subfamilies of \(B \). Clearly, \(\text{card}(\mathcal{V}) = \tau \).

We assume that \(\tau \) is an initial ordinal number. Hence, \(\mathcal{V} = \{ \mathcal{V}_\alpha : \alpha < \tau \} \). For each \(\mathcal{V}_\alpha \), \(f^{-1}(\mathcal{V}_\alpha) \) is a covering of \(\mathbf{X} \). There exists an \(a(\alpha) \in A \) such that for each \(b \geq a(\alpha) \) there is a cover \(\mathcal{V}_{ab} \) of \(X_b \) such that \(p_{b}(\mathcal{V}_{ab}) \) refines \(f^{-1}(\mathcal{V}_\alpha) \), i.e. \(p_{b}(\mathcal{V}_{ab}) \subset f^{-1}(\mathcal{V}_\alpha) \). From the \(\tau \)-directedness of \(A \) it follows that there is an \(a \in A \) such that \(a \geq a(\alpha) \), \(\alpha < \tau \). Let \(b \geq a \).

We claim that \(f(p_{b}^{-1}(x)) \) for \(x \in X_b \) is degenerate. Suppose that there exists a pair \(u, v \) of distinct points of \(Y \) such that \(u, v \in f(p_{b}^{-1}(x)) \). Then there exists a pair \(x, y \) of distinct points of \(p_{b}^{-1}(x) \) such that \(f(x) = u \) and \(f(y) = v \). Let \(U, V \) be a pair of disjoint open sets of \(Y \) such that \(u \in U \) and \(v \in V \). Consider the covering \(\{ U, V, Y \setminus \{ u, v \} \} \).

There exists a covering \(\mathcal{V}_{ab} \in \mathcal{V} \) such that \(\mathcal{V}_{ab} \subset \{ U, V, X \setminus \{ u, v \} \} \). We infer that there is a covering \(\mathcal{V}_{ab} \) of \(X_b \) such that \(p_{b}^{-1}(\mathcal{V}_{ab}) \subset f^{-1}(\mathcal{V}_\alpha) \). It follows that \(p_{b}(x) \neq p_{b}(y) \) since \(x \) and \(y \) lie in disjoint members of the covering \(f^{-1}(\mathcal{V}_\alpha) \). This is impossible since \(x, y \in p_{b}^{-1}(x) \). Thus, \(f(p_{b}^{-1}(x)) \) is degenerate. Now we define \(g_b : X_b \to Y \) by \(g_b(x) = f(p_{b}^{-1}(x)) \). It is clear that \(g_b \) is continuous.

The following theorem is Theorem 1.7 from [5].

Theorem 3. Let \(\mathbf{X} = \{ X_a, p_{ab}, A \} \) be a \(\sigma \)-directed inverse system of compact metrizable spaces and surjective bonding mappings. Then \(X = \lim \mathbf{X} \) is metrizable if and only if there exists an \(a \in A \) such that \(p_b : X_b \to X_b \) is a homeomorphism for each \(b \geq a \).
2. The main theorems

We first establish the following theorem.

Theorem 4. Let X be a compact Hausdorff space. The following are equivalent:

a) X is a continuous image of an arc,

b) If $f : X \to Y$ is a continuous surjection and $w(Y) \leq \aleph_1$, then Y is a continuous image of an arc.

Proof. a) \Rightarrow b) Obvious.

b) \Rightarrow a) If $w(X) \leq \aleph_1$, then, by b) X is a continuous image of an arc since there exists the identity $i : X \to X$ and $w(X) \leq \aleph_1$. Let $w(X) > \aleph_1$. The proof consists of several steps.

(i) There exists an \aleph_1-directed inverse system $X = \{X_\alpha, P_{ab}, A\}$ such that $w(X_\alpha) \leq \aleph_1$ and X is homeomorphic to $\lim X$.

By [2, Theorem 2.3.23] the space X is embeddable in $I^{w(X)}$. We identify the cardinal $w(X)$ with an initial ordinal number Ω, i.e. with the set of all ordinal numbers of the cardinality $< w(X)$. Consider the set $A = \{\alpha, \text{card}(\alpha) = \aleph_1\}$ of all subsets of Ω of the cardinality \aleph_1 ordered by inclusion. It is obvious that A is \aleph_1-directed. For each α we have the cube I^α. It is clear that every I^α is a proper subspace of $I^{w(X)}$ since $w(X) > \aleph_1$. If α is a subset of β, let $P_{\alpha, \beta}$ be the natural projection of I^β onto I^α. Arguing as in [2, 2.5.3. Example] we infer that $I = \{I^\alpha, P_{\alpha, \beta}, A\}$ is an inverse system with limit homeomorphic to $I^{w(X)}$. Let $P_\alpha : I^{w(X)} \to I^\alpha$, $\alpha \in A$, be the natural projection. For every $\alpha \in A$ put $X_\alpha = P_\alpha(X)$. Every X_α has the weight $\leq \aleph_1$ and is a closed subspace of I^α since X is a closed subset of $I^{w(X)}$. Let p_α be the restriction of P_α on X. We have the inverse system $X = \{X_\alpha, P_{\alpha, \beta}, A\}$ whose limit is homeomorphic to X. Clearly, X is \aleph_1-directed since A is \aleph_1-directed.

(ii) The space X is a locally connected continuum.

By b) each X_α is a continuous image of an arc since $w(X_\alpha) \leq \aleph_1$. This means that each X_α is locally connected. Hence, X is a locally connected continuum since X is \aleph_1-directed and thus also σ-directed [3, Theorem 3].

(iii) There exists an \aleph_1-directed inverse system $Y = \{Y_\alpha, q_{\alpha, \beta}, A\}$ of continuous images of arcs such that $q_{\alpha, \beta}$ are monotone and X is homeomorphic to $\lim Y$.

Let $X = \{X_\alpha, P_{\alpha, \beta}, A\}$ be as in (i) and let p_α be the natural projection of X onto $X_\alpha \in X$. Applying the monotone-light factorization [13] to p_α, we get the compact spaces Y_α, monotone surjection $m_\alpha : X \to Y_\alpha$ and the light surjection $l_\alpha : Y_\alpha \to X_\alpha$ such that $p_\alpha = l_\alpha \circ m_\alpha$. By [7, Lemma 8] there exists a monotone surjection $q_{\alpha, \beta} : Y_\beta \to Y_\alpha$ such that $q_{\alpha, \beta} \circ m_\beta = m_\alpha$, $\alpha \leq \beta$. It follows that $Y = \{Y_\alpha, q_{\alpha, \beta}, A\}$ is an inverse system such that X is homeomorphic to $\lim Y$. Every Y_α is locally connected since X is locally connected. Moreover, by [7, Theorem 1] it follows that $w(Y_\alpha) = w(X_\alpha) \leq \aleph_1$. By b) we infer that every Y_α is a continuous image of an arc. The proof of (iii) is completed.

In the following step we shall represent every cyclic element of X as the limit of some inverse system of cyclic elements of Y_α, $\alpha \in A$.

(iv) For each nondegenerate cyclic element W of X there exists an \aleph_1-directed inverse system $W = \{W_\alpha, P_{ab}, A^*\}$ such that W_α is a nondegenerate cyclic element of some X_α, P_{ab} are monotone and A^* is a cofinal subset of A.
By (iii) X is the limit of $Y = \{Y_\alpha, q_\alpha, A\}$. Let $q_\alpha : X \to Y_\alpha$ be the natural projection. Every $q_\alpha(W)$ is a locally connected continuum because it is the image of the locally connected continuum W [12, p. 70, Lemma 1.5]. Moreover, every $q_\alpha(W)$ is the image of an ordered compactum since every Y_α is the continuous image of an arc. By Theorem 2, it follows that every $q_\alpha(W)$ is the continuous image of an arc. It easily follows that $W = \lim q_\alpha(W)$, $q_\alpha|q_\beta(W)$, A. Define $r_\alpha = q_{\alpha\beta}|q_\beta(W)$. As in the proof of Theorem 5.1 of [9] we infer that there exists an α_0 in A and a non-degenerate cyclic element W_{α_0} of $q_{\alpha_0}(W)$. Let $A^* = \{\alpha : \alpha \geq \alpha_0\}$. For each $\alpha \geq \alpha_0$ there exists a non-degenerate cyclic element W_α of $q_\alpha(W)$ such that $r_{\alpha\alpha}(W_\alpha) \supseteq W_{\alpha_0}$ (Lemma 1.5) since the restrictions $q_\alpha|W \to q_\alpha(W)$ are monotone ([9, Lemma 2.2]). Let $\rho_\alpha : q_\alpha(W) \to W_\alpha$ be the canonical retraction [9, p. 5]. We define $P_{\alpha\beta} = \rho_\alpha \circ r_{\alpha\beta}$ for each pair α, β such that $\alpha_0 \leq \alpha \leq \beta$. As in the proof of Theorem 5.1 of [9, p. 25] it follows that $\{W_\alpha, P_{\alpha\beta}, A^*\}$ is an \aleph_1-directed inverse system with monotone bonding mappings $P_{\alpha\beta}$ whose limit is W. The proof of (iv) is complete.

(v) Every non-degenerate cyclic element W of X is a continuous image of an arc.

Let x, y and z be points of W. By (3) of Theorem 2, it suffices to prove that there exists a metrizable T-set in W which contains x, y and z. It remains to prove that N is metrizable. By virtue of $\dim N \geq \aleph_1$. There exists a countable dense subset $Z = \{z_n : n \in \mathbb{N}\}$ of N. For each n, there is an $M_n \subseteq M$ such that $w(M_n) \subseteq N$. We infer that $w(N) \subseteq N_0$ since M_n is a compact metric subspace of X. This contradicts the assumption $w(N) \geq \aleph_1$.

Claim 1. Let $\mathcal{M} = \{M_\mu : \mu \in \mathcal{M}\}$ be a family of compact metric subspaces M_μ of a space M partially ordered by inclusion \subseteq. If it is \aleph_1-directed, then $N = \bigcup\{M_\mu : \mu \in \mathcal{M}\}$ is a compact metrizable subspace of M.

Suppose that $w(N) \geq \aleph_1$. By virtue of [4] (or [10, Theorem 1.1]), for $\lambda = \aleph_1$, there exists a subspace N_{\aleph_1} of N such that $\dim(N_{\aleph_1}) \leq \aleph_1$ and $w(N_{\aleph_1}) \geq \aleph_1$. For each $x \in N_{\aleph_1}$, there exists an $M_{\mu_0}(x) \in \mathcal{M}$ such that $x \in M_{\mu_0}(x)$. The family $\mathcal{M}_0 = \{M_\mu(x) : x \in N_{\aleph_1}\}$ has the cardinality $\leq \aleph_1$. By the \aleph_1-directedness of \mathcal{M} there exists an $M_\mu \in \mathcal{M}$ such that $M_\mu \supseteq M_{\mu_0}(x)$ for each $x \in N_{\aleph_1}$. This means that $N_{\aleph_1} \subseteq M_\mu$. We infer that $w(N_{\aleph_1}) \leq \aleph_0$ since M_μ is a compact metric subspace of X. This contradicts the assumption $w(N_{\aleph_1}) \geq \aleph_1$. Hence, $w(N) \leq \aleph_0$. There exists a countable dense subset $Z = \{z_n : n \in \mathbb{N}\}$ of N. For each z_n there is an $M_{\mu_0}(n) \subseteq \mathcal{M}$ such that $z_n \in M_{\mu_0}(n)$. It is clear that $L = \bigcup\{M_{\mu}(n) : n \in \mathbb{N}\}$ is dense in N. By virtue of the \aleph_1-directedness of \mathcal{M} there exists an $M_\mu \in \mathcal{M}$ such that $M_\mu \supseteq M_{\mu_0}(n)$ for each n. We infer that $M_\mu \supseteq L$ and, consequently, M_μ is dense in N. From the compactness of M_μ it follows that $N = M_\mu$. Hence, N is a compact metrizable subspace of M. The proof of Claim 1 is complete.

It is obvious that the collection $\mathcal{N} = \{N_{\alpha}, p_{\alpha\beta}, A^*\}$ is an inverse system. Every N_{α} is a T-set in W_{α} [9, Theorem 3.1]. By [9, Theorem 3.13] $N = \lim \mathcal{N}$ is a T-set in W which contains x, y and z. It remains to prove that N is metrizable. This is established by the following Claim 2.

Claim 2. Let $\mathcal{Z} = \{Z_{\alpha}, p_{\alpha\beta}, A\}$ be an \aleph_1-directed inverse system of compact metric spaces Z_{α} and surjective bonding mappings. Then $Z = \lim \mathcal{Z}$ is a compact metrizable space.
By virtue of Theorem 3, it suffices to prove that there exists an \(a \in A \) such that \(p_{ab} : Z_b \rightarrow Z_a \) is a homeomorphism for each \(b \geq a \). Suppose that this is not true, i.e. that for each \(a \in A \) there exists a \(b \geq a \) such that \(p_{ab} : Z_b \rightarrow Z_a \) is not a homeomorphism. Let \(a_1 \) be any element of \(A \). By assumption, there exists an \(a_2 \in A \) such that \(a_2 \geq a_1 \) and \(p_{a_1a_2} : Z_{a_2} \rightarrow Z_{a_1} \) is not a homeomorphism. Suppose that for each ordinal number \(\alpha < \beta < \omega_1 \) the element \(a_\alpha \) is defined. Let us define \(a_\beta \). If there exists \(\beta -1 \), then we define \(a_\beta \) so that \(p_{a_\beta -1a_\beta} : Z_{a_\beta} \rightarrow Z_{a_\beta -1} \) is not a homeomorphism. If \(\beta \) is a countable limit ordinal, then there exists an \(a_\beta \) such that \(a_\beta \geq a_\alpha \) for each \(\alpha < \beta \) since \(Z \) is \(\aleph_1 \)-directed. Now, we have the transfinite sequence \(\Omega = \{ a_\alpha : \alpha < \omega_1 \} \) and a well-ordered inverse system \(Z_\Omega = \{ W_\alpha, p_{\alpha\beta}, \Omega \} \). Let \(Y = \lim Z_\Omega \). We shall prove that \(Y \) is metrizable. By virtue of the \(\aleph_1 \)-directedness of \(A \) there exists an \(a \in A \) such that \(a \geq a_\alpha \) for each \(\alpha < \omega_1 \). It is clear that there exists a mapping \(q : X_a \rightarrow Y \) induced by the mappings \(P_{a_\alpha} \). This means that \(Y \) is metrizable since \(X_a \) is metrizable. By Theorem 3, there exists an \(a_0 \) such that \(p_{a_0a_\gamma} : Z_{a_\gamma} \rightarrow Z_{a_0} \) is a homeomorphism, \(a_0 < \beta < \gamma < \omega_1 \). This contradicts the construction of \(\Omega = \{ a_\alpha : \alpha < \omega_1 \} \) and the well-ordered inverse system \(Z_\Omega = \{ W_\alpha, P_{a_\beta}, \Omega \} \). Hence, \(Z = \lim Z_\Omega \) is a compact metrizable space.

Finally, the proof of (vi) is complete.

(vi) \(X \) is the continuous image of an arc. This follows from (v) and Theorem 1. \(\square \)

Corollary 1. Let \(X \) be a locally connected continuum. The following are equivalent:

a) \(X \) is a continuous image of an arc,

b) If \(f : Z \rightarrow Y \) is a continuous surjection, where \(Z \) is a cyclic element of \(X \) and \(w(Y) \leq \aleph_1 \), then \(Y \) is a continuous image of an arc.

Proof. a) \(\Rightarrow \) b) If \(X \) is a continuous image of an arc, then every cyclic element \(Z \) of \(X \) is a continuous image of an arc (Theorem 1). We infer that \(Y \) is a continuous image of an arc since there exists a surjection \(f : Z \rightarrow Y \).

b) \(\Rightarrow \) a) Let \(Z \) be any cyclic element of \(X \). Applying Theorem 4, for \(Z \), we infer that \(Z \) is a continuous image of an arc. By Theorem 1, we infer that \(X \) is a continuous image of an arc since every cyclic element \(Z \) of \(X \) is a continuous image of an arc.

A space \(X \) is said to be rim-finite (rim-countable) if it has a basis \(B \) such that \(\text{card}(\text{Bd}(U)) \leq \aleph_0 \) \((\text{card}(\text{Bd}(U)) \leq \aleph_0)\) for each \(U \in B \). Equivalently, a space \(X \) is rim-finite (rim-countable) if and only if for each pair \(F,G \) of disjoint closed subsets of \(X \) there exist a finite (countable) subset of \(X \) which separates \(F \) and \(G \). This follows from the fact that if \(\{ A_\alpha \} \) is a locally finite family of subsets of \(X \), then \([2, \text{p. 46}]\)

\[\text{Bd}(\bigcup A_\alpha) \subseteq \bigcup \text{Bd}(A_\alpha). \]

Every rim-finite continuum is a continuous image of an arc [11]. Hence, every rim-finite continuum is locally connected and hereditarily locally connected.

Lemma 2. Let \(f : X \rightarrow Y \) be a monotone surjection. If \(X \) is rim-finite (rim-countable), then \(Y \) is rim-finite (rim-countable).

Theorem 5. [9, Theorem 9.9] Let \(X = \{ X_a, p_{ab}, A \} \) be a \(\sigma \)-directed inverse system of rim-finite continua. Then \(X = \lim X \) is rim-finite.
Now we are ready to prove the following characterization theorem for rim-finite continua.

Theorem 6. Let X be a continuum. The following are equivalent:

a) X is rim-finite;

b) If $f : X \to Y$ is a monotone surjection and if Y is metrizable, then Y is rim-finite.

Proof. a)⇒b). Apply Lemma 2.

b)⇒a). By virtue of [9, Theorem 9.5] there exists a σ-directed monotone inverse system $X = \{X_\alpha, p_{\alpha\beta}, A\}$ such that $w(X_\alpha) \leq \aleph_0$ and X is homeomorphic to $\lim X$. From b) it follows that each X_α is rim-finite. By Theorem 5, we infer that X is rim-finite.

3. Applications

In this section some applications of Theorems 4. and 6. are given.

Theorem 7. Let $X = \{X_\alpha, p_{\alpha\beta}, A\}$ be an approximate \aleph_1-directed inverse system of continuous images of arcs. Then $X = \lim X$ is the continuous image of an arc.

Proof. By Theorem 4, it suffices to prove that if $f : X \to Y$ is a continuous surjection and $w(Y) \leq \aleph_1$, then Y is a continuous image of an arc. Using Lemma 1, for $\tau = \aleph_1$, we will find an $a \in A$ and a continuous surjection $g_a : X_a \to Y$ such that $f = g_a p_a$. Hence, Y is a continuous image of an arc since X_a is a continuous image of an arc. By Theorem 4, we infer that X is a continuous image of an arc.

Corollary 2. Let $X = \{X_\alpha, p_{\alpha\beta}, A\}$ be an \aleph_1-directed inverse system of continuous images of arcs. Then $X = \lim X$ is the continuous image of an arc.

Remark 1. Let us observe that mappings $p_{\alpha\beta}$ in Theorem 7. and Corollary 2. are not necessarily monotone.

Theorem 8. Let $X = \{X_\alpha, p_{\alpha\beta}, A\}$ be an approximate σ-directed inverse system of rim-finite continua. Then $X = \lim X$ is a rim-finite continuum.

Proof. By Theorem 6, it suffices to prove that if $f : X \to Y$ is a monotone surjection onto a metrizable space Y, then Y is rim-finite. By Lemma 1, there exists an $a \in A$ and a continuous mapping $g_a : X_a \to Y$ such that $f = g_a p_a$. It follows that g_a is monotone since f is monotone. From Lemma 2, it follows that Y is rim-finite. Hence, X is rim-finite (Theorem 6.).

Acknowledgement. The author wishes to express his gratitude to the referee for his help and suggestions.

References

A characterization of continuous images of arcs

