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A GPU IMPLEMENTATION OF LOCAL SEARCH OPERATORS 
FOR SYMMETRIC TRAVELLING SALESMAN PROBLEM

ABSTRACT

The Travelling Salesman Problem (TSP) is one of the 
most studied combinatorial optimization problem which is 
significant in many practical applications in transportation 
field. The TSP is an NP-hard problem and requires large 
computational power to be optimally solved by exact algo-
rithms. In the past few years, fast development of general-
purpose Graphics Processing Units (GPUs) has brought huge 
improvement in decreasing the algorithms execution time. 
In this paper, we implement 2-opt and 3-opt local search op-
erators for solving the TSP on the GPU using its respective 
application programming interface. The novelty presented 
in this paper is a new parallel iterated local search imple-
mentation with 2-opt and 3-opt operators for symmetric TSP, 
optimized for the execution on GPUs. With our implementa-
tion large TSP problems (up to 85,900 cities) can be solved 
using the GPU. We show that our GPU implementation can 
be up to 27 times faster than central processing unit (CPU) 
implementation without losing solution quality for TSPlib 
problems as well as for our CRO TSP problem.
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1. INTRODUCTION

The travelling salesman problem (TSP) is a well-
known combinatorial optimization problem which is 
important in many practical applications from various 
fields such as transport, electronics and other engi-

neering fields. The goal of solving the TSP is to find the 
tour of the minimal cost that the salesman can take. 
He has to visit each city from the list of n cities ex-
actly once and then return to the home city. The cost 
of the travelling from any city i to any other city j is 
a known value and is stored in the two-dimensional 
matrix C, where cij  represents the cost of going from 
city i to city j ( , , ,i j n1 f= ). A possible solution (tour) is 
represented as an n-size vector ( , , , ,i i i in1 2 3 f ), where ik  
is the city i on the k-th position in the tour. To find the 
optimal tour we have to find a vector ( , , , ,i i i in1 2 3 f ) that 
minimizes the cost function 

, , , ,f i i i i c c cn i i i i1 2 3 1 2 1nf f= + + +^ h .
In TSP we are looking for a Hamiltonian tour of min-

imal length on a fully connected graph. If the distance 
between two cities in both directions is the same, then 
the problem is called a symmetric travelling salesman 
problem (STSP). The TSP is a difficult problem and 
belongs to the NP-hard class of problems [1] where 
the worst-case running time of exact algorithm grows 
faster than any polynomial. As the size of the fully con-
nected graph grows, the feasible solution space size 
raises as factorial. Therefore, an exhaustive search al-
gorithm is impractical and heuristic methods are used 
to speed up the process of finding a satisfactory good 
solution. Although the heuristic methods decrease the 
search space of feasible solutions, they still require a 
large amount of computational resources.

A new and affordable source of computing power 
that can be used to solve this type of problem is a 
graphics processing unit (GPU). In the past the GPUs 
were designed specifically for graphic rendering and 
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thus were very restrictive in terms of operations and 
programming, but today that has changed drastically. 
The term general-purpose computing on graphics pro-
cessing units (GPGPU) is commonly used when GPU 
is used to perform general-purpose computation that 
was traditionally handled by a central processing unit 
(CPU). Although programming languages and frame-
works that use GPUs for non-graphical, computation-
ally intensive operations, were known for a longer time 
(i.e. Brook GPU [2]), real ascent appeared at the end of 
2006, when both major GPU companies released their 
APIs (application programming interface), Nvidia CUDA 
[3] and ATI Stream [4]. Later, Microsoft’s Direct Com-
pute and Open CL by Khronos Compute Working Group 
were published. Theoretically, the GPUs can perform 
much more floating point operations per second (flops) 
and have larger bandwidth rate compared to the CPUs, 
but on the other hand, GPUs cannot perform multiple 
tasks in parallel. They are capable of running a same 
task on the different data concurrently and because 
of that not all problems can fit the GPUs paradigm and 
exploit their superior performance.

In this paper, a new parallel iterated local search 
approach for solving TSP with parallel 2-opt and 3-opt 
operators optimized for the execution on GPUs is pre-
sented. Using the best improvement search step se-
lection mechanisms, the operator’s parallel execution 
is fully achieved and the problem of warp divergences 
(different threads in a warp take different paths that 
are leading to serialisation) is overcome. The biggest 
achievement of this research is that we have devel-
oped the 2-opt and 3-opt local search, executed on the 
GPU that can solve large problems (e.g. the biggest 
TSPlib problem with 85,900 cities). To the best of our 
knowledge, this is the first GPU algorithm able to solve 
the biggest TSPlib problems.

The rest of the paper is organized as follows: In Sec-
tion 2 heuristic algorithms for solving TSP problem are 
summarized as well as some speed-up techniques. In 
Section 3 NVIDIA GPU architecture is briefly described. 
Section 4 is the main part of this paper where the im-
plementation details of 2-opt and 3-opt local search 
on the GPU are described. In Section 5 the test results 
are presented, and finally the conclusion is made in 
Section 6.

2. HEURISTICS FOR SOLVING TSP

Comprehensive surveys of algorithms used for 
solving TSP can be found in [5, 6, 7, 8]. Many efficient 
methods for solving TSP are two-phase algorithms. In 
the first phase, the initial tour is generated by a con-
structive algorithm. In the second phase, the local 
search is involved for finding the local optimum. When 
the local optimum is found the escape mechanism 
should be activated in order to reach a new global op-

timum. The algorithm stops after reaching some stop-
ping criteria such as the given execution time, num-
ber of iterations, quality of solution or a combination 
thereof. The constructive algorithms for initial solution 
that are widely used for TSP are the Nearest Neigh-
bour Heuristic (NNH), Greedy and Boruvka. Bentley 
[9] noticed that a better starting tour provides better 
final results. The Greedy heuristic provides better final 
results for 2-opt and 3-opt than any other known [7].

Among many approaches for the local search in 
solving TSP, the k-opt has the strongest impact. This 
approach converts one feasible route to another and 
performs conversions until the reduction of the length 
of the tour is possible. The conversion is done by re-
moving and adding the edges. In 2-opt, a special case 
of the k-opt, the two edges are deleted, and the oppo-
site ends are joined together [10]. The 3-opt considers 
deleting three edges and finding the best reconnection 
combination [11]. With the simple 3-opt it is possible 
to reach closer than 5% of the optimal solution [1].

The variable-opt approach used by Lin and Ker-
nighan [12] yields results around 2% above the 
optimal solution [1]. The latest significant improve-
ment in reaching optimal or near-optimal solutions 
is done again by k-opt sub-moves approach by Hels-
gaun [13] for the problems with a size from 10,000 to 
10,000,000 cities.

Moreover, there are numerous techniques and 
mechanisms that can improve local search and avoid 
some common problems (i.e. reaching local optimum). 
One of them is double bridge move or 4-opt move that 
was first mentioned in [12] as an example of simple 
move which cannot be normally generated by 3-opt or 
Lin-Kernighan algorithm. Many modern algorithms use 
this move for the escape from the local optima.

Until now there have been just a few articles that 
investigated the possibilities of using the GPU graphic 
card in solving the problems defined on a graph such 
as TSP [14, 15]. Prior works on GPU-based TSP solver 
were based on some variants of Ant Colony Optimiza-
tion (ACO) [16] which has been inspired by ant foraging 
behaviour that results in finding the shortest path be-
tween their nest and the food source. Among others, 
CUDA implementation of ACO is proposed by Bai et al. 
[17], You [18], Lin et al. [19] and Celilia et al. [20]. The 
focus of most of them is on the comparison of GPU 
and CPU implementation and they do not address how 
often their implementation reaches the optimal TSP 
solutions. To the best of our knowledge, there have 
been a few other articles that investigated the possi-
bilities of using the GPU graphic card in solving TSP 
such as the evolutionary algorithm [15] and immune 
algorithm [14]. Even the study that uses CUDA imple-
mentation of hill climbing [21] or the one in which a 
parallel local search is used [22] fail to run GPU imple-
mentation on TSPLIB problems which have more than 
2,000 cities. With our implementation of TSP solver 
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much larger problems on the GPU can be solved. The 
largest problem we have solved so far was 85,900 cit-
ies but we are also experimenting on the problem with 
200,000 cities.

2.1 Techniques for search space reduction

The TSP search space is very large because all 
the permutations of the cities, where each city ap-
pears exactly once, are valid solutions and there is no 
constraint that reduces the potential sets of permuta-
tions. “Naive” implementation of 2-opt and 3-opt op-
erators needs to examine n2 pairs or n3 triples in each 
search step. Over the years of comprehensive scientif-
ic research on TSP, various speed-up techniques were 
applied. Johnson and McGeoch [7] pointed out four 
techniques as the key ones: avoiding search space 
redundancy, bounded neighbour list, don’t look bits 
(DLB), and tree-based tour representation.

Avoiding search space redundancy is related to the 
observation by Lin and Kernighan [12]. The edge to 
be added should not be longer than the corresponding 
edge to be deleted by the operator. More formally, city 
cj  will not be considered unless c c<, ,i j i i 1+ . This rule 
can be used for 2-opt and 3-opt operators. Bounded 
neighbour list assumes that the best solutions do not 
contain long edges, so each city ci  needs a sorted 
bounded list of its neighbour cities to be evaluated for 
2-opt or 3-opt move. The common neighbour list con-
tains 10 to 40 neighbours. The nearest neighbour to 
the city ci  is the city cj  for which c ,i j  is minimal. There 
are several ways of creating the neighbours list. The 
one utilized in our research is the so-called quadrant-
nearest neighbour [7]. This list contains equal num-
ber of the nearest neighbours from every quadrant 
(with the centre in the observed city). Helsgaun pro-
posed more complex construction of the list, based on 
α-values [23]. The α-nearest neighbour list better cov-
ers the edges in the optimal solutions than the clas-
sical approaches and therefore can be much smaller. 
For instance, Helsgaun uses only 5 neighbours for ev-
ery city.

DLB was introduced by Bentley [9] to avoid un-
necessary repetitions of the local search for improv-
ing moves. Bentley proposed to exclude cities from 
the search if previously no improving move for them 
was found. For each city a single bit is allocated, which 
is at the beginning switched off (set to zero), and if 
search finds no improving move for the respective city, 
a “don’t look bit” is switched on (set to one). At the end 
of the local search all DLBs should be switched on, 
bringing additional advantage if DLB is used in itera-
tive local search. After performing one double bridge 
move to get a new starting tour, DLB for vertices at the 
end of deleted edges are switched on. This means that 
local search starts with only 8 DLBs off, instead of all 

DLBs off, which has a great impact on the running time 
of the algorithm.

The tree-based tour representation speeds up 
the time spent on performing the calculated moves. 
Bentley [9] observed that as the number of cities in-
creases, the tour changing dominates in the overall 
algorithm running time if the tour is implemented as 
an array or double-linked list. Very fast implementation 
of local search and very large-scale TSP problems are 
assumed.

Another important method to speed up the local 
search is to select the next search step more efficient-
ly, which results in the significant decreasing of the al-
gorithm execution time. The most widely used search 
step selection mechanisms are the best improvement 
and the first improvement [8]. The main difference 
between them is that the best improvement needs to 
finish evaluation of all neighbours in each search step 
and then apply the best move, while the first improve-
ment immediately performs the step after the first 
improving move is encountered. State-of-the-art algo-
rithms usually use first improvement approach, since 
only a small portion of the neighbourhood needs to be 
evaluated.

3. CUDA ARCHITECTURE

For the purpose of understanding the causes of the 
GPU performance issues in our work and to be able 
to understand the rest of the paper, some basic de-
scription of the GPU architecture and programming 
model is required. The easiest way to explain the GPU 
architecture and GPGPU programming model is to give 
side-by-side difference compared to the well-known 
CPU architecture and programming model.

GPGPU stands for General-Purpose computing on 
the GPU, also known as GPU Computing. GPUs are ca-
pable of very high computational and data throughput. 
In the past, GPUs were specially designed for comput-
er graphics and were difficult to program. Today, GPUs 
have evolved in general-purpose parallel processors 
and are easier for programming [24]. The speed-ups 
achieved by using GPUs are of order of magnitude 
compared to optimized CPU implementations.

The main difference between CPU and GPU com-
puting lies in the fact that the GPU consists of a large 
number of lightweight stream processors (joined in the 
streaming multiprocessors) that are capable of per-
forming many relatively simple calculations in parallel.

The CPU consists of a smaller number of compu-
tational units (2-8), a large control unit and cache 
(on-chip) memory, while the GPU consists of a large 
number (32-448) of lightweight processors that share 
common small control unit and cache. This type of ar-
chitecture is called the stream-based processing mod-
el which depends on the fast data throughput, unlike 
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in the Grid and then they are dynamically distributed 
to the streaming multiprocessors to be processed. A 
maximum of 32 threads from the same block can be 
run in parallel and this set is called a warp.

4. IMPLEMENTATION OF LOCAL 
SEARCH OPERATORS

In this section the implementation of the local 
search on the GPU is described. The search space is 
bounded with quadrant neighbour list to avoid redun-
dancy. The quadrant neighbour list is generated on the 
CPU in pre-processing procedure and stored on hard 
drive for later reuse. Since we had no intent to use 
benchmarks containing more cities than the greatest 
TSPlib problem, the tour is represented as a linked list. 
We have chosen to use the best improvement search 
step selection mechanisms, because of the practical 
reasons. The problem with the implementation of the 
first improvement on GPU lies in the fact that when one 
thread finds an improvement it has to send a message 
to all other threads to stop their further execution. It 
requires the usage of thread synchronization mecha-
nisms between threads from different blocks that, be-
cause of the specific architecture of the graphic cards, 
results in increasing of the execution time. Also, our 
experiments showed that don’t look bits do not work 
well with the best improvement selection mechanism. 
The reason is that the local search is trapped too fast 
in a local optimum and thus results are significantly 
worse, and in addition, most of the threads do not per-
form any calculations, but wait for other threads to fin-
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Multiprocessor 2
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Shared Memory

...Processor 1 Processor 2 Processor N
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Figure 1 - GPU memory hierarchy

Source: NVIDIA CUDA C Programming guide version 3.1.1 [24]

the CPU that relies on the large instruction through-
put. This is the reason why the GPUs are perfectly well-
suited to address the problems that can be expressed 
as data-parallel computations, with high arithmetic 
intensity (the ratio of arithmetic operations to memory 
operations).

Figure 1 presents the memory hierarchy of the GPU 
that consists of three levels: first is the global (de-
vice) memory that is accessible by all stream proces-
sors, the second level is the Shared Memory on each 
stream multiprocessor, and the third level memory is 
the local memory (Register) owned by a stream pro-
cessor. A GPU device has large device memory that 
is accessible by all multiprocessors and stream pro-
cessors. Every multiprocessor consists of the on-chip 
share memory with low latency and high bandwidth 
that is shared among lightweight stream processors. 
Every stream processor has its own register. With care-
ful programming, taking into account memory hierar-
chy, one can significantly improve overall performance 
of the program that is executed on the GPU.

In Figure 2 the CUDA programming model is pre-
sented. The smallest execution unit that can be ex-
ecuted on one stream processor is called thread. 
Threads are combined into equally sized blocks, each 
containing up to 1,024 threads. All blocks are grouped 
in the grid that represents one kernel (function) that is 
called from the CPU and executed on the GPU. During 
the execution, blocks are referenced by ,i j^ h position 
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ish. Furthermore, tests showed that it is faster to keep 
the coordinates of the cities in the GPU main memory 
and calculate the distance at the GPU run-time than 
to read the saved distance from the GPU memory. 
The reason for that lies in the latency. Reading data 
for each thread from GPU memory requires more time 
than performing calculations.

For the initial tour construction, we have chosen 
the nearest neighbour heuristic (NNH). The NNH builds 
the initial tour by choosing random city as the first city 
in the tour and then adding the closest city (from the 
quadrant neighbour list) at the end of the tour, until 
the tour contains all cities. The number of neighbours 
is empirically determined to m 40=  for all tests pre-
sented in this paper.

The local search is the slowest part of the proposed 
algorithm, and thus 2-opt and 3-opt operators are the 
best candidates to be implemented on GPU. Generally, 
the 2-opt and 3-opt local search pass through all possi-
ble pairs/triplets and for each pair/triplet calculate the 
savings for the new tour, find the global best improve-
ment, and perform the move (apply the best found im-
provement to the current solution) on the CPU.

In particular, the 2-opt and 3-opt are run in steps/
iterations. At the beginning we start with the initial tour 
(generated in the pre-processing phase). The coordi-
nates of each city and the neighbour table (list) are 
stored in the GPU global (device) memory and have 
the same lifetime as the algorithm. At the beginning 
of each iteration the current best tour is copied to 
the GPU and the improving moves are calculated on 
the GPU for each pair/triplet. The list of the improving 
moves are then returned to the CPU where the best 
improving move is calculated and applied to create a 
new current best (i.e. shorter) tour. The iterations are 
performed until the local minimum is found or a termi-
nation criterion is met.

As described in the previous section, threads are 
grouped in blocks (up to 1,024 threads per block) 
and all threads within one block can share the same 
memory (shared memory of the block). Since the data 
retrieval from the GPU main memory is much slower 
than the computation, we want to take advantage of 
the shared memory and reuse data once loaded in 
the block-shared memory. Therefore, we have to find 
the optimal number of threads per block tb, regard-
ing the available shared memory. We experimentally 
determined that tb 128=  is the best number for our 
test-bed GPU. Once the number of threads per block 
is determined, the number of blocks nb is calculated 
as follows: 

*nb tb
n m tb 1= + -8 B

where m is the number of neighbours and n is the total 
number of the cities. For example, for the TSPlib prob-
lem d18512.tsp [25] the total number of threads is 
740,480 and the number of blocks is 5,785.

4.1 2-opt local search

The 2-opt operator is the simplest and easiest to 
implement of all operators in the k-opt family for solving 
STSP. In 2-opt operator, the two edges are deleted, and 
the opposite ends are joined together, see Figure 3 left. 
The input for 2-opt operator is a pair of cities ,i j^ h. The 
current best tour is represented as the linked list where 
each list-element represents a city and the position in 
the list represents the position in the tour. Therefore, 
the first elements to the left and to the right of the cur-
rent element/city represent the neighbourhood cities 
in the tour. The idea of the 2-opt operator local search 
is to pass through all possible pairs of the cities and to 
find a pair whose elements are not connected in the cur-
rent tour (whose elements are not adjacent in the list). 
If such pair ,i j^ h is found, a new connections/paths are 
examined as described in Figure 3, left. After applying 
the improvement, one pass of the 2-opt local search is 
finished and the process is repeated until no new pairs 
that can decrease the total length of the tour can be 
found. For the symmetric problem with n cities the total 
number of pairs that have to be checked is /n n 2 2-^ h .  
In order to decrease the number of pairs that have to 
be evaluated only the m nearest neighbour cities for 
each city are observed. It showed that the reduction of 
the possible pairs does not affect the total algorithm 
performance. Despite the search space reduction, the 
most time-consuming part of the 2-opt local search is 
still the calculation of the distance for all feasible pairs, 
and therefore 2-opt local search is the best candidate 
to be executed on the GPU.

The basic idea for our GPU implementation is to di-
vide the 2-opt local search into small tasks in such a 
way that each GPU thread evaluates exactly one pair. 
At the end, the results from all threads are collected 
and the best improvement is applied on the current 
tour. The 2-opt operator performs the best improve-
ment on the CPU because it is strictly sequential and 
cannot benefit from GPU.

The list of neighbours and the current tour are 
stored in the device (GPU) memory. For the perfor-
mance purposes the list of neighbours remains in the 
device memory between kernel calls while the current 
tour is updated with each new kernel call. A kernel call 
is a function that calculates the tour length improve-
ment for each feasible pair of elements (cities) and 
returns its value to the CPU. The kernel is performed 
on the GPU device. The test showed that the best per-
formance is achieved if the block has tb 128= , where 
tb are threads per block. In order to improve the per-
formance and to avoid the un-coalesced memory calls 
from the global memory, the adjacent threads of the 
same block examine the neighbourhood cities of the 
current city. The threads per block tb and the number of 
neighbours do not depend on each other. The variable 
i is the iterator through the current tour and j is the iter-
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ator of each customer’s neighbours list. Each city has 
j 1+  neighbours and for example each block contains 
j 3+  threads, in block 0 threads , , , j0 1 f  evaluate the 
new distances for the city pairs , , , , , , j0 0 0 1 0f^ ^ ^h h hof 
the city c0 and the threads ,j j1 2+ +  pairs ,1 0^ hand 
,1 1^ h of the city c1 (Figure 3, right). The ,f i j^ h denotes 

the function that calculates the gain to the total tour 
length for the specific pair ,i j^ h of the cities. The first 
element in the ,i j^ h notation represents the city index 
and the second one the neighbour ordinal in the neigh-
bourhood list. With this implementation it is possible 
to make coalesced access to the device main memory 
and moreover, the shared memory can be used for 
storing common data for all threads in the same block 
(in the previous example cities c0 and c1). It is pos-
sible that the some threads in the last block b (Figure 
3, right) remain idle because the number of blocks nb 
is rounded to the higher whole number.

The distances between cities are calculated on-
the-fly, during the kernel execution. As for the GPU ar-
chitecture, it shows that calculating the distances with 
data already stored in the shared memory and regis-
ters is much faster than fetching data from the device 
main memory.

4.2 3-opt local search

In contrast to 2-opt operator, the 3-opt operator 
chooses the best triple , ,i j k^ h not yet connected in the 
current tour. For the 2-opt operator there is only one 
way to reconnect the tour fragments after deleting the 
two selected edges. The 3-opt operator has four dif-
ferent ways how to reconnect the ends after removing 
the set of three edges (Figure 4, left). Since the “na-
ive” implementation of the 3-opt local search needs 
to evaluate /n n n1 2 3- -^ ^h h  possible changes, it is 
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obvious that regardless of GPU theoretical computing 
power, a significant search space reduction is needed. 
As in 2-opt local search, the search space reduction is 
done by observing only the m nearest neighbours for 
each city.

A similar idea was applied for the 3-opt local search 
GPU implementation as was done for the 2-opt local 
search. The 3-opt local search is implemented as an 
extended 2-opt local search, in which every thread 
handles a single pair ,i j^ h (as described for 2-opt) plus 
an additional loop that passes through all the neigh-
bour cities of the city j, denoted as k (Figure 4, right). 
From the GPU implementation point of view, each 
GPU thread calculates the tour length improvement 
for triples , ,i j k^ h, where , ,k m1 f= . In this way it is 
possible to exploit the distances calculated for 2-opt 
local search and reduce the overhead calculations in 
the 3-opt local search. Some mid-results calculated 
from other adjacent threads within the same block are 
stored in the GPU shared memory and reused by other 
threads from the same block.

4.3 Iterated local search

Iterated Local Search (ILS) for TSP has a long histo-
ry, and some of the hybrid stochastic local search algo-
rithms are among the best-performing TSP algorithms 
currently known [8]. The outline of the algorithm is 
given in Algorithm 1.

Algorithm 1 - Iterated local search
1. init:=NNH()
2. s:=ThreeOpt(init)
3. best:=s
4. while not Terminate() do
5.  s’:=DoubleBridge(s)
6.  s’’:=ThreeOpt(s’)
7.  if f(s’’)<f(best) then
8.  best:=s’’
9.  endif
10. s:=s’’
11 end while

Like in almost all ILS algorithms for the TSP prob-
lem [8], for perturbation a double-bridge move has also 
been chosen (Algorithm 1, line 5). Our implementation 
randomly selects four edges to be deleted and partial 
tours are then reconnected. As mentioned earlier, the 
only computationally demanding part of this ILS is the 
3-opt local search (line 6) described in Section 2 and 
Subsection 4.2. The natural way is to perform a 3-opt 
local search on the GPU while the rest of the computa-
tion is performed on the CPU. The stopping function 
Terminate() (line 4) finishes the execution after having 
performed a certain amount of iterations. In our tests 
three possible numbers of iterations were selected: 
0.1n, 1n and 10n, where n is the number of cities. The 
number of iterations is chosen empirically with the aim 

of reaching high quality solutions within a reasonable 
time. Due to a large amount of computational time 
needed for CPU 3-opt local search, the ILS variant with 
CPU 3-opt is calculated only for 0.1n.

5. RESULTS

In this section the results of our implementation of 
the 2-opt and 3-opt local search and ILS algorithms 
on the standard TSPlib problem library as well as 
proposed CRO TSP problem will be presented. Most 
authors use the same test-bed TSPlib set of the prob-
lems for the STSP [25] which is the library of sample 
instances for the STSP from various sources and for 
all of these problems the optimal solutions are known. 
This is why we have also made our computational ex-
periments on this set of problems.

All benchmarks are performed on 32-bit Windows 
7 desktop PC, running Intel i7 920 2.66 GHz processor 
and Nvidia GTX 470 GPU with 448 stream processors. 
The algorithm is tested on the standard TSPlib test 
instances and each instance was run 10 times. The 
tCPUand tGPU  represent CPU and GPU average execu-
tion times. The speed-up is calculated by the formula: 

/t tCPU GPU , if the speed-up is greater than 1 the GPU ex-
ecution time is smaller than the CPU execution time.

In Section 4 it has been described that 2-opt and 
3-opt local search operators are the most time-con-
suming parts of the ILS algorithm. Thus, for CPU and 
GPU comparison of the ILS algorithm the most impor-
tant information is the speed-up of the single 3-opt lo-
cal search (Table 1 and Table 2). A single 3-opt local 
search is only one call of the GPU kernel ThreeOpt() 
(Algorithm 1, line 6), i.e. only one pass through all pairs 

,i j^ h is performed.
The test for a single 3-opt local search has been 

conducted on all Euclidian 2D TSPlib problem in-
stances. The instances are divided in three groups in 
order to clarify the representation of the results. The 
first group includes problems between 70 and 400 cit-
ies, the second between 400 and 2,000, and the third 
problems group whose size is larger than 2,000 cities. 
The problems smaller than 70 cities are too small to 
be considered for the described GPU implementation 
due to low GPU utilization. As can be seen in Table 1 
the minimal speed-up for the first group is 0.5 and 
therefore for smaller problems the speed-up would be 
even worse. Table 1 presents the average time of 10 
runs for the evaluation of the 3-opt local search. The 
smallest speed-up is in the group 70-400 because the 
smallest problem sizes are too small to be able to fully 
utilize the capabilities of the GPU. As can be seen, with 
the increasing problem size the speed-ups (min, max 
and average) also increase, as was expected. The best 
performance is achieved for the third group (2,000-
18,512) because the problem size is big enough to 
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generate the maximum number of threads to fully uti-
lize the GPU multiprocessors. The conclusion is that 
the GPU implementation is faster for all TSPlib prob-
lem instances with more than 400 cities.

The average speed-up and the average execution 
time of 3-opt local search for the two largest TSPlib 
problems, pla33810 and pla85900 with 33,810 and 
85,900 cities, respectively, are given in Table 2. It can 
be seen that GPU outperforms the CPU implementa-
tion even more for the largest problems.

In the next paragraphs the average speed-up and 
the average deviation (D) of the 2-opt Search and 
3-opt Search algorithms and ILS algorithm from the 
optimal solution for Euclidian 2D TSPlib problems (up 
to 18,512 cities) are presented. The summary of the 
2-opt Search and 3-opt Search algorithms and ILS 
algorithm are given in Table 3. The 2-opt Search and 
3-opt Search algorithms are similar to ILS algorithm 
but without the double-bridge move (Algorithm 1, line 
6). The 2-opt Search and 3-opt Search algorithms are 
terminated if no better solution can be found. The 
stopping criterion for ILS is as described in Section 
4.3. The results for the CPU version of ILS 1n and ILS 
10n are not available (n/a) because of the extremely 
long execution time. The slight difference in the de-
viations (D) between CPU 2-/3-opt Search and GPU 
2-/3-opt Search occurred because it is not possible to 
control the order of the block execution on the GPU 
that results in different order of application of the im-
provements.

As can be seen in Table 3, GPU outperforms CPU 
in speed-up in some cases more than 20 times. The 
minimum speed-up is low because only the small 
problem sizes contribute to this value. This is in line 
with the results in Table 1 for the group 70-400. On the 
other hand, the maximum speed-up is large because 
only the big problems contribute to it. As expected, 
3-opt Search gives smaller deviation ,CPU GPUD D^ h from 
optimal solutions than 2-opt Search (Table 3) but re-
quires longer execution time as illustrated in Figure 5. 
The GPU 3-opt Search version outperforms both CPU 
2-/3-opt Search in the execution time (Figure 5) and at 
the same time retains the D  of the CPU 3-opt Search 
version (Table 3).

The graph comparison of ILS on both, CPU and 
GPU is given in Figure 6. The ILS algorithm signifi-
cantly improves the deviation from the optimal solu-
tion (Table 3), but the overall time increases by a fac-
tor of approximately 10 (Figure 6). Furthermore, the 
ILS algorithm has obtained the optimal solution for 
26 out of 78 TSPlib problems for 10n iterations. The 
possibility of obtaining better results (more ILS itera-
tions can be performed) greatly expands with the use 

Table 1 – 3-opt local search analysis for different problem group sizes, where tCPU  and tGPU tGPU are 
average times of the average times of 10 runs for each TSPlib problem instance group

Problem 
group size

No. of 
problems tCPU  [ms] tGPU  [ms]

Speed-up
min average max

70-400 37 0.4371 0.2670 0.50 1.64 3-40
400-2000 25 2.6222 0.3561 3.49 7.36 13-15

2000-18512 22 17.1551 1.6981 7.46 10.10 21-07

Table 2– 3-opt local search analysis for 
the two largest TSPlib problems

tCPU  [s] tGPU  [s] speed-up

pla33810 0.0924 0.0037 24.55
pla85900 0.2505 0.0091 27.25

Table 3 – 2-optSearch, 3-optSearch and ILS summary results

ΔCPU [%] ΔGPU [%]
speed-up

min average max
2-opt Search 5.21 5.19 0.13 11.13 17.50
3-opt Search 4.58 4.52 0.50 9.98 19.28
ILS (0.1n) 2.00 2.00 0.84 8.38 20.50
ILS (1n) n/a 0.78 n/a n/a n/a
ILS (10n) n/a 0.32 n/a n/a n/a

CPU 2-optSearch

GPU 2-optSearch
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GPU 3-optSearch
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running times on CPU and GPU



Promet – Traffic&Transportation, Vol. 25, 2013, No. 3, 225-234 233 

J. Fosin, D. Davidović, T. Carić: A GPU Implementation of Local Search Operators for Symmetric Travelling Salesman Problem

of GPU primarily because of the speed-up that can 
reach up to 20 times in our implementation of 2-opt 
and 3-opt local searches with the respect to CPU (Fig-
ure 5 and Figure 6). In Figure 6 it can be seen that ILS 
1n on the GPU performs within a similar time as CPU 
ILS 0.1n but with significantly lower deviation (Table 
3, CPUD  is 2.0 and GPUD  is 0.78) from the optimal  
solution.

The best achievement we have obtained in this re-
search is that we can find solutions that are on the 
average 0.3% worse than the optimal solutions for all 
tested problems. Furthermore, the test showed that 
our GPU implementation of ILS algorithm is up to 20 
times faster than the CPU implementation of ILS (Table 
3). Because of this 10 times more ILS iterations can be 
performed and higher quality solutions achieved.

5.1 CRO TSP benchmark

CRO TSP benchmark problem (Figure 7) is con-
structed from 6,857 urban and rural locations of post 
offices in Croatia. The unusual shape of the Croatian 
territory boundary and high density of population in 
the North of the country are specific and could be an 
interesting property of the proposed CRO TSP problem.
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Figure 6 – Comparison of ILS running time on CPU and GPU

For the CRO TSP problem the ILS 10n algorithm 
gives the total Euclidian distance of 157,209 on GPU 
and 157,247 on CPU. The reason for the difference be-
tween the results for CPU and GPU is the same as was 
commented for Table 3. The average execution time on 
GPU is 632 sec and on CPU is 8,770 sec that gives 14 
times speed-up on the GPU. One can conclude that the 
practical problem is in line with the standard TSPlib 
problem results (see Table 1, group 2,000-18,512). 
Furthermore, one can see that the practical problems, 
which are usually large problems, can greatly benefit 
from the ILS GPU implementation. More details on the 
Euclidian CRO TSP instance could be found in [26].

6. CONCLUSION

The main challenges in using GPU cards for opti-
mization problems are efficient data flow optimization, 
effective communication among threads in various 
blocks, and branching. The branching problem arises 
particularly when more advanced local search algo-
rithms are used.

The main reason to start working on the GPU imple-
mentations of the 2-opt and 3-opt local search is to 
investigate the possibility to deploy local search opera-
tors on data-flow multiprocessor architecture such as 
GPU. The main problem of the big instances of the TSP 
is that NP-hard problems, even the heuristic algorithm, 
require long execution time.

In the time of writing this paper, there were just 
a few papers that investigated the possibilities of us-
ing GPU graphic cards in solving TSP problem using 
heuristics. The major achievement of this paper is the 
implementation of the 2-opt and 3-opt local search 
on GPU. We showed that our implementation can 
greatly outperform the CPU implementation in the ex-
ecution time (up to 27 times for problems larger than 
~85,000 cities). The advanced local search algorithm 
can also benefit from our 2-opt and 3-opt local search 
GPU implementation. Our GPU Iterative Local Search 
algorithm can find solutions that are on the average 
0.3% far from the optimal solutions. Furthermore, it 
has also been shown that the significant speed-up can 
be achieved. For the TSPlib problems the maximum 
speed-up is more than 20 times and for the CRO TSP 
problem with 6,857 cities, the speed-up is 14 times.

There are still many open ideas for further research. 
Some of the most interesting topics that will definitely 
benefit from the GPU are efficient implementation of 
DLB and the first improvement approach, which could 
significantly decrease the overall execution time. Fur-
ther research should also include experimentations 
with the different initial solutions as well as with differ-
ent neighbours list that will make our implementation 
more competitive in the solution quality to the state-of-
the-art algorithms.Figure 7 - CRO TSP benchmark
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SAŽETAK 
 
GPU IMPLEMENTACIJA OPERATORA 
LOKALNOG PRETRAŽIVANJA ZA SIMETRIČAN 
PROBLEM TRGOVAČKOG PUTNIKA

Problem trgovačkog putnika (TSP) je često proučavan 
problem kombinatorne optimizacije i bitan je za mnoge 
praktične primjene u području transporta. TSP je NP-težak 
problem, za čije je optimalno rješavanje egzaktnim algorit-
mima potrebna značajna računalna snaga. Zadnjih godina 
brz razvoj grafičkih procesnih jedinica (GPU) za opću nam-
jenu donio je mogućnost značajnog smanjenje vremena 
izvršavanja algoritama. U ovom radu implementirali smo 
2-opt i 3-opt operatore lokalnog pretraživanja za rješavanje 
problema trgovačkog putnika na GPU koristeći CUDA sučelje 
za programiranje. Doprinos ovog rada očituje se u paralelnoj 
implementaciji iterativnog lokalnog pretraživanja s 2-opt i 
3-opt operatorima za simetričan problem trgovačkog putni-
ka koji je optimiziran za izvršavanja na GPU-u. Opisani algori-
tam rješava velike probleme trgovačkog putnika (do 85,900 
gradova). U radu je pokazano da GPU implementacija može 
biti i do 27 puta brža od implementacije na centralnoj pro-
cesnoj jedinici (CPU) bez da se izgubi kvaliteta rješenja. 
Rezultati su dani za probleme iz TSPlib biblioteke kao i za 
predloženi CRO TSP problem.

KLJUČNE RIJEČI

problem trgovačkog putnika, operatori lokalnog pretraživanja, 
3-opt, paralelno iterativno lokalno pretraživanje, grafička 
procesna jedinica, CUDA
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