
Promet – Traffic&Transportation, Vol. 25, 2013, No. 3, 225-234 225

J. Fosin, D. Davidović, T. Carić: A GPU Implementation of Local Search Operators for Symmetric Travelling Salesman Problem

JURAJ FOSIN, Ph.D. Candidate
E-mail: juraj.fosin@fpz.hr
University of Zagreb,
Faculty of Transport and Traffic Sciences
Vukelićeva 4, 10000 Zagreb, Croatia
DAVOR DAVIDOVIĆ, Ph.D. Candidate
E-mail: davor.davidovic@irb.hr
Ruđer Bošković Institute
Bijenička cesta 54, HR-10000, Zagreb, Republic of Croatia
TONČI CARIĆ, Ph.D.
E-mail: tonci.caric@fpz.hr
University of Zagreb,
Faculty of Transport and Traffic Sciences
Vukelićeva 4, 10000 Zagreb, Croatia

Transport Engineering
Preliminary Communication

Accepted: June 12, 2012
Approved: May 23, 2013

A GPU IMPLEMENTATION OF LOCAL SEARCH OPERATORS
FOR SYMMETRIC TRAVELLING SALESMAN PROBLEM

ABSTRACT

The Travelling Salesman Problem (TSP) is one of the
most studied combinatorial optimization problem which is
significant in many practical applications in transportation
field. The TSP is an NP-hard problem and requires large
computational power to be optimally solved by exact algo-
rithms. In the past few years, fast development of general-
purpose Graphics Processing Units (GPUs) has brought huge
improvement in decreasing the algorithms execution time.
In this paper, we implement 2-opt and 3-opt local search op-
erators for solving the TSP on the GPU using its respective
application programming interface. The novelty presented
in this paper is a new parallel iterated local search imple-
mentation with 2-opt and 3-opt operators for symmetric TSP,
optimized for the execution on GPUs. With our implementa-
tion large TSP problems (up to 85,900 cities) can be solved
using the GPU. We show that our GPU implementation can
be up to 27 times faster than central processing unit (CPU)
implementation without losing solution quality for TSPlib
problems as well as for our CRO TSP problem.

KEY WORDS

travelling salesman problem, local search operator, 3-opt,
parallel iterated local search, graphics processing units,
CUDA

1. INTRODUCTION

The travelling salesman problem (TSP) is a well-
known combinatorial optimization problem which is
important in many practical applications from various
fields such as transport, electronics and other engi-

neering fields. The goal of solving the TSP is to find the
tour of the minimal cost that the salesman can take.
He has to visit each city from the list of n cities ex-
actly once and then return to the home city. The cost
of the travelling from any city i to any other city j is
a known value and is stored in the two-dimensional
matrix C, where cij represents the cost of going from
city i to city j (, , ,i j n1 f=). A possible solution (tour) is
represented as an n-size vector (, , , ,i i i in1 2 3 f), where ik
is the city i on the k-th position in the tour. To find the
optimal tour we have to find a vector (, , , ,i i i in1 2 3 f) that
minimizes the cost function

, , , ,f i i i i c c cn i i i i1 2 3 1 2 1nf f= + + +^ h .
In TSP we are looking for a Hamiltonian tour of min-

imal length on a fully connected graph. If the distance
between two cities in both directions is the same, then
the problem is called a symmetric travelling salesman
problem (STSP). The TSP is a difficult problem and
belongs to the NP-hard class of problems [1] where
the worst-case running time of exact algorithm grows
faster than any polynomial. As the size of the fully con-
nected graph grows, the feasible solution space size
raises as factorial. Therefore, an exhaustive search al-
gorithm is impractical and heuristic methods are used
to speed up the process of finding a satisfactory good
solution. Although the heuristic methods decrease the
search space of feasible solutions, they still require a
large amount of computational resources.

A new and affordable source of computing power
that can be used to solve this type of problem is a
graphics processing unit (GPU). In the past the GPUs
were designed specifically for graphic rendering and

J. Fosin, D. Davidović, T. Carić: A GPU Implementation of Local Search Operators for Symmetric Travelling Salesman Problem

226 Promet – Traffic&Transportation, Vol. 25, 2013, No. 3, 225-234

thus were very restrictive in terms of operations and
programming, but today that has changed drastically.
The term general-purpose computing on graphics pro-
cessing units (GPGPU) is commonly used when GPU
is used to perform general-purpose computation that
was traditionally handled by a central processing unit
(CPU). Although programming languages and frame-
works that use GPUs for non-graphical, computation-
ally intensive operations, were known for a longer time
(i.e. Brook GPU [2]), real ascent appeared at the end of
2006, when both major GPU companies released their
APIs (application programming interface), Nvidia CUDA
[3] and ATI Stream [4]. Later, Microsoft’s Direct Com-
pute and Open CL by Khronos Compute Working Group
were published. Theoretically, the GPUs can perform
much more floating point operations per second (flops)
and have larger bandwidth rate compared to the CPUs,
but on the other hand, GPUs cannot perform multiple
tasks in parallel. They are capable of running a same
task on the different data concurrently and because
of that not all problems can fit the GPUs paradigm and
exploit their superior performance.

In this paper, a new parallel iterated local search
approach for solving TSP with parallel 2-opt and 3-opt
operators optimized for the execution on GPUs is pre-
sented. Using the best improvement search step se-
lection mechanisms, the operator’s parallel execution
is fully achieved and the problem of warp divergences
(different threads in a warp take different paths that
are leading to serialisation) is overcome. The biggest
achievement of this research is that we have devel-
oped the 2-opt and 3-opt local search, executed on the
GPU that can solve large problems (e.g. the biggest
TSPlib problem with 85,900 cities). To the best of our
knowledge, this is the first GPU algorithm able to solve
the biggest TSPlib problems.

The rest of the paper is organized as follows: In Sec-
tion 2 heuristic algorithms for solving TSP problem are
summarized as well as some speed-up techniques. In
Section 3 NVIDIA GPU architecture is briefly described.
Section 4 is the main part of this paper where the im-
plementation details of 2-opt and 3-opt local search
on the GPU are described. In Section 5 the test results
are presented, and finally the conclusion is made in
Section 6.

2. HEURISTICS FOR SOLVING TSP

Comprehensive surveys of algorithms used for
solving TSP can be found in [5, 6, 7, 8]. Many efficient
methods for solving TSP are two-phase algorithms. In
the first phase, the initial tour is generated by a con-
structive algorithm. In the second phase, the local
search is involved for finding the local optimum. When
the local optimum is found the escape mechanism
should be activated in order to reach a new global op-

timum. The algorithm stops after reaching some stop-
ping criteria such as the given execution time, num-
ber of iterations, quality of solution or a combination
thereof. The constructive algorithms for initial solution
that are widely used for TSP are the Nearest Neigh-
bour Heuristic (NNH), Greedy and Boruvka. Bentley
[9] noticed that a better starting tour provides better
final results. The Greedy heuristic provides better final
results for 2-opt and 3-opt than any other known [7].

Among many approaches for the local search in
solving TSP, the k-opt has the strongest impact. This
approach converts one feasible route to another and
performs conversions until the reduction of the length
of the tour is possible. The conversion is done by re-
moving and adding the edges. In 2-opt, a special case
of the k-opt, the two edges are deleted, and the oppo-
site ends are joined together [10]. The 3-opt considers
deleting three edges and finding the best reconnection
combination [11]. With the simple 3-opt it is possible
to reach closer than 5% of the optimal solution [1].

The variable-opt approach used by Lin and Ker-
nighan [12] yields results around 2% above the
optimal solution [1]. The latest significant improve-
ment in reaching optimal or near-optimal solutions
is done again by k-opt sub-moves approach by Hels-
gaun [13] for the problems with a size from 10,000 to
10,000,000 cities.

Moreover, there are numerous techniques and
mechanisms that can improve local search and avoid
some common problems (i.e. reaching local optimum).
One of them is double bridge move or 4-opt move that
was first mentioned in [12] as an example of simple
move which cannot be normally generated by 3-opt or
Lin-Kernighan algorithm. Many modern algorithms use
this move for the escape from the local optima.

Until now there have been just a few articles that
investigated the possibilities of using the GPU graphic
card in solving the problems defined on a graph such
as TSP [14, 15]. Prior works on GPU-based TSP solver
were based on some variants of Ant Colony Optimiza-
tion (ACO) [16] which has been inspired by ant foraging
behaviour that results in finding the shortest path be-
tween their nest and the food source. Among others,
CUDA implementation of ACO is proposed by Bai et al.
[17], You [18], Lin et al. [19] and Celilia et al. [20]. The
focus of most of them is on the comparison of GPU
and CPU implementation and they do not address how
often their implementation reaches the optimal TSP
solutions. To the best of our knowledge, there have
been a few other articles that investigated the possi-
bilities of using the GPU graphic card in solving TSP
such as the evolutionary algorithm [15] and immune
algorithm [14]. Even the study that uses CUDA imple-
mentation of hill climbing [21] or the one in which a
parallel local search is used [22] fail to run GPU imple-
mentation on TSPLIB problems which have more than
2,000 cities. With our implementation of TSP solver

Promet – Traffic&Transportation, Vol. 25, 2013, No. 3, 225-234 227

J. Fosin, D. Davidović, T. Carić: A GPU Implementation of Local Search Operators for Symmetric Travelling Salesman Problem

much larger problems on the GPU can be solved. The
largest problem we have solved so far was 85,900 cit-
ies but we are also experimenting on the problem with
200,000 cities.

2.1 Techniques for search space reduction

The TSP search space is very large because all
the permutations of the cities, where each city ap-
pears exactly once, are valid solutions and there is no
constraint that reduces the potential sets of permuta-
tions. “Naive” implementation of 2-opt and 3-opt op-
erators needs to examine n2 pairs or n3 triples in each
search step. Over the years of comprehensive scientif-
ic research on TSP, various speed-up techniques were
applied. Johnson and McGeoch [7] pointed out four
techniques as the key ones: avoiding search space
redundancy, bounded neighbour list, don’t look bits
(DLB), and tree-based tour representation.

Avoiding search space redundancy is related to the
observation by Lin and Kernighan [12]. The edge to
be added should not be longer than the corresponding
edge to be deleted by the operator. More formally, city
cj will not be considered unless c c<, ,i j i i 1+ . This rule
can be used for 2-opt and 3-opt operators. Bounded
neighbour list assumes that the best solutions do not
contain long edges, so each city ci needs a sorted
bounded list of its neighbour cities to be evaluated for
2-opt or 3-opt move. The common neighbour list con-
tains 10 to 40 neighbours. The nearest neighbour to
the city ci is the city cj for which c ,i j is minimal. There
are several ways of creating the neighbours list. The
one utilized in our research is the so-called quadrant-
nearest neighbour [7]. This list contains equal num-
ber of the nearest neighbours from every quadrant
(with the centre in the observed city). Helsgaun pro-
posed more complex construction of the list, based on
α-values [23]. The α-nearest neighbour list better cov-
ers the edges in the optimal solutions than the clas-
sical approaches and therefore can be much smaller.
For instance, Helsgaun uses only 5 neighbours for ev-
ery city.

DLB was introduced by Bentley [9] to avoid un-
necessary repetitions of the local search for improv-
ing moves. Bentley proposed to exclude cities from
the search if previously no improving move for them
was found. For each city a single bit is allocated, which
is at the beginning switched off (set to zero), and if
search finds no improving move for the respective city,
a “don’t look bit” is switched on (set to one). At the end
of the local search all DLBs should be switched on,
bringing additional advantage if DLB is used in itera-
tive local search. After performing one double bridge
move to get a new starting tour, DLB for vertices at the
end of deleted edges are switched on. This means that
local search starts with only 8 DLBs off, instead of all

DLBs off, which has a great impact on the running time
of the algorithm.

The tree-based tour representation speeds up
the time spent on performing the calculated moves.
Bentley [9] observed that as the number of cities in-
creases, the tour changing dominates in the overall
algorithm running time if the tour is implemented as
an array or double-linked list. Very fast implementation
of local search and very large-scale TSP problems are
assumed.

Another important method to speed up the local
search is to select the next search step more efficient-
ly, which results in the significant decreasing of the al-
gorithm execution time. The most widely used search
step selection mechanisms are the best improvement
and the first improvement [8]. The main difference
between them is that the best improvement needs to
finish evaluation of all neighbours in each search step
and then apply the best move, while the first improve-
ment immediately performs the step after the first
improving move is encountered. State-of-the-art algo-
rithms usually use first improvement approach, since
only a small portion of the neighbourhood needs to be
evaluated.

3. CUDA ARCHITECTURE

For the purpose of understanding the causes of the
GPU performance issues in our work and to be able
to understand the rest of the paper, some basic de-
scription of the GPU architecture and programming
model is required. The easiest way to explain the GPU
architecture and GPGPU programming model is to give
side-by-side difference compared to the well-known
CPU architecture and programming model.

GPGPU stands for General-Purpose computing on
the GPU, also known as GPU Computing. GPUs are ca-
pable of very high computational and data throughput.
In the past, GPUs were specially designed for comput-
er graphics and were difficult to program. Today, GPUs
have evolved in general-purpose parallel processors
and are easier for programming [24]. The speed-ups
achieved by using GPUs are of order of magnitude
compared to optimized CPU implementations.

The main difference between CPU and GPU com-
puting lies in the fact that the GPU consists of a large
number of lightweight stream processors (joined in the
streaming multiprocessors) that are capable of per-
forming many relatively simple calculations in parallel.

The CPU consists of a smaller number of compu-
tational units (2-8), a large control unit and cache
(on-chip) memory, while the GPU consists of a large
number (32-448) of lightweight processors that share
common small control unit and cache. This type of ar-
chitecture is called the stream-based processing mod-
el which depends on the fast data throughput, unlike

J. Fosin, D. Davidović, T. Carić: A GPU Implementation of Local Search Operators for Symmetric Travelling Salesman Problem

228 Promet – Traffic&Transportation, Vol. 25, 2013, No. 3, 225-234

in the Grid and then they are dynamically distributed
to the streaming multiprocessors to be processed. A
maximum of 32 threads from the same block can be
run in parallel and this set is called a warp.

4. IMPLEMENTATION OF LOCAL
SEARCH OPERATORS

In this section the implementation of the local
search on the GPU is described. The search space is
bounded with quadrant neighbour list to avoid redun-
dancy. The quadrant neighbour list is generated on the
CPU in pre-processing procedure and stored on hard
drive for later reuse. Since we had no intent to use
benchmarks containing more cities than the greatest
TSPlib problem, the tour is represented as a linked list.
We have chosen to use the best improvement search
step selection mechanisms, because of the practical
reasons. The problem with the implementation of the
first improvement on GPU lies in the fact that when one
thread finds an improvement it has to send a message
to all other threads to stop their further execution. It
requires the usage of thread synchronization mecha-
nisms between threads from different blocks that, be-
cause of the specific architecture of the graphic cards,
results in increasing of the execution time. Also, our
experiments showed that don’t look bits do not work
well with the best improvement selection mechanism.
The reason is that the local search is trapped too fast
in a local optimum and thus results are significantly
worse, and in addition, most of the threads do not per-
form any calculations, but wait for other threads to fin-

Device

Device Memory

Multiprocessor N

.

.
.

Multiprocessor 2

Multiprocessor 1

Shared Memory

...Processor 1 Processor 2 Processor N

Registers Registers Registers

Instruction

Unit

Constant

Cache

Texture

Cache

Figure 1 - GPU memory hierarchy

Source: NVIDIA CUDA C Programming guide version 3.1.1 [24]

the CPU that relies on the large instruction through-
put. This is the reason why the GPUs are perfectly well-
suited to address the problems that can be expressed
as data-parallel computations, with high arithmetic
intensity (the ratio of arithmetic operations to memory
operations).

Figure 1 presents the memory hierarchy of the GPU
that consists of three levels: first is the global (de-
vice) memory that is accessible by all stream proces-
sors, the second level is the Shared Memory on each
stream multiprocessor, and the third level memory is
the local memory (Register) owned by a stream pro-
cessor. A GPU device has large device memory that
is accessible by all multiprocessors and stream pro-
cessors. Every multiprocessor consists of the on-chip
share memory with low latency and high bandwidth
that is shared among lightweight stream processors.
Every stream processor has its own register. With care-
ful programming, taking into account memory hierar-
chy, one can significantly improve overall performance
of the program that is executed on the GPU.

In Figure 2 the CUDA programming model is pre-
sented. The smallest execution unit that can be ex-
ecuted on one stream processor is called thread.
Threads are combined into equally sized blocks, each
containing up to 1,024 threads. All blocks are grouped
in the grid that represents one kernel (function) that is
called from the CPU and executed on the GPU. During
the execution, blocks are referenced by ,i j^ h position

Block

(0, 0)

Block

(0, 1)

Block

(1, 0)

Block

(1, 1)

Block

(2, 0)

Block

(2, 1)

Grid 1

GPUCPU

Serial

Code

Kernel

1

Serial

Code

Kernel

2

Grid 2

Block (1, 1)

Thread

(0, 0)

Thread

(0, 1)

Thread

(0, 2)

Thread

(1, 0)

Thread

(1, 1)

Thread

(1, 2)

Thread

(2, 0)

Thread

(2, 1)

Thread

(2, 2)

Thread

(3, 0)

Thread

(3, 1)

Thread

(3, 2)

Thread

(4, 0)

Thread

(4, 1)

Thread

(4, 2)

Figure 2 - CUDA Programming model

Source: NVIDIA CUDA C Programming guide version 3.1.1 [24]

Promet – Traffic&Transportation, Vol. 25, 2013, No. 3, 225-234 229

J. Fosin, D. Davidović, T. Carić: A GPU Implementation of Local Search Operators for Symmetric Travelling Salesman Problem

ish. Furthermore, tests showed that it is faster to keep
the coordinates of the cities in the GPU main memory
and calculate the distance at the GPU run-time than
to read the saved distance from the GPU memory.
The reason for that lies in the latency. Reading data
for each thread from GPU memory requires more time
than performing calculations.

For the initial tour construction, we have chosen
the nearest neighbour heuristic (NNH). The NNH builds
the initial tour by choosing random city as the first city
in the tour and then adding the closest city (from the
quadrant neighbour list) at the end of the tour, until
the tour contains all cities. The number of neighbours
is empirically determined to m 40= for all tests pre-
sented in this paper.

The local search is the slowest part of the proposed
algorithm, and thus 2-opt and 3-opt operators are the
best candidates to be implemented on GPU. Generally,
the 2-opt and 3-opt local search pass through all possi-
ble pairs/triplets and for each pair/triplet calculate the
savings for the new tour, find the global best improve-
ment, and perform the move (apply the best found im-
provement to the current solution) on the CPU.

In particular, the 2-opt and 3-opt are run in steps/
iterations. At the beginning we start with the initial tour
(generated in the pre-processing phase). The coordi-
nates of each city and the neighbour table (list) are
stored in the GPU global (device) memory and have
the same lifetime as the algorithm. At the beginning
of each iteration the current best tour is copied to
the GPU and the improving moves are calculated on
the GPU for each pair/triplet. The list of the improving
moves are then returned to the CPU where the best
improving move is calculated and applied to create a
new current best (i.e. shorter) tour. The iterations are
performed until the local minimum is found or a termi-
nation criterion is met.

As described in the previous section, threads are
grouped in blocks (up to 1,024 threads per block)
and all threads within one block can share the same
memory (shared memory of the block). Since the data
retrieval from the GPU main memory is much slower
than the computation, we want to take advantage of
the shared memory and reuse data once loaded in
the block-shared memory. Therefore, we have to find
the optimal number of threads per block tb, regard-
ing the available shared memory. We experimentally
determined that tb 128= is the best number for our
test-bed GPU. Once the number of threads per block
is determined, the number of blocks nb is calculated
as follows:

*nb tb
n m tb 1= + -8 B

where m is the number of neighbours and n is the total
number of the cities. For example, for the TSPlib prob-
lem d18512.tsp [25] the total number of threads is
740,480 and the number of blocks is 5,785.

4.1 2-opt local search

The 2-opt operator is the simplest and easiest to
implement of all operators in the k-opt family for solving
STSP. In 2-opt operator, the two edges are deleted, and
the opposite ends are joined together, see Figure 3 left.
The input for 2-opt operator is a pair of cities ,i j^ h. The
current best tour is represented as the linked list where
each list-element represents a city and the position in
the list represents the position in the tour. Therefore,
the first elements to the left and to the right of the cur-
rent element/city represent the neighbourhood cities
in the tour. The idea of the 2-opt operator local search
is to pass through all possible pairs of the cities and to
find a pair whose elements are not connected in the cur-
rent tour (whose elements are not adjacent in the list).
If such pair ,i j^ h is found, a new connections/paths are
examined as described in Figure 3, left. After applying
the improvement, one pass of the 2-opt local search is
finished and the process is repeated until no new pairs
that can decrease the total length of the tour can be
found. For the symmetric problem with n cities the total
number of pairs that have to be checked is /n n 2 2-^ h .
In order to decrease the number of pairs that have to
be evaluated only the m nearest neighbour cities for
each city are observed. It showed that the reduction of
the possible pairs does not affect the total algorithm
performance. Despite the search space reduction, the
most time-consuming part of the 2-opt local search is
still the calculation of the distance for all feasible pairs,
and therefore 2-opt local search is the best candidate
to be executed on the GPU.

The basic idea for our GPU implementation is to di-
vide the 2-opt local search into small tasks in such a
way that each GPU thread evaluates exactly one pair.
At the end, the results from all threads are collected
and the best improvement is applied on the current
tour. The 2-opt operator performs the best improve-
ment on the CPU because it is strictly sequential and
cannot benefit from GPU.

The list of neighbours and the current tour are
stored in the device (GPU) memory. For the perfor-
mance purposes the list of neighbours remains in the
device memory between kernel calls while the current
tour is updated with each new kernel call. A kernel call
is a function that calculates the tour length improve-
ment for each feasible pair of elements (cities) and
returns its value to the CPU. The kernel is performed
on the GPU device. The test showed that the best per-
formance is achieved if the block has tb 128= , where
tb are threads per block. In order to improve the per-
formance and to avoid the un-coalesced memory calls
from the global memory, the adjacent threads of the
same block examine the neighbourhood cities of the
current city. The threads per block tb and the number of
neighbours do not depend on each other. The variable
i is the iterator through the current tour and j is the iter-

J. Fosin, D. Davidović, T. Carić: A GPU Implementation of Local Search Operators for Symmetric Travelling Salesman Problem

230 Promet – Traffic&Transportation, Vol. 25, 2013, No. 3, 225-234

ator of each customer’s neighbours list. Each city has
j 1+ neighbours and for example each block contains
j 3+ threads, in block 0 threads , , , j0 1 f evaluate the
new distances for the city pairs , , , , , , j0 0 0 1 0f^ ^ ^h h hof
the city c0 and the threads ,j j1 2+ + pairs ,1 0^ hand
,1 1^ h of the city c1 (Figure 3, right). The ,f i j^ h denotes

the function that calculates the gain to the total tour
length for the specific pair ,i j^ h of the cities. The first
element in the ,i j^ h notation represents the city index
and the second one the neighbour ordinal in the neigh-
bourhood list. With this implementation it is possible
to make coalesced access to the device main memory
and moreover, the shared memory can be used for
storing common data for all threads in the same block
(in the previous example cities c0 and c1). It is pos-
sible that the some threads in the last block b (Figure
3, right) remain idle because the number of blocks nb
is rounded to the higher whole number.

The distances between cities are calculated on-
the-fly, during the kernel execution. As for the GPU ar-
chitecture, it shows that calculating the distances with
data already stored in the shared memory and regis-
ters is much faster than fetching data from the device
main memory.

4.2 3-opt local search

In contrast to 2-opt operator, the 3-opt operator
chooses the best triple , ,i j k^ h not yet connected in the
current tour. For the 2-opt operator there is only one
way to reconnect the tour fragments after deleting the
two selected edges. The 3-opt operator has four dif-
ferent ways how to reconnect the ends after removing
the set of three edges (Figure 4, left). Since the “na-
ive” implementation of the 3-opt local search needs
to evaluate /n n n1 2 3- -^ ^h h possible changes, it is

j+1 j+1j j

i ii+1 i+1

0

0

1

i-1

i

1 ...

...

...

..................

...

...

-1j j

f(0, 0)

f(1, 0)

f i(-1, 0)

f i(, 0)

f(0, 1)

f(1, 1)

f i(-1, 1)

f i(, 1)

f j(0, -1)

f j(1, -1)

f i j(-1, -1)

f i j(, -1)

f j(0,)

f j(1,)

f i j(-1,)

f i j(,)

block 0

block -1b

block b

block 1

Figure 3 - eft: 2-opt, ight: implementation on CUDA architectureL R

j+1k

jk+1

i i+1
j+1k

jk+1

i i+1

j+1k

jk+1

i i+1

0

0

1

i-1

i

1 ...

...

...

..................

...

...

-1j j

f k(0, 0,)

f k(1, 0,)

f i k(-1, 0,)

f i k(, 0,)

f k(0, 1,)

f k(1, 1,)

f i k(-1, 1,)

f i k(, 1,)

f j k(0, -1,)

f j k(1, -1,)

f i j k(-1, -1,)

f i j k(, -1,)

f j k(0, ,)

f j k(1, ,)

f i j k(-1, ,)

f i j k(, ,)

block 0

block -1b

block b

block 1

Figure 4 - eft: two of four ways of reconnecting edges for 3-opt, ight: implementation on CUDA architectureL R

f i j(,) (2-opt)

for all neighbors ofm j

f(, ,) (3-opt)i j k

Promet – Traffic&Transportation, Vol. 25, 2013, No. 3, 225-234 231

J. Fosin, D. Davidović, T. Carić: A GPU Implementation of Local Search Operators for Symmetric Travelling Salesman Problem

obvious that regardless of GPU theoretical computing
power, a significant search space reduction is needed.
As in 2-opt local search, the search space reduction is
done by observing only the m nearest neighbours for
each city.

A similar idea was applied for the 3-opt local search
GPU implementation as was done for the 2-opt local
search. The 3-opt local search is implemented as an
extended 2-opt local search, in which every thread
handles a single pair ,i j^ h (as described for 2-opt) plus
an additional loop that passes through all the neigh-
bour cities of the city j, denoted as k (Figure 4, right).
From the GPU implementation point of view, each
GPU thread calculates the tour length improvement
for triples , ,i j k^ h, where , ,k m1 f= . In this way it is
possible to exploit the distances calculated for 2-opt
local search and reduce the overhead calculations in
the 3-opt local search. Some mid-results calculated
from other adjacent threads within the same block are
stored in the GPU shared memory and reused by other
threads from the same block.

4.3 Iterated local search

Iterated Local Search (ILS) for TSP has a long histo-
ry, and some of the hybrid stochastic local search algo-
rithms are among the best-performing TSP algorithms
currently known [8]. The outline of the algorithm is
given in Algorithm 1.

Algorithm 1 - Iterated local search
1. init:=NNH()
2. s:=ThreeOpt(init)
3. best:=s
4. while not Terminate() do
5. s’:=DoubleBridge(s)
6. s’’:=ThreeOpt(s’)
7. if f(s’’)<f(best) then
8. best:=s’’
9. endif
10. s:=s’’
11 end while

Like in almost all ILS algorithms for the TSP prob-
lem [8], for perturbation a double-bridge move has also
been chosen (Algorithm 1, line 5). Our implementation
randomly selects four edges to be deleted and partial
tours are then reconnected. As mentioned earlier, the
only computationally demanding part of this ILS is the
3-opt local search (line 6) described in Section 2 and
Subsection 4.2. The natural way is to perform a 3-opt
local search on the GPU while the rest of the computa-
tion is performed on the CPU. The stopping function
Terminate() (line 4) finishes the execution after having
performed a certain amount of iterations. In our tests
three possible numbers of iterations were selected:
0.1n, 1n and 10n, where n is the number of cities. The
number of iterations is chosen empirically with the aim

of reaching high quality solutions within a reasonable
time. Due to a large amount of computational time
needed for CPU 3-opt local search, the ILS variant with
CPU 3-opt is calculated only for 0.1n.

5. RESULTS

In this section the results of our implementation of
the 2-opt and 3-opt local search and ILS algorithms
on the standard TSPlib problem library as well as
proposed CRO TSP problem will be presented. Most
authors use the same test-bed TSPlib set of the prob-
lems for the STSP [25] which is the library of sample
instances for the STSP from various sources and for
all of these problems the optimal solutions are known.
This is why we have also made our computational ex-
periments on this set of problems.

All benchmarks are performed on 32-bit Windows
7 desktop PC, running Intel i7 920 2.66 GHz processor
and Nvidia GTX 470 GPU with 448 stream processors.
The algorithm is tested on the standard TSPlib test
instances and each instance was run 10 times. The
tCPUand tGPU represent CPU and GPU average execu-
tion times. The speed-up is calculated by the formula:

/t tCPU GPU , if the speed-up is greater than 1 the GPU ex-
ecution time is smaller than the CPU execution time.

In Section 4 it has been described that 2-opt and
3-opt local search operators are the most time-con-
suming parts of the ILS algorithm. Thus, for CPU and
GPU comparison of the ILS algorithm the most impor-
tant information is the speed-up of the single 3-opt lo-
cal search (Table 1 and Table 2). A single 3-opt local
search is only one call of the GPU kernel ThreeOpt()
(Algorithm 1, line 6), i.e. only one pass through all pairs

,i j^ h is performed.
The test for a single 3-opt local search has been

conducted on all Euclidian 2D TSPlib problem in-
stances. The instances are divided in three groups in
order to clarify the representation of the results. The
first group includes problems between 70 and 400 cit-
ies, the second between 400 and 2,000, and the third
problems group whose size is larger than 2,000 cities.
The problems smaller than 70 cities are too small to
be considered for the described GPU implementation
due to low GPU utilization. As can be seen in Table 1
the minimal speed-up for the first group is 0.5 and
therefore for smaller problems the speed-up would be
even worse. Table 1 presents the average time of 10
runs for the evaluation of the 3-opt local search. The
smallest speed-up is in the group 70-400 because the
smallest problem sizes are too small to be able to fully
utilize the capabilities of the GPU. As can be seen, with
the increasing problem size the speed-ups (min, max
and average) also increase, as was expected. The best
performance is achieved for the third group (2,000-
18,512) because the problem size is big enough to

J. Fosin, D. Davidović, T. Carić: A GPU Implementation of Local Search Operators for Symmetric Travelling Salesman Problem

232 Promet – Traffic&Transportation, Vol. 25, 2013, No. 3, 225-234

generate the maximum number of threads to fully uti-
lize the GPU multiprocessors. The conclusion is that
the GPU implementation is faster for all TSPlib prob-
lem instances with more than 400 cities.

The average speed-up and the average execution
time of 3-opt local search for the two largest TSPlib
problems, pla33810 and pla85900 with 33,810 and
85,900 cities, respectively, are given in Table 2. It can
be seen that GPU outperforms the CPU implementa-
tion even more for the largest problems.

In the next paragraphs the average speed-up and
the average deviation (D) of the 2-opt Search and
3-opt Search algorithms and ILS algorithm from the
optimal solution for Euclidian 2D TSPlib problems (up
to 18,512 cities) are presented. The summary of the
2-opt Search and 3-opt Search algorithms and ILS
algorithm are given in Table 3. The 2-opt Search and
3-opt Search algorithms are similar to ILS algorithm
but without the double-bridge move (Algorithm 1, line
6). The 2-opt Search and 3-opt Search algorithms are
terminated if no better solution can be found. The
stopping criterion for ILS is as described in Section
4.3. The results for the CPU version of ILS 1n and ILS
10n are not available (n/a) because of the extremely
long execution time. The slight difference in the de-
viations (D) between CPU 2-/3-opt Search and GPU
2-/3-opt Search occurred because it is not possible to
control the order of the block execution on the GPU
that results in different order of application of the im-
provements.

As can be seen in Table 3, GPU outperforms CPU
in speed-up in some cases more than 20 times. The
minimum speed-up is low because only the small
problem sizes contribute to this value. This is in line
with the results in Table 1 for the group 70-400. On the
other hand, the maximum speed-up is large because
only the big problems contribute to it. As expected,
3-opt Search gives smaller deviation ,CPU GPUD D^ h from
optimal solutions than 2-opt Search (Table 3) but re-
quires longer execution time as illustrated in Figure 5.
The GPU 3-opt Search version outperforms both CPU
2-/3-opt Search in the execution time (Figure 5) and at
the same time retains the D of the CPU 3-opt Search
version (Table 3).

The graph comparison of ILS on both, CPU and
GPU is given in Figure 6. The ILS algorithm signifi-
cantly improves the deviation from the optimal solu-
tion (Table 3), but the overall time increases by a fac-
tor of approximately 10 (Figure 6). Furthermore, the
ILS algorithm has obtained the optimal solution for
26 out of 78 TSPlib problems for 10n iterations. The
possibility of obtaining better results (more ILS itera-
tions can be performed) greatly expands with the use

Table 1 – 3-opt local search analysis for different problem group sizes, where tCPU and tGPU tGPU are
average times of the average times of 10 runs for each TSPlib problem instance group

Problem
group size

No. of
problems tCPU [ms] tGPU [ms]

Speed-up
min average max

70-400 37 0.4371 0.2670 0.50 1.64 3-40
400-2000 25 2.6222 0.3561 3.49 7.36 13-15

2000-18512 22 17.1551 1.6981 7.46 10.10 21-07

Table 2– 3-opt local search analysis for
the two largest TSPlib problems

tCPU [s] tGPU [s] speed-up

pla33810 0.0924 0.0037 24.55
pla85900 0.2505 0.0091 27.25

Table 3 – 2-optSearch, 3-optSearch and ILS summary results

ΔCPU [%] ΔGPU [%]
speed-up

min average max
2-opt Search 5.21 5.19 0.13 11.13 17.50
3-opt Search 4.58 4.52 0.50 9.98 19.28
ILS (0.1n) 2.00 2.00 0.84 8.38 20.50
ILS (1n) n/a 0.78 n/a n/a n/a
ILS (10n) n/a 0.32 n/a n/a n/a

CPU 2-optSearch

GPU 2-optSearch

CPU 3-optSearch

GPU 3-optSearch

0 5,000 10,000 15,000 20,000

100

90

80

70

60

50

40

30

20

10

0

n (number of cities)

ru
n

n
in

g
 t

im
e

 [
s
]

Figure 5 – Comparison of 2-optSearch and 3-optSearch

running times on CPU and GPU

Promet – Traffic&Transportation, Vol. 25, 2013, No. 3, 225-234 233

J. Fosin, D. Davidović, T. Carić: A GPU Implementation of Local Search Operators for Symmetric Travelling Salesman Problem

of GPU primarily because of the speed-up that can
reach up to 20 times in our implementation of 2-opt
and 3-opt local searches with the respect to CPU (Fig-
ure 5 and Figure 6). In Figure 6 it can be seen that ILS
1n on the GPU performs within a similar time as CPU
ILS 0.1n but with significantly lower deviation (Table
3, CPUD is 2.0 and GPUD is 0.78) from the optimal
solution.

The best achievement we have obtained in this re-
search is that we can find solutions that are on the
average 0.3% worse than the optimal solutions for all
tested problems. Furthermore, the test showed that
our GPU implementation of ILS algorithm is up to 20
times faster than the CPU implementation of ILS (Table
3). Because of this 10 times more ILS iterations can be
performed and higher quality solutions achieved.

5.1 CRO TSP benchmark

CRO TSP benchmark problem (Figure 7) is con-
structed from 6,857 urban and rural locations of post
offices in Croatia. The unusual shape of the Croatian
territory boundary and high density of population in
the North of the country are specific and could be an
interesting property of the proposed CRO TSP problem.

CPU ()0.1n

GPU ()0.1n

GPU ()1n

0 5,000 10,000 15,000 20,000

700

600

500

400

300

200

100

0

n (number of cities)

ru
n

n
in

g
 t

im
e

 [
s
]

Figure 6 – Comparison of ILS running time on CPU and GPU

For the CRO TSP problem the ILS 10n algorithm
gives the total Euclidian distance of 157,209 on GPU
and 157,247 on CPU. The reason for the difference be-
tween the results for CPU and GPU is the same as was
commented for Table 3. The average execution time on
GPU is 632 sec and on CPU is 8,770 sec that gives 14
times speed-up on the GPU. One can conclude that the
practical problem is in line with the standard TSPlib
problem results (see Table 1, group 2,000-18,512).
Furthermore, one can see that the practical problems,
which are usually large problems, can greatly benefit
from the ILS GPU implementation. More details on the
Euclidian CRO TSP instance could be found in [26].

6. CONCLUSION

The main challenges in using GPU cards for opti-
mization problems are efficient data flow optimization,
effective communication among threads in various
blocks, and branching. The branching problem arises
particularly when more advanced local search algo-
rithms are used.

The main reason to start working on the GPU imple-
mentations of the 2-opt and 3-opt local search is to
investigate the possibility to deploy local search opera-
tors on data-flow multiprocessor architecture such as
GPU. The main problem of the big instances of the TSP
is that NP-hard problems, even the heuristic algorithm,
require long execution time.

In the time of writing this paper, there were just
a few papers that investigated the possibilities of us-
ing GPU graphic cards in solving TSP problem using
heuristics. The major achievement of this paper is the
implementation of the 2-opt and 3-opt local search
on GPU. We showed that our implementation can
greatly outperform the CPU implementation in the ex-
ecution time (up to 27 times for problems larger than
~85,000 cities). The advanced local search algorithm
can also benefit from our 2-opt and 3-opt local search
GPU implementation. Our GPU Iterative Local Search
algorithm can find solutions that are on the average
0.3% far from the optimal solutions. Furthermore, it
has also been shown that the significant speed-up can
be achieved. For the TSPlib problems the maximum
speed-up is more than 20 times and for the CRO TSP
problem with 6,857 cities, the speed-up is 14 times.

There are still many open ideas for further research.
Some of the most interesting topics that will definitely
benefit from the GPU are efficient implementation of
DLB and the first improvement approach, which could
significantly decrease the overall execution time. Fur-
ther research should also include experimentations
with the different initial solutions as well as with differ-
ent neighbours list that will make our implementation
more competitive in the solution quality to the state-of-
the-art algorithms.Figure 7 - CRO TSP benchmark

J. Fosin, D. Davidović, T. Carić: A GPU Implementation of Local Search Operators for Symmetric Travelling Salesman Problem

234 Promet – Traffic&Transportation, Vol. 25, 2013, No. 3, 225-234

JURAJ FOSIN, doktorand
E-mail: juraj.fosin@fpz.hr
Sveučilište u Zagrebu, Fakultet prometnih znanosti
Vukelićeva 4, 10000 Zagreb, Hrvatska
DAVOR DAVIDOVIĆ, doktorand
E-mail: davor.davidovic@irb.hr
Ruđer Bošković Institute
Bijenička cesta 54, HR-10000, Zagreb, Hrvatska
Dr. sc. TONČI CARIĆ
E-mail: tonci.caric@fpz.hr
Sveučilište u Zagrebu, Fakultet prometnih znanosti
Vukelićeva 4, 10000 Zagreb, Hrvatska

SAŽETAK

GPU IMPLEMENTACIJA OPERATORA
LOKALNOG PRETRAŽIVANJA ZA SIMETRIČAN
PROBLEM TRGOVAČKOG PUTNIKA

Problem trgovačkog putnika (TSP) je često proučavan
problem kombinatorne optimizacije i bitan je za mnoge
praktične primjene u području transporta. TSP je NP-težak
problem, za čije je optimalno rješavanje egzaktnim algorit-
mima potrebna značajna računalna snaga. Zadnjih godina
brz razvoj grafičkih procesnih jedinica (GPU) za opću nam-
jenu donio je mogućnost značajnog smanjenje vremena
izvršavanja algoritama. U ovom radu implementirali smo
2-opt i 3-opt operatore lokalnog pretraživanja za rješavanje
problema trgovačkog putnika na GPU koristeći CUDA sučelje
za programiranje. Doprinos ovog rada očituje se u paralelnoj
implementaciji iterativnog lokalnog pretraživanja s 2-opt i
3-opt operatorima za simetričan problem trgovačkog putni-
ka koji je optimiziran za izvršavanja na GPU-u. Opisani algori-
tam rješava velike probleme trgovačkog putnika (do 85,900
gradova). U radu je pokazano da GPU implementacija može
biti i do 27 puta brža od implementacije na centralnoj pro-
cesnoj jedinici (CPU) bez da se izgubi kvaliteta rješenja.
Rezultati su dani za probleme iz TSPlib biblioteke kao i za
predloženi CRO TSP problem.

KLJUČNE RIJEČI

problem trgovačkog putnika, operatori lokalnog pretraživanja,
3-opt, paralelno iterativno lokalno pretraživanje, grafička
procesna jedinica, CUDA

REFERENCES

[1] Garey, M.R., Johnson, D.S.: Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness, W. H.
Freeman, 1979

[2] http://graphics.stanford.edu/projects/brookgpu/, last
accessed on June 2012

[3] http://www.nvidia.com/, last accessed on June 2012
[4] http://www.amd.com/us/products/technologies/

stream-technology/pages/stream-technology.aspx,
last accessed on June 2012

[5] Johnson, D.S., McGeoch, L.A.: The traveling sales-
man problem: a case study in local optimization, Local
Search in Combinatorial Optimization, 1997

[6] Mertz, P., Freisleben, B.: Memetic algorithms for the
traveling salesman problem, Complex Systems, 2001

[7] Johnson, D.S., McGeoch, L.A.: Experimental Analysis of
Heuristics for the STSP, The Traveling Salesman Prob-
lem and Its Variations, volume 12, Springer US, 2004

[8] Hoos, H.H., Stützle, T.: Stochastic Local Search, Mor-
gan Kaufman, 2005

[9] Bentley, J.J.: Fast algorithms for geometric traveling
salesman problems, ORSA Journal on Computing,
1992

[10] Croes, G.A.: A method for solving traveling-salesman
problems, Operations Research, 1958

[11] Lin, S.: Computer solutions of the traveling salesman
problem, Bell System Tech, 1965

[12] Lin, S., Kernighan, B.W.: An effective heuristic algo-
rithm for the traveling salesman problem, Operations
Research, 1973

[13] Helsgaun, K.: General k-opt submoves for the Lin–Ker-
nighan TSP heuristic, Mathematical Programming So-
ciety, 2009

[14] Zhao, J., Liu, Q., Wang, W., Wei, Z., Shi, P.: A parallel
immune algorithm for traveling salesman problem and
its application on cold rolling scheduling, Information
Sciences, 2011

[15] Luong, T.V., Melab, N., Talbi, E.G.: GPU-based island
model for evolutionary algorithms, Proceedings of the
12th annual conference on Genetic and evolutionary
computationGECCO ’10, ACM, 2010

[16] Dorigo, M., Maniezzo, V., Colorni, A.: The ant system:
Optimization by a colony of cooperating agents, IEEET-
ransactions on Systems, Man, and Cybernetics-Part B,
vol. 26, pp.2941, 1996

[17] Bai, H., Yang, D., Li, X., He, L., Yu, H.: Max-min ant sys-
tem on GPU with CUDA, Fourth International Confer-
ence on Innovative Computing, Information and Con-
trol, 2009

[18] You, Y.: Parallel ant system for traveling salesman
problem on GPUs, Eleventh Annual Conference on Ge-
netic and Evolutionary Computation, 2009

[19] Lin, Y., Cai, H., Xiao, J., Zhang, J.: Pseudo parallel ant
colony optimization for continuous functions, Interna-
tional Conference on Natural Computation, 2007

[20] Cecilia, J., Garcia, J., Nisbet, A., Amos, M., Ujaldon, M.:
Enhancing data parallelism for ant colony optimisation
on GPUs, Journal of Parallel and Distributed Comput-
ing ,2012

[21] O’Neil, M.A., Tamir, D., Burtscher, M.: A parallel gpu
version of the traveling salesman problem, Internation-
al Conference on Parallel and Distributed Processing
Techniques and Applications, 2011

[22] Luong, T.V., Melab, N., Talbi, E.G.: Parallel local search
on GPU, Report 6915, INRIA, 2009

[23] Helsgaun, K.: An Effective Implementation of the Lin-
Kernighan Traveling Salesman Heuristic, European
Journal of Operational Research, 2000

[24] CUDA C Programming Guide, http://docs.nvidia.com/
cuda/cuda-c-programming-guide/index.html, last ac-
cessed on June 2012

[25] Reinelt, G.: TSPLIB – A traveling salesman problem li-
brary, ORSA JOURNAL ON COMPUTING 3 (1991) 376–
384

[26] URL for Euclidian CRO TSP, http://fulir.irb.hr/504/1/
CRO6857.tsp

