LIVER ASPARTATE TRANSAMINASE ISOENZYMES AS BIOMARKERS OF CHRONIC EXPOSURE TO CHROMIUM(VI)

Mohammad NAJAFI¹, Abazar ROUSTAZADEH², Ali Asghar MOSHTAGHIE³, and Mohsen ANI⁴

Mashhad University of Medical Sciences Biochemistry Department, Khorasan Razavi¹, Jahrom University of Medical Sciences Biochemistry Department, Jahrom², Islamic Azad University School of Biological Sciences, Falavarjan³, Isfahan University of Medical Sciences, Isfahan⁴, Iran

Received in February 2013
CrossChecked in February 2013
Accepted in June 2013

Exposure to hexavalent chromium compounds is associated with the risk of lung cancer, dermatitis, gastrointestinal ulcers, and other tissue damages. The aim of this study was to compare liver isoenzyme and total serum activities of aspartate aminotransferase (AST) as cytotoxic biomarkers of acute and chronic cytotoxicity of CrVI. We investigated the extent of cell damage caused by chromium(VI) in acute (2.5 mg kg⁻¹) daily doses administered over five days and chronic (0.25 mg kg⁻¹ and 0.5 mg kg⁻¹) daily doses administered over 15 to 60 days by measuring total AST in serum and low molecular weight AST (LMW-AST) and high molecular weight AST (HMW-AST) activities in thirty liver fractions. We also evaluated the kinetic properties and electrophoretic mobility of the LMW- and HMW-AST isoenzymes in liver subcellular fractions. Liver LMW-AST and total serum AST activities significantly decreased after 15 days of exposure ($P<0.05$). With continued treatment, AST activity increased by 15.67 % ($P<0.05$). Interestingly, changes in serum AST activity were similar to changes in the liver LMW-AST isoenzyme. Our results confirmed that total serum AST activity may serve as a reliable tissue biomarker for long-term exposures to CrVI, but they also suggest that the LMW-AST isoenzyme could be even more sensitive.

KEY WORDS: biomarker, enzyme activity, hexavalent chromium, HMW-AST, LMW-AST
leakage of these isoenzymes into the circulation, and signalling responses may indicate tissue damage due to chromium cytotoxicity.

The aim of this study was to compare liver isoenzymes and total serum activities of AST as cytotoxicity biomarkers of acute and chronic exposure to CrVI.

MATERIALS AND METHODS

Animals and treatment

The study included 55 six-week-old male Wistar rats weighing 200 g to 250 g bred at the Isfahan University of Medical Sciences Central Animal House in standard conditions. The experiment observed the national law on animal protection.

Acute effects were measured in five rats that were receiving intraperitoneal (i.p.) doses of 2.5 mg kg⁻¹ day⁻¹ CrVI in the form of dichromate salt for five days and compared with the control group of five animals that received saline only.

Serum and liver AST analysis

Liver tissue (1 g) was homogenised with five volumes of sucrose solution (25 mmol L⁻¹), and the homogenate (0.5 mL) and serum (0.5 mL) loaded on top of the filtration column (1x50 cm) packed with Sephacryl S-300 gel. The column was eluted with Tris-HCl buffer (25 mmol L⁻¹, pH 7.5), and thirty
fractions (2 mL) prepared to evaluate HMW-AST and LMW-AST isoenzyme activities. The HMW-AST and LMW-AST fractions were pooled in two tubes and additionally purified using the salting out method (CdCl$_2$, final concentration: 3 mmol L$^{-1}$). After centrifugation (15,000 g for 30 min), the supernatants were electrophoresed on polyacrylamide gel (21 %; 110 V) and stained with coomassie blue to compare electrophoretic mobility.

The apparent Michaelis-Menton constant ($K_{m_{app}}$) of α-ketoglutarate (0.13 mmol L$^{-1}$ to 1 mmol L$^{-1}$) and L-aspartate (0.025 mmol L$^{-1}$ to 0.1 mmol L$^{-1}$) substrates were estimated on Lineweaver-Burk plots for both HMW-AST and LMW-AST isoenzymes.

Total serum AST activity (12) was measured with a UV–VIS spectrophotometer (Perkin–Elmer, USA) at 505 nm using the Darman-Kave kit (Isfahan, Iran). In kinetic studies, AST activity (13) was measured at 340 nm in a ping-pong mode for each substrate. Protein concentration of each fraction was measured using Lowry’s method (14) and was used to calculate specific activity.

Statistical analysis

Data are expressed as mean±SD. Student’s t-test was used to identify differences between treated groups and respective controls using Epi Info software.

RESULTS AND DISCUSSION

LMW-AST and HMW-AST isoenzymes

Figure 1A shows two activity peaks for HMW-AST and LMW-AST isoenzymes when the homogenates are eluted on the chromatograph column. The pooled fractions for each isoenzyme were further purified with CdCl$_2$ so that LMW-AST and HMW-AST isoenzyme yields were higher than 90% and the respective purification folds were 18 and 59 times, respectively. Electrophoretic mobility of HMW-AST was greater than that of LMW-AST (Figure 1B).

Alpha-ketoglutarate $K_{m_{app}}$ for HMW-AST (0.12 mmol L$^{-1}$) was lower than that of LMW-AST (0.24 mmol L$^{-1}$) (Figure 2, A and B), whereas the opposite was true for L-aspartate $K_{m_{app}}$ (0.37 mmol L$^{-1}$ vs. 0.1 mmol L$^{-1}$ for HMW-AST and LMW-AST fractions, respectively (Figure 3, A and B). Our results have shown that HMW- and LMW-AST isoenzymes can be separated on the gel filtration column and that their biochemical characteristics correspond to cytosolic and mitochondrial isoenzymes.

Liver LMW-AST isoenzyme activity dropped in rats treated for 15 days and increased in the 45-day and 60-day groups (Figure 4A). We believe that these differences between the groups are related to lower mitochondrial oxygen consumption, attenuated gene expression in short-term exposure (15, 16), and increased mitochondrial/microsomal lipid peroxidation, cellular induction, and failure in membrane integrity in longer exposures (17).

Similar to LMW-AST, liver HMW-AST activity dropped in the 15-day-treatment group, but it also dropped in the 60-day group, whereas in the 45-day group it increased (Figure 4B). As with LMW-AST, changes in liver HMW-AST may reflect lower gene expression in short-term exposure and then rise in the 45-day group as a consequence of suppression of chromium-induced oxidative stress by endogenous vitamin C biosynthesis, as reported by Mohan et al. (18) and Hemmati et al. (19). Lower HMW-AST activity in long-term (60-day) exposure may reflect oxidative stress and the development of apoptosis (20) in soft tissues (21-23).
Acute CrVI dose (2.5 mg kg-1) lowered serum AST activity significantly ($P<0.005$) by 20.7 % (Table 1). Similarly, Krumschnabel and Nawaz (24) showed that acute exposure to CrVI may significantly decrease hepatocyte viability. Other studies (4, 25) also showed that CrVI converts to CrIII and inhibits the enzyme biosynthesis.

In the group treated for 15 days, total serum AST was still 12.82 % lower than control’s ($P<0.01$) and then started to rise gradually by the end of the experiment, reaching 15.67 % increase ($P<0.03$) in the 60-day group (Table 1, Figure 5). Clearly, continued exposure to CrVI increases the release of AST into the bloodstream, probably because of cell deterioration and hypoxic response, as described elsewhere (26).

Conclusion

Our results have shown that, in contrast to liver HMW-AST, liver LMW-AST isoenzyme and total serum AST activities increase in long-term exposure to CrVI. In addition, a comparison between LMW-AST and total serum AST showed that LMW-AST is more sensitive biomarker of CrVI toxicity. These findings are yet to be verified by future non-invasive studies of human serum AST isoenzymes.

Table 1 Total serum AST activity

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Days of treatment</th>
<th>Group</th>
<th>CrVI dose / mg kg-1</th>
<th>AST activity / IU L-1 Mean±SD</th>
<th>Change / %</th>
<th>Difference from control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute</td>
<td>5</td>
<td>Control</td>
<td>Saline</td>
<td>114.87±3.32</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Treated</td>
<td>2.5</td>
<td>91.08±7.51</td>
<td>-20.7</td>
<td><0.005</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Control</td>
<td>Saline</td>
<td>117.31±4.70</td>
<td>12.82</td>
<td><0.01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Treated</td>
<td>0.25</td>
<td>101.98±2.39</td>
<td>-10.08</td>
<td><0.02</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Treated</td>
<td>0.5</td>
<td>105.12±2.44</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>Control</td>
<td>Saline</td>
<td>106.21±6.12</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>Treated</td>
<td>0.25</td>
<td>115.41±6.44</td>
<td>+8.87</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>Treated</td>
<td>0.5</td>
<td>115.75±5.76</td>
<td>+9.21</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>Control</td>
<td>Saline</td>
<td>108.21±5.12</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>Treated</td>
<td>0.25</td>
<td>125.17±9.62</td>
<td>+15.67</td>
<td><0.03</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>Treated</td>
<td>0.5</td>
<td>120.43±5.21</td>
<td>+11.29</td>
<td><0.03</td>
</tr>
</tbody>
</table>

NS - Not-significant ($P>0.05$).
REFERENCES

Sažetak

JETRENI IZOEZIMI ASPARTAT TRANSAMINAZE KAO BIPOKAZATELJI KRONIČNE IZLOŽENOSTI HEKSVALENTNOM KROMU

Izloženost spojevima s heksavalentnim kromom (Cr⁶⁺) povezana je s povećanim rizikom od raka pluća, dermatitisa, vrijeda u probavnom traktu i ostalih oštećenja tkiva. Cilj ovog istraživanja bio je na životinjskom modelu usporediti aktivnosti aspartat aminotransferaze (AST) u serumu i njezinih jetrenih izoenzima kao biopokazatelja akutne i kronične citotoksičnosti Cr⁶⁺ u štakora. S tom smo svrhom pet dana intraperitonealno izlagali Wistar štakore akutnoj dozi Cr⁶⁺ od 2,5 mg kg⁻¹ na dan te petnaest, četrdeset i šezdeset dana kroničnim dozama od 0,25 mg kg⁻¹ odnosno 0,5 mg kg⁻¹ na dan, te izmjerili aktivnost ukupnog AST u serumu i aktivnosti izoenzima AST-a male (LMW-AST) odnosno velike molekulske mase (HMW-AST) u 30 jetrenih frakcija. Također smo ocijenili kinetička svojstva i elektroforetsku mobilnost LMW-AST-a i HMW-AST-a unutar jetrenih stanica. Aktivnosti jetrenog LMW izoenzima AST-a i ukupnog AST-a u serumu značajno su se smanjile nakon 15 dana izloženosti u odnosu na kontrolnu skupinu (P<0,05). Tijekom daljnje izloženosti aktivnost serumskog AST-a povećala se 15,67 % (P<0,05). Zanimljivo je primijetiti da je ponašanje serumskog AST-a bilo slično onom jetrenog LMW izoenzima, što upućuje na pouzanost obaju biopokazatelja pri dugotrajnoj izloženosti kromu, ali i na bolju osjetljivost LMW-AST izoenzima.

KLJUČNE RIJEČI: biopokazatelj, enzimska aktivnost, heksavalentni krom, HMW-AST, LMW-AST

CORRESPONDING AUTHOR:

Mohammad Najafi
Biochemistry Department,
Mashhad University of Medical Sciences,
Khorasan Razavi, Iran
E-mail: nbsmmsbn@tums.ac.ir