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QUADRATIC OPERATORS ON AM-SPACES
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University of Silesia, Poland

Abstract. Our purpose is to deal with quadratic operators acting
between vector lattices of continuous mappings on a compact Hausdorff
space. In our first main result we characterize quadratic-multiplicative
operators, whereas in the second one we provide necessary and sufficient
conditions for a quadratic operator to be proportional to the square of a
continuous linear operator.

1. Introduction

The notion of quadratic mappings in a sense of Definition 1.1 below was
introduced by J. Aczél and later extensively studied by several authors, among
others by S. Kurepa (see [13–16]). However, the main attention was given
to scalar-valued functions. In the present paper we discuss vector-valued
quadratic operators and we provide counterparts to some results for scalar-
valued quadratic functions.

Definition 1.1. Let (X,+), (Y,+) be Abelian groups. A map Q : X → Y

is termed quadratic if it satisfies the following functional equation:

(1.1) Q(x+ y) +Q(x− y) = 2Q(x) + 2Q(y), x, y ∈ X.

The following characterization of quadratic maps as diagonalizations of bi-
additive and symmetric mappings is due to J. Aczél (see [2], [3] and [4, Chapter
11, Proposition 1]).

Theorem 1.2 (Aczél). Let (X,+), (Y,+) be Abelian groups and assume
that (Y,+) is uniquely divisible by 2. A map Q : X → Y is quadratic if and
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only if there exists a bi-additive and symmetric mapping B : X×X → Y such
that

Q(x) = B(x, x), x ∈ X.

Moreover, B is uniquely determined via the following formula:

(1.2) B(x, y) =
1

4
[Q(x+ y)−Q(x− y)], x, y ∈ X.

Assume thatX is a linear space over a field of scalarsK with characteristic
different from 2 (we will write charK 6= 2 for short) and T : X → K is an
additive function. It is easy to check that for an arbitrary constant c ∈ K the
map Q : X → K given by the formula:

(1.3) Q(x) = cT (x)2, x ∈ X

is an example of a quadratic mapping. However, not every quadratic mapping
defined on a real or complex linear space is of the form (1.3). This can
be justified in quite a few ways. We will make use of a result of R. Ger
([9, Theorem 1]); see also the paper [8] by Z. Gajda and H. I. Miller. If X
is a linear space over the rationals, then each set H ⊂ X which possesses
the property that every mapping Q0 : H → K has a unique extension to a
quadratic mapping Q : X → K is called a basic set for equation (1.1). It is
well-known that each Hamel basis (i.e the basis of X as a linear space over
Q) is a basic set for the Cauchy functional equation of additive mappings:

g(x+ y) = g(x) + g(y), x, y ∈ X

(see [12, Theorem 5.2.2]). More precisely [9, Theorem 1] states that if H is
a Hamel basis of X , then the set 1

2
(H +H) is a basic set for equation (1.1)

of quadratic mappings. Clearly, H ( 1
2
(H +H) since H is not a mid-convex

set. From this it follows that there exist quadratic functions on X which do
not verify (1.3) with any additive T and any constant c.

It is straightforward to observe that each mapping Q : X → K given by
(1.3) with some additive T : X → K and some constant c ∈ K satisfies the
following auxiliary equation:

(1.4) [Q(x+ y)−Q(x− y)]2 = 16Q(x)Q(y), x, y ∈ X.

This equation was studied by S. Kurepa ([13]), see also [10]. Later, substantial
generalizations have been obtained by B. R. Ebanks ([5,6]). It turns out that
quadratic functions with values in a field of characteristic different from 2
which are of the form (1.3) are precisely those which satisfy equality (1.4).

In what follows the Kurepa-Ebanks theorem ([5, Theorem 3]) will be
needed.

Theorem 1.3 (Kurepa-Ebanks). Let (X,+) be a group, K a field with
characteristic different from 2 and Q : X → K a quadratic map. Then Q

satisfies equation (1.4) if and only if there exist an additive map T : X → K

and a (nonzero) constant c ∈ K for which the formula (1.3) holds true.
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Remark 1.4. Let us join (1.2) with (1.4) and use the Kurepa-Ebanks
theorem to see that if for a given quadratic mapping Q : X → K, formula
(1.3) is valid with some additive T : X → K and some c ∈ K, then we have

B(x, y) = cT (x)T (y), x, y ∈ X.

Moreover, an inspection of the Ebanks’ proof allows us to derive precise
formulas for the additive map T and for constant c (see [5, Proof of Theorem
1, page 178]). If Q = 0, then T = 0 and c can be arbitrary. If this is not
the case, then one can pick any point x0 ∈ X such that Q(x0) 6= 0 and define
c = Q(x0)

−1 and T (x) = B(x0, x), where B is given by (1.2).

Now assume that X is an algebra over the field K = {R,C} and T : X →
K is an additive and multiplicative map. If Q : X → K is defined as the
square of T , then Q is a quadratic-multiplicative function. One can ask under
which conditions the converse implication is also true. The first positive result
is due to C. Hammer and P. Volkmann ([11]). They described real-to-real
quadratic-multiplicative functions.

Theorem 1.5 (Hammer-Volkmann). Assume that Q : R → R is an
arbitrary mapping. Then Q is a quadratic-multiplicative function if and only
if there exists an additive-multiplicative function T : C → C such that Q is of
the form

Q(x) = |T (x)|2, x ∈ R.

A generalization of this theorem is due to Z. Gajda ([7]). If K is a field
then we denote by K the algebraic closure of K and if ζ ∈ K then K(ζ)
stands for the smallest field such that K ⊆ K ∪ {ζ} ⊆ K.

Theorem 1.6 (Gajda). Assume that X is a commutative unitary ring, K
is a field with characteristic different from 2 and Q : X → K is an arbitrary
mapping. Then Q is a quadratic-multiplicative function if and only if there
exist an element ζ ∈ K such that ζ2 ∈ K and additive-multiplicative mappings
u : X → K(ζ) and v : X → K(ζ) such that

u(x) + v(x) ∈ K, u(x)− v(x) ∈ ζK, x ∈ X

and Q is of the form

(1.5) Q(x) = u(x)v(x), x ∈ X.

Remark 1.7. One can ask whether about the relation between quadrat-
ic mappings which are of the form (1.3) and those which are of the form
(1.5). In view of Theorem 1.3 and Theorem 1.6, to answer this question
we need to establish a connection between additive-multiplicative mappings
u, v postulated by Theorem 1.6 and the additive-multiplicative function T

mentioned in Theorem 1.3. An inspection of the Gajda’s proof of Theorem
1.6 indicates that such a connection exists but is not direct. Assume that X is
a commutative unitary ring and K is a field with characteristic different from
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2. Further, assume that Q : X → K is a non-zero quadratic-multiplicative
function, there exists some ζ ∈ K such that ζ2 ∈ K and u and v are described
in Theorem 1.6.

Let A : X × X → K be the symmetric bi-additive mapping which
corresponds to Q. Next, define T0 : X → K as T0(x) = A(x, 1) for all x ∈ X

and then B ×B : X → K as

B(x, y) = A(x, 1)A(y, 1)−A(x, y), x, y ∈ X.

It is checked that B is bi-additive and symmetric and moreover

B(x, y)2 = B(x, x) · B(y, y), x, y ∈ X.

Consequently, by Theorem 1.3 applied for the diagonalization of B there exist
an additive map T1 : X → K and a constant c1 ∈ K such that

c1T1(x)
2 = T0(x)

2 −Q(x), x ∈ X.

Finally, the following equalities hold true:

u(x) = T0(x) + ζT1(x), x ∈ X

and

v(x) = T0(x) − ζT1(x), x ∈ X.

From now on, we will be using the following terminology. A quadratic
map Q defined on a linear space over K ∈ {R,C} which additionally possess
the following homogeneity property:

(1.6) Q(tx) = t2Q(x), x ∈ X, t ∈ K

will be termed quadratic functional or quadratic operator, respectively,
depending whether the target space is a field or a vector space.

It is worth to mention that condition (1.6) imposed upon a quadratic map
Q does not imply that the bi-additive mapping B associated with Q is bilinear
(or sesquilinear). This problem was discussed by S. Kurepa; see [13] and [16].
However, one can see that from Theorem 1.3 it follows that if additionally
(1.4) is satisfied, then this implication is true.

Now, assume thatX and Y are vector lattices (Riesz spaces). It is to recall
that a positive operator T : X → Y is termed lattice (Riesz) homomorphism
if

T (x ∨ y) = Tx ∨ Ty, x, y ∈ X.

Definition 1.8. Assume that X is a Banach lattice. Then X is called
AM -space if

‖x ∨ y‖ = max{‖x‖, ‖y‖}, x, y ∈ X+ such that x ∧ y = 0.

The Kakutani-Bohnenblust-Krein theorem says that every AM -space
with unit is lattice isometric to the space C(Ω) of all real continuous mappings
defined on some compact Hausdorff space Ω. Moreover every AM -space
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is lattice isometric to some closed vector sublattice of C(Ω) (see e.g. the
monograph of Abramovich and Aliprantis, [1, Theorem 3.6]). In view of this
result, later on we will restrict our studies to spaces C(Ω).

2. Quadratic operators

Our purpose is to obtain representations of quadratic operators acting
between C(Ω)-spaces, analogous to the scalar ones of Kurepa, Ebanks and
Gajda, which were recalled in the Introduction. We start with a result which
is an analogue of Theorem 1.5 and of Theorem 1.6.

Theorem 2.1. Assume that Ω1,Ω2 are compact Hausdorff spaces. Then
Q : C(Ω1) → C(Ω2) is a quadratic and multiplicative operator if and only if
there exist a clopen subset B ⊆ Ω2 and mappings τ, σ : Ω2 → Ω1 which are
continuous on B such that:

(2.1) Q(x)(t) = χB(t)x(τ(t))x(σ(t)), x ∈ C(Ω1), t ∈ Ω2.

Proof. If Q is of the form (2.1), then it is straightforward to calculate
that it is a quadratic-multiplicative operator having values in C(Ω2). To prove
the converse we may assume that Q 6= 0. Fix arbitrarily t ∈ Ω2 and define
qt : C(Ω1) → R as

(2.2) qt(x) = Q(x)(t), x ∈ C(Ω1).

It is clear that qt is a quadratic-multiplicative functional. We can assume that
qt 6= 0. Therefore, by Theorem 1.6 there exist two additive-multiplicative
mappings ut, vt : C(Ω1) → C such that

qt(x) = ut(x)vt(x), x ∈ C(Ω1).

We will show that ut and vt are R-linear. Due to the multiplicativity it
is sufficient to show that mappings f, g : R → C given by

f(λ) = ut(λe), g(λ) = vt(λe), λ ∈ R

are equal to the identity mapping, where e is the unit of C(Ω1). We have

f(λ)g(λ) = qt(λe) = λ2qt(e) = λ2, λ ∈ R.

Therefore, expanding the equality

f(λ+ µ)g(λ+ µ) = (λ+ µ)2,

which is valid for arbitrary λ, µ ∈ R, we achieve

f(λ)g(µ) + f(µ)g(λ) = 2λµ, λ, µ ∈ R.

Put µ = 1 to get

f(λ) + g(λ) = 2λ, λ ∈ R.

Now, one can easily obtain

[f(λ)− g(λ)]2 = [f(λ) + g(λ)]2 − 4f(λ)g(λ) = 0, λ ∈ R,
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which is what we need.
Next, define operators U, V on the space C(Ω1) as

U(x)(t) = ut(x), V (x)(t) = vt(x), x ∈ C(Ω1), t ∈ Ω2.

We will check whether the target space of both U and V is the space CC(Ω2)
of complex continuous functions on Ω2. We need both maps

Ω2 ∋ t 7→ U(x)(t), Ω2 ∋ t 7→ V (x)(t)

to be continuous for every x ∈ C(Ω1). This follows from Remarks 1.4 and
1.7. Indeed, in Theorem 1.6 we take ζ = i. Further, let At, Bt and T t

0 be the
mappings corresponding to qt defined in Remark 1.7. We can assume that
Bt 6= 0. Next, pick some x0 ∈ C(Ω1) such that Bt(x0, x0) 6= 0 and define
T t
1 as T t

1(x) = Bt(x0, x). Now, from this and from the formulas mentioned
in Remark 1.7 we see that for every fixed x ∈ C(Ω1) the continuity of the
mapping Ω2 ∋ t 7→ Q(x)(t) implies the continuity of Ω2 ∋ t 7→ T t

0(x) and
Ω2 ∋ t 7→ T t

1(x) and consequently, of U(x) and V (x).
Our next step is to extend operators U and V on the space CC(Ω1) of

complex continuous functions on Ω1 in an usual way:

UC(x+ iy) = U(x) + iU(y), VC(x+ iy) = V (x) + iV (y),

for x, y ∈ C(Ω1). It is easy to check that the extended operators are R-
linear and multiplicative. Moreover, it is clear that UC(ix) = iUC(x) and
VC(ix) = iVC(x) for all x ∈ C(Ω1). Therefore, by a standard argumentation
one can show that both operators are C-linear (e.g. one may consider for
fixed x ∈ C(Ω1) and t ∈ Ω2 mappings C ∋ z 7→ f(z) := UC(zx)(t) and
C ∋ z 7→ g(z) := VC(zx)(t) and apply the description of additive mappings on
C from [12, Chapter 5.6]). Further, by the representation theorem of linear-
multiplicative operators (see e.g. [1, Theorem 4.27]), there exist two clopen
subsets Bu, Bv ⊆ Ω1 and two mappings τ, σ : Ω2 → Ω1 which are continuous
on Bu and Bv, respectively, such that

UC(x)(t) = χBu
(t)x(τ(t)), VC(x)(t) = χBv

(t)x(σ(t)), x ∈ CC(Ω1), t ∈ Ω2.

Note that in formula (2.1) we do not need the complex extensions of U and
V , since both UC and VC maps C(Ω1) into C(Ω2). To finish the proof it is
sufficient to put B = Bu ∩Bv.

Now, we will provide an analogue of Theorem 1.3.

Theorem 2.2. Assume that Ω1,Ω2 are compact Hausdorff spaces and Ω2

is metrizable. and Q : C(Ω1) → C(Ω2) is an arbitrary map. Then Q is a
nonnegative and continuous quadratic operator which satisfies equality (1.4)
jointly with the following auxiliary condition:

(2.3) Q(x+ y) = Q(x− y) for all x, y ∈ C(Ω1) such that x ∧ y = 0
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if and only if there exist a mapping τ : Ω2 → Ω1 and a nonnegative function
w ∈ C(Ω2) such that τ is continuous on the set {t ∈ Ω2 : w(t) > 0} and:

(2.4) Q(x)(t) = w(t)[x(τ(t))]2 , x ∈ C(Ω1), t ∈ Ω2.

Proof. If Q is defined as above, then it is straightforward to check that
Q given by (2.4) is a nonnegative quadratic operator and Q satisfies both (1.4)
and (2.3). To prove the converse, fix arbitrary t ∈ Ω2 and define qt : C(Ω1) →
R by (2.2). Then qt is a nonnegative quadratic functional which satisfies
the assumptions of Theorem 1.3. Thus, we derive the existence of a linear
functional Tt : C(Ω1) → R and some real constant ct ≥ 0 such that

qt(x) = ctTt(x)
2, x ∈ C(Ω1).

It is clear that there is more than one possibility for the choice of the constant
ct and of the map Tt. What we need is to ensure that both mappings

Ω2 ∋ t 7→ ct, Ω2 ∋ t 7→ Tt(x)

can be taken as continuous for every fixed x ∈ C(Ω1). We will use the
description of the constant ct and of the map Tt provided in Remark 1.4.
Note that for every fixed t, if the constant ct is positive, then thanks to the
homogeneity property (1.6) of Q, ct can be taken as arbitrary positive number.
Therefore, in this case let us take ct = 1.

The set

A = {t ∈ Ω2 : Q(x)(t) = 0}

is closed. If A = Ω2, then both mappings in question can be taken as zero
mappings and we are done. Assume that there exists some t0 ∈ Ω2 \ A.
Since Ω2 is a compact metrizable space, then A and t0 can be separated by
a continuous function. Therefore, there exists a separating function c : Ω2 →
[0, 1] which is equal 0 precisely on A and equal 1 on t0. Thus, we have c(t) = ct
for t ∈ Ω2 and further, if we take Tt = 0 for all t ∈ A, then we are sure that
for every x ∈ C(Ω1) the map Ω2 ∋ t 7→ Tt(x) is continuous.

Now, define a linear operator T0 on the space C(Ω1) by the formula

T0(x)(t) = Tt(x) x ∈ C(Ω1), t ∈ Ω2.

From the previous argumentation it follows that the target space of T0 is
C(Ω2).

Next, fix arbitrarily x, y ∈ C(Ω1) such that x ∧ y = 0. Then, from (1.4)
and (2.3) it follows that

Q(x)(t) ·Q(y)(t) = 0, t ∈ Ω2.

From this we see that Q(x) ∧Q(y) = 0. Consequently, we obtain

(T0x)
2 ∧ (T0y)

2 = 0.
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Next, we will make use of the Riesz-Kantorovich formulas (see e.g. [1,
Theorem 1.16]). We define operators T+

0 and T−

0 as follows:

T+
0 x = sup{T0y : 0 ≤ y ≤ x},

T−

0 x = sup{−T0y : 0 ≤ y ≤ x}.

The Riesz-Kantorovich formulas define a natural lattice structure on the space
of all bounded linear operators between C(Ω1) and C(Ω2). In particular, T+

0

and T−

0 are positive operators, T+
0 ∧ T−

0 = 0, T0 = T+
0 − T−

0 and |T0| =
T+
0 + T−

0 . Put T = |T0|; obviously T is a positive operator and moreover

(T0)
2 = (T+

0 − T−

0 )2 = (T+
0 )2 − (T+

0 )(T−

0 )− (T−

0 )(T+
0 ) + (T−

0 )2

= (T+
0 )2 + (T−

0 )2 = |T0|
2 = T 2,

since (T+
0 )(T−

0 ) = (T−

0 )(T+
0 ) = 0. Now, we can prove that T is a lattice

homomorphism. To do this it is enough to show that Tx ∧ Ty = 0 whenever
x ∧ y = 0 (see e.g. [1, Theorem 1.34]). We already have that

(Tx)2 ∧ (Ty)2 = 0,

if x ∧ y = 0. Since T is a positive operator, then from this we derive

Tx ∧ Ty = 0,

as claimed. In the last step of the proof we apply a representation theorem for
lattice homomorphisms (see [1, Theorem 4.25]). Therefore, T is of the form

T (x)(t) = w0(t)x(τ(t)), x ∈ C(Ω1), t ∈ Ω2,

for some mapping τ : Ω1 → Ω2 and for a nonnegative weight function w0 ∈
C(Ω2). Moreover, the map τ is continuous on the set {t ∈ Ω2 : w(t) > 0}. To
finish the proof one needs to put w = c · w2

0 .

In what follows we will focus on the auxiliary condition (2.3) imposed
upon Q in the statement of Theorem 2.2. From the proof of this theorem
we can notice that condition (2.3) plays the role of the respective condition
defining lattice homomorphisms. In Theorems 2.4 and 2.7 below we will
provide two sets of equivalent conditions related to (2.3). We begin with the
following easy observation.

Proposition 2.3. Assume that X is a vector lattice, Y is an Abelian
group and Q : X → Y is a quadratic mapping. Then

Q(|x|) +Q(x) = 2Q(x+) + 2Q(x−), x ∈ X.

Proof. It suffices to apply equation (1.1) with x = x+ and y = x−.

Theorem 2.4. Assume that X is a vector lattice, Y is an Abelian group,
Q : X → Y is a quadratic mapping and B : X ×X → Y is the corresponding
bi-additive and symmetric mapping. Then, the following conditions are
equivalent:
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(i) B(x, y) = 0 for all x, y ∈ X such that x ∧ y = 0;
(ii) B(x+, x−) = 0 for all x ∈ X;
(iii) Q(x+) +Q(x−) = Q(|x|) for all x ∈ X;
(iv) Q(x) = Q(x+) +Q(x−) for all x ∈ X;
(v) Q(x) = Q(|x|) for all x ∈ X;
(vi) Q(x+ y) = Q(x− y) for all x, y ∈ X such that x ∧ y = 0.

Proof. (i) ⇒ (ii). The implication follows immediately from the fact
that x+ ∧ x− = 0 for every x ∈ X .

(ii) ⇒ (iii). Fix arbitrary x ∈ X . We have

Q(|x|) = B(|x|, |x|) = B(x+ + x−, x+ + x−)

= B(x+, x+) +B(x+, x−) +B(x−, x+) +B(x−, x−)

= Q(x+) +Q(x−),

which proves (iii).
(iii) ⇔ (iv). Fix arbitrary x ∈ X . With the aid of Proposition 2.3 we

easily transform equivalently (iii) as follows:

Q(x+) +Q(x−) = Q(|x|) = 2Q(x+) + 2Q(x−)−Q(x),

and this is identical with (iv).
(iii)& (iv) ⇒ (v): obvious.
(v) ⇒ (vi). Fix arbitrary x, y ∈ X such that x ∧ y = 0 and denote

ξ = x − y. Then ξ+ = x and ξ− = y, so |ξ| = x + y. Now, apply (v) with
x = ξ to obtain

Q(x− y) = Q(ξ) = Q(|ξ|) = Q(x+ y).

(vi) ⇒ (i). Follows immediately from formula (1.2).

Now, we will provide two counterexamples. Firstly, we will show that
there exists a continuous quadratic mapping which does not satisfy the
equivalent conditions spoken of in Theorem 2.4, and further we will show
that there exist discontinuous quadratic mappings which satisfy them.

Example 2.5. Let X = R2 equipped with the standard operations and
pointwise order and let Y = R. Then the mapping Q : X → Y given by

Q(x1, x2) = (x1 − x2)
2, (x1, x2) ∈ X,

is a quadratic mapping. Clearly, Q is nonnegative and continuous. Moreover,
it is easy to see that Q fails to satisfy the equivalent conditions of Theorem
2.4.

Example 2.6. Assume that X = Rn for some positive integer n. Then X

is a vector lattice and simultaneously a real Hilbert space (with the standard
inner product). Moreover, it is easy to see that every pair x, y of elements of
X which satisfies x∧ y = 0 is in particular orthogonal. Further, let a : R → R
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be a discontinuous additive mapping. It is clear that a is unbounded (from
both sides) on any interval of positive length. Next, let us define

B(x, y) = a((x|y)), x, y ∈ X

and

Q(x) = B(x, x) = a(‖x‖2), x ∈ X.

It is straightforward to check that Q is a quadratic mapping and (1.2) is
satisfied by Q and B. Moreover, Q is discontinuous and clearly fails to be
nonnegative. However, one can see that B satisfies condition (i) of Theorem
2.4, so Q satisfies conditions (iii)–(vi) of this statement.

The next result is similar to Theorem 2.4 and provides a set of stronger
equivalent conditions, which for a nonnegative quadratic mapping Q reduce
to the respective conditions of Theorem 2.4.

Theorem 2.7. Assume that X,Y are vector lattices, Q : X → Y is a
quadratic mapping and B : X ×X → Y is the corresponding bi-additive and
symmetric mapping. Then, the following conditions are equivalent:

(i) 2B(x, y) = Q(x− y)− for all x, y ∈ X such that x ∧ y = 0;
(ii) 2B(x+, x−) = Q(x)− for all x ∈ X;
(iii) Q(x+) +Q(x−) +Q(x)− = Q(|x|) for all x ∈ X;
(iv) Q(x)+ = Q(x+) +Q(x−) for all x ∈ X;
(v) |Q(x)| = Q(|x|) for all x ∈ X;
(vi) |Q(x+ y)| = Q(x− y) for all x, y ∈ X such that x ∧ y = 0.

Proof. (i) ⇒ (ii). Follows from the identities x+∧x− = 0 and x+−x− =
x.

(ii) ⇒ (iii). Fix arbitrary x ∈ X . We obtain

Q(|x|) = B(|x|, |x|) = Q(x+) +Q(x−) + 2B(x+, x−)

= Q(x+) +Q(x−) +Q(x)−,

which proves (iii).
(iii) ⇔ (iv). Fix arbitrary x ∈ X . With the aid of Proposition 2.3 we

easily transform equivalently (iii) as follows:

Q(x+) +Q(x−) +Q(x)− = Q(|x|) = 2Q(x+) + 2Q(x−)−Q(x)+ +Q(x)−,

and this is identical with (iv).
(iii)& (iv) ⇒ (v). Obvious.
(v) ⇒ (vi). Fix arbitrary x, y ∈ X such that x ∧ y = 0 and denote

ξ = x − y. Then ξ+ = x and ξ− = y, so |ξ| = x + y. Then, apply (v) with
x = ξ to obtain

|Q(x− y)| = |Q(ξ)| = Q(|ξ|) = Q(x+ y).
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(vi) ⇒ (i). Fix arbitrary x, y ∈ X such that x ∧ y = 0. We have

4B(x, y) = Q(x+ y)−Q(x− y)

= Q(x+ y)−Q(x− y)+ −Q(x− y)− + 2Q(x− y)−

= Q(x+ y)− |Q(x− y)|+ 2Q(x− y)− = 2Q(x− y)−.

Let us point out that the map Q provided in Example 2.6 does not satisfy
the conditions of Theorem 2.7. Indeed, for Q defined as in Example 2.6 we
have by Theorem 2.4 (v) that Q(|x|) = Q(x) for all x ∈ X and, since Q fails
to be nonnegative, then the condition (v) of Theorem 2.7 is violated.
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