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ABSTRACT

The construction of planar conchoids can be carried over
to the Euclidean unit sphere. We study the case of con-
choids of (spherical) lines and circles. Some elementary
constructions of tangents and osculating circles are stil
valid on the sphere. Further, we aim at the illustration
and a precise description of the algebraic properties of the
principal views of spherical conchoids, i.e., the conchoid’s
images under orthogonal projections onto their symmetry
planes.
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tangent, osculating circle, singularities, orthogonal projec-

Konhoide na sferi
SAZETAK

Konstrukcija ravninskih konhoida moZe se prenijeti na euk-
lidsku jediniénu sferu. Promatramo slu¢aj konhoida gener-
iranih sfernim pravacima i kruZnicama. Neke elementarne
konstrukcije tangenata i kruZnica zakrivljenosti vrijede i
za sferne konhoide. Nadalje, na$ je cilj ilustracija i pre-
cizan opis algebarskih svojstava glavnih pogleda sfernih
konhoida, tj. slika konhoida pri ortogonalnom projiciranju
na njihove ravnine simetrije.

Kljuéne rije€i: krivulje na sferi, konhoide, algebarske
krivulje, tangenta, kruznica zakrivljenosti, singulariteti, or-
togonalna projekcija

tion
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1 Introduction

The construction of conchoids goes back to the early Greek
mathematicians [5, 13]. Assume we are given a pbint
calledfocusand a lind calleddirectrix one can ask for the
setc of all points in the Euclidean plane at fixed distadce
from| measured on all lines throudh cf. Figure 1. /

The setc turns out to be an algebraic curve of degree 4,
namely theconchoidof the linel with respect td- at dis-
tanced € R. The conchoid can be described by the equa-  Figure 1: The construction of the conchoid ¢ of a line | in

tion the plane.
(X —d?)(f —=x)2+x¥* =0

provided that a Cartesian coordinate system is chosen as
depicted in Figure 1 witlk = (f,0), f e Randl : x=0.
The conchoid has two branches, one corresponding to the / ‘ } © \ ‘

distance+d, while the other corresponds to the distance l

—d. The algebraic variety contains both branches.

Figure 2: The planar conchoid of a line has an ordinary
double pointifid| > | f| (left), a cusp ifid| = | |
(in the middle), and an isolated double point if
|d| < || (right).

The conchoid has an ordinary double point Bt= (f,0)
if |d| > |f| (or an isolated double pointjél| < |f]). In the
case ofild| = |f|, F is a cusp of the first kind,e., with the
local expansior(u? + o(u®),u® + o(u%)), see [2, 3]. The
cusped curve can also be seen in Figure 2.
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Independent of the choice dfand f the curvec consid- For some image curves the degree reduces to 4. Further,
ered as a curve in the projective plane (cf. Figure 3) has awe describe the singularities showing up on the principal
tacnode at the ideal point of theaxis. There, two linear  views of the spherical conchoids.
branches with the same tangent emanate. Therefore, the
conchoid is of genus 0, and thus, it is a rational curve. ) )

2 Conchoidsof aline

AssumeX is the Euclidean unit sphere with the equation
Sty Z=1 1)

and let furthet be aline onz, i.e., a greatcircle ok. With-
out loss of generality, we can asssume thatthe equator
of Z in the planez= 0 (see Figure 4). Thus, a parametriza-
tion of | reads

Fﬂm\

. . .. . . L(}\) = (C)\,S)\,O) with A € [Oa 2T[[ (2)
Figure 3: The singularities of the conchoid considered as
a curve in the projective plane. where we have used the abbreviatians:= cos\ and
S, ;= SinA.

The nameconchoidis due to the fact that its shape some-
how reminds of a conch. The conchoid of a line (the direc-
trix | is a line) is frequently called conchoid of Nikomedes,
see [4, 5, 13]. The liné can be replaced by an arbitrary g _ (Co,0, %) 3)
curve.

In former years, mathematicians developed elementary(With Cy:= cospands, := sing) since it means no restric-
constructions of points, tangents, and osculating cifdes ~ tion to assume that the greatcircle orthogonal torough
some kinds of conchoids such as those of lines and circlesF lies in the plang/ = 0.

The kinematic point of view allows us to see the conchoids The points on the spherical conchaidf | with respect to
as traces of moving particles, and thus, further construc-g 4t distances < 10, %[ are found via the analogous con-
tions of tangents and osculating circles can be deducedgi,ction on the sphere: Choose a pairun the equatot,

see for example [6, 14]. join it with F by a greatcircle, and determine the poiRts
Inthe last few years conchoids became popular in CAGD, at spherical distana®from L.

see[1, 8,9, 10, 11]. This is mainly due to the fact that un-
der certain circumstances conchoids can be parametrized
by means of rational functions which is mainly the content
of [8, 9]. Thus, a huge class of possibly new surfaces is
available for CAGD. The conchoids of spheres and ruled
surfaces are not spheres or ruled surfaces anymore, except
in some special cases. In order to overcome this flaw, an
intrinsic construction of conchoids for some geometries is
presented in [7].

It is somehow surprising that conchoids on the sphere have
not attracted the researchers’ interest. Many constmstio
that are valid in the Euclidean plane can easily be adapted
for the Euclidean unit sphere. In this article, we shall
demonstrate this at hand of the spherical analoga to con-
choids of lines and circles. The spherical conchoids of
lines are conchoids of greatcircles on the sphere. How-
ever, the spherical conchoids of circles are stil conchoids

of circles but on the sphere. Figure 4: Construction of a conchoid on the unit sphere
We shall describe spherical conchoids of lines and circles and the choice of a coordinate system.

and study their algebraic properties at hand of their equa-yye oy 1y de the case= I which yields a pair oflistance
tions. Then, we discuss the shape of the principal views of : 2 . .
the spherical conchoids. The principal views are obtained curvesprov.|ded tha5 7 0. These d|§tance CUTVES are Cir-
as orthogonal projections to a triple of mutually orthogona ¢/€s onZ with spherical radius; — 3 in planes parallel to
planes where at least one of these planes is a plane of symthe equator plane. The choide= 0 shows that the equator
metry of the spherical curve. The resulting image curves can be seen as a trivial conchaie |. The casep= T also
are at most of degree 8 as is the case for the space curvegields circles as spherical conchoidd of

The focusF of the conchoid shall be at spherical distance
@€ ]0,1/2[ from . Therefore, its coordinates are

[z
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Now we are going to derive an analytical description of the
spherical conchoid. Assume th@aty,z) are the Cartesian
coordinates of a point on the conchoid of at the spher-
ical distanced € |0, 5[ with respect to the poirfe. These
coordinates satisfy Eq. (1). Sinfle F] is a greatcircle of

>, the pointsF, L, and the poinX on the conchoid are
coplanar with the centép,0,0) of . This is equivalent to

S\SpX—CrSp Y —SHCpz=0. (4)

Further, we have L= & which is measured along the
greatcirclgL, X]. Thus, the canonical scalar product of the
unit vectorsX = (x,y,z) andL = (cy,s,,0) yields the co-
sine of the angle subtained by L&nd therefore, we have

C\ X+ S, Y = COSD. (5)
We can eliminate from Egs. (4) and (5): These equations

are linear inc, ands,, and thus, we can solve this system
for ¢, ands, which gives

. COSd(Sp X— Cyp 2)
YT S0y g
COSDSy Y
S\ =

Sp(X% +y?) — Co XZ

Sincecy?+s)? = 1 holds for any\ € C, we arrive at an im-
plicit equation of the spherical conchoidsf a (spherical)
linel:

COZ 8 ((Sp X—Co 2)+5¢Y?)
c: —(sp(X+y?)—cox2)? = 0, (6)
¥+y 47 =1

Obviously,c is a space curve of degree 8, since it is the
intersection of a quartic surfage(an example of which is

Figure 5: A spherical conchoid is the intersection of the
unit sphere with a quartic surface.

Theorem 1. The spherical conchoid c of a (spherical)
line | with respect to the focus F at (spherical) distance
d €10, 7| is an algebraic space curve of degrdand can
be given by the two equatiofB).

It is clear that these curves are spherical so that it is not
worth to be mentioned that Eq. (1) is fulfilled by the coordi-
nategx,y, z) of a generic point on the conchoid. Therefore,
only the first equation of (6) matters. Thus, such curves are
often called ofspherical degree four

The three different shapes of conchoids of a line that can
be observed in a plane also appear on the sphere as can be
seen in Figure 6. There are conchoids with loajes,they

have a spherical double point (actually a pair of opposite
double points) with real tangents at the double pé&int

0 > @. The conchoids with spherical cusps (a pair of op-
posite cusps) appear if, and only &= @. In the case of

0 < @, we observe thdt is an isolated (spherical double)
point on the conchoid.

As can be seen from Figures 4 and 6 the spherical con-
choids always consist of two branches. This is caused by
the fact that points in spherical geometry are actually a pai

of antipodal points on the sphere. Therefore, any singular

displayed in Figure 5) with the unit sphere. Thus, we can point on a conchoid also shows up twice. Even the spheri-
cal singularity is a pair of antipodal points.

say:

Figure 6: Three different appearances of spherical conchoids of @thetor:d > @ (left), d = @ (middle),d < @ (right).
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2.1 Principal views of spherical conchoids
g —

NI =

(n-1)(n-2)- yds,
S

The orthogonal projections ofonto the three planes=0,

x = 0, andy = 0 shall be called top view, front view, and ) ) .
(right) side view. We can state: where is the set of singular points omandd; are the

o-invariants of all singularities ow. According to the
Theorem 2. The front and top view of a spherical con- Milnor-Jung formula, thed-invariantd can be computed
choid given by Eq(6) with 3 € ]0, 5| are of algebraic de-  from the Milnor numbep and the branching numbérof
gree8 and of genug, i.e, they are elliptic. The right side  a singularity asl = %(LH— b—1). Thus, an ordinari-fold

view is a rational quartic. point has invariantg, k(k— 1), k], see [2, 3].

Proof. The equations o€’s principal views can be ob- We have to distinguish between two cases wheghgrd
tained from (6) by simply eliminating, x, ory. Sincec is or = 0.

of degrge 8, the principal views ofire at most of degree 8._ (1) Let us first assume that:~ &:

Reductions of the degree occur only in cases where the im- ) N ) ) ) _ _

age plane is a plane of symmetry of each braneh,each The singularities of the right side view are given in Table
point of the image curve is the image of two pointson 1. Since the genus equals zero, the curve showing up in
Because of the special choice of the coordinate system, wehe right side view is rational. Note that both singulastie
see that is symmetric with respect to the plagie- 0, and  are ideal points of thé, z-plane. The point0:1:0) is
therefore, the side view is covered twice. Hence, itis of de- an isolated tacnodeég., a point where a pair of complex
gree 4. When computing the resultants of both equationsconjugate linear branches touches a real tangent at the real

in Eq. (6) with respect tg, we find the square of point (0: 1:0). The remaining singularity is an ordinary
double point. The right side view of the spherical conchoid
q: (C\X+92)?2 — 25,¢, Sin* dxz is displayed in Figure 7.
—(Cp) COF 5+ 25,2)Z +52siP 5 =0 _
| right side view |

as the equation of the right side view of the spherical con- degc) =4
choid. S (0:1:0 [2,2,2]
The computations can be carried out by Maple. The S | (0:1:—cotg) | [2,1,2]
algcurvespackage allows us to compute the singularities genusc) =0

and the genus of an algebraic curve. We summarize the re-
sults in tables: Besides the degree we give the singularitie Table 1: Singularities on the right side view.

in terms of homogeneous coordinates (with the homoge-

nizing factor always in the first position), the invariants In Figure 8 we can observe another phenomenon which
[m,d,b], wherem is the multiplicity, d is the&-invariant,  may not only appear in connection with spherical con-
andb is the branching number. choids. The algebraic image curve carries points that are
Note that for an ordinaryn-fold point the equatiom = b outside the silhouette of the unit sphere. Thus, thesepoint
holds. In any other case we hawe> d. The genug of a cannot be the images of points on the spherical curve. The
planar algebraic curveof degreen is the integer points on these parts of the curve are capjadasitic

parasitic branch

parasitic branch O;"o
Figure 7: Right side view of the spherical conchoid shows )

no singularity in the affine part. Note that the  igyre 8: Singularities on the principal views of spherical
image of the focus is not singular. conchoids of lines.
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The front view shows a curve of degree eight (shown in conchoid on the upper and lower hemisphere, see Figures
Figure 9). It has a pair of complex conjugate ordinary dou- 8 and 10. The singularities of the spherical conchoid’s top
ble points(0 : +i : cy) at the ideal line of they,z-plane. view are listed in Table 3.
Further, there is an ideal 4-fold point witb-invariant

d = 12. Among the four singularities in the affine part

of the curve (the part we can see in Figure 9) there are

two tacnodeg1 : O : +5sind) which are the images of the

top most pointd; andT; of the conchoid on the front and

back side of the sphere (cf. Figure 8). The fact that the two

linear branches are in contact at the common image of the

top most point is caused by the fact that the spherical con-

choid has horizontal tangents at both poifisandT,. The

image of the spherical focUs (antipodal pair) completes

the list of singular points, cf. Table 2.

Figure 10: The top view of the spherical conchoid shows up
to six singular points.

| top view |
degc) =8
Si2 | (1:4+c0sd:0) | [2,2,2]
S4 (1:£c9:0) | [2,1,2]
7 S56.7,8 (1:0:w) [2,1,2]

— S9.10 (0:1:+i0) [2,4,2]
Si112 (0: +Sp: 1) [2,1,2]
Figure 9: The front view of the spherical conchoid shows genugc) =1
up to four singularties.

Table 3: Singularities on the top view.

| front view |
degc)=8 (2) Finally, we deal with the casg= 9, i.e, the curves
S| (1:0:£sp) [2,1,2] with cusps.

Ti2 | (1:0:%sind) | [2,2,2] We do not have to go through all the details. There are
S (0: 1 -0 [4,12,4] some minor changes in the types of some singularitiers
Se7 | (0:ti:cy) | [2,1,2] showing up on the different views. Figure 11 shows the
genugc) =1 right side view, the front view, and the top view.

Table 2: Singularities on the front view.

| right side view |

The top view has six real ordinary double points (see Fig- degc) = 4
ure 10). These are the image poifiscy,0) of F and its S 0:1:0 2.2.2]
antipode. Further, there are four ordinary double points at genus = 1 12y
(0,w) wherew is a solution of the quartic equation
t4s? + 2o §(Cy? — S¢°) — Co>COS 8 = 0. Table 4: Singularities of the right side view of the curve
with cusp.

Two of these double points are real, two are complex con-

jugate. The ideal pointé0 : 1 :+i) of the [x,y]-plane are  The right side view of the spherical conchoid with cusp
double points on the top view of the spherical conchoid. shows no singularity in the affine part. There is only one
However, they are not ordinary double points, for tieir  ideal point which is a tacnode, cf. Table 4. In this case
invariant equals four. At these points the curve hyperoscu-the curve is of degree four, but nevertheless, it has genus
lates itself. Further, we find tacnodes(at: +cosd : 0) 1 and is, therefore, elliptic since the only singularity has
being the images of the front and back most points of the &-invariantd = 2.
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Figure 11: From left to right: the right side view, the front view, anattop view of the spherical conchoid with
cusp. The front and top view show triple points that are cosepamf cusps and linear branches.

| front view | There is a special type of spherical conchoid if we choose
degc)=38 d = 7. In this case the conchoid construction assigns to
Si2 | (1:+£sind:0) | [3,3,2] each point € | the absolute polar pointge., theorthogo-
S (0:1:0 [4,12,4] nal point Hence, the two branchesde= —J and tod =
&5 | (0:4ircosd) | [2,1,2] are identic since opposite points represent the same point.
genugc) =1 All the three principal views obrthogonal conchoidare

curves of degree four. Figure 12 shows an axonometric
view of some orthogonal conchoids together with the three
principal views of them.

Table 5: Singularities of the front view of the curve with
cusp.

The front view shows a pair of triple points. Here, the im-
ages of the top most points and the image of the fdeus
coincide. These triple points haweinvariantd = 3 and
branching numbeb = 2, cf. Table 5. Thus, these triple
points are composed singularities, consisting of an ordi-
nary cusp sitting on a linear branch. Further, there are two
complex conjugate ideal singular points on the front view.

| top view |
degc)=8
Si2 (1:£cosd:0) | [3,3,2]
4 (0:1:+i) [2,1,2]

S (0:+isind: 1) | [2,1,2]
S7,8,9,10 (1 :0 ZW) [2,1,2]
genugc) =1

Table 6: Singularities of the top view of the curve with
cusp.

Again, the top view shows more singularities then any
other view. The two triple points (see Table 6) showing

up are composed singularities of the same type as those ifFigure 12: Above: Some orthogonal conchoids of the equa-
the front view. Furthermore, there are four ordinary double tor. Below: Right side view, front view, and top

points (two real ones and a pair of complex conjugate) at view of some orthogonal conchoids.
(1:0:w) wherew is a solution of the quartic equation

t*sy? —t?cog 8(2 — cog 3) — cod 5 = 0. The curves in the right side view are two-fold hyperbolae
in a pencil of the second kind with the images of the north
According to the genus formula the front and top view are and south pole as well as the ideal point of ¥axis for
of genus 1, and thus, elliptic. O the base points.
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2.2 Constructive approach
2.2.1 Planar and spherical tangents

The kinematic generation of conchoids allows us to con-

Figure 14 illustrates the construction of the tangetd
the spherical conchoid at some po¥it Actually, the pla-
nar construction has to be translated into the spherical set
ting: We intersect the greatcircle orthogonal to the equato
| through the point. with that greatcircle througk that

struct tangents to conchoids in the plane, see for exampleg orthogonal to the greatcircle joiningandF and obtain

[14]. The same holds true in the spherical case, cf. [6, 12].

]

Figure 13: The instantaneous pole P of the motion of the
line [L,X] with respect to the fixed system is
found as the intersection of two normals.

the instantaneous spherical p&tgactually a pair of an-
tipodal points). The spherical normal of the conchoid at
X is the great circle joining andP. Finally, the spheri-
cal tangent is the greatcircle orthogonal to the spherical
normal through the point.

2.2.2 Planar and spherical osculating circles

Figure 15 shows the construction of the osculating ciocle
at a generic poinK on a planar conchoid. We use Bo-
billier's construction (see [14]). For that purpose we have
to find two pairs of assigned points of the quadratic trans-
formation that maps a poitd to its center of curvature
U*. The pointL is moving on a straight ling, and thus,
the center of its path is the ideal point of all lines or-
thogonal tol. Further, we observe that the life,F] is
rotating abouf while gliding throughF. Thus,F is the

In Figure 13, the construction of the tangent to the planar €nvelope ofL, F] andF = A*is the center of curvature for

conchoidc at some poinX is shown. The kinematic gen-
eration of the curve shows the way: In order to find the
instantaneous polP of the motion of the lindL,F] we
observe that is gliding on the linel, and thus, the pole
of the motion of|L,F] with respect to the fixed system

is the ideal point of the lines orthogonalltoSincelL, F|

is gliding throughF and rotating about at the same time
the instantaneous poR is also contained in the line or-
thogonal to[L,F] throughF, see [14]. The construction
also works at the double point since this is a singularity of
the algebraic curve but not for the traceXof The tangent

t of catX is orthogonal tdP, X].

Figure 14: The construction of the instantaneous pole P
and the tangentt on the sphere.

the trace of the ideal poik = [L,F]* of all lines orthog-
onal to[L,F]. The two pairgL,L*) and (A, A*) uniquely
define thequadratic curvature mapping

/

Figure 15:Bobilier's construction simplifies in the case of
the conchoid.

Now, we can apply Bobbilier's construction to any of the
pairs(L,L*) or (A,A*) in order to completéX, X*) with
the yet unknown poinX*. Note that[L,A] N [L*, A*]
QaL defines an auxiliary linga := [QaL, P] with the prop-
erty < (gaL, P) = % (gax, p) (after proper orientation), see
[14], wherep is the pole tangent.e., the common tangent
to the two polhodes &.

In the case of the conchoid it is not necessary to con-
struct the pole tangerp since we only have to add an
angle as shown in Figure 15. On the auxiliary lige

we find the pointQax = [A, X] N gax, and finally, X*
[X,PIN[A*,Qax].
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In order to find the spherical osculating cird¢as shown 3 Conchoidsof acircle

in Figure 16) we translate all the constructions done in

the planar case to the sphere. We are allowed to do thisThe construction of a conchoid is independent of the
since the quadratic curvature mapping can be lifted to the chojce of the directrix curve. If we replace the lih@y
sphere. We consider the Euclidean unit sphere to be placed, cjrcle, we obtain the conchoids of circles. The analytic
such that it touches the Euclidean plane (carrying the pla- 55 el as the constructive treatment of conchoids of Gircle
nar figure) at the instantaneous peleThen, we perform does not differ that much from the affore mentioned types

a gnomonic projection _from the plane to the sphere. The of conchoids. Since circles can also be found on a sphere,
center of the projection is the center of the sphere, and thus , . .
we can also find conchoids of circles on the sphere. We

the projectively extended Euclidean plane is mapped to theWiII not discuss the conchoids of a circle in the plane and

sphere model of projective geometry. The gnomonic pro- . . .
jection is locally (aroundP) conformal, and therefore, the on th? sphere in all detfeuls. We. shall just show that the
quadratic curvature mapping is lifted to that on the sphere. equations of these special spherical curves can be derived

. . . in a similar way.
Figure 16 shows the construction of the spherical center of y

curvature. At this point we shall remark that the spherical Conchoids of a circle in the Euclidean plane are of alge-
osculating circleo is not a greatcircle oB, exceptin those  braic degree 6. Surprsingly, their spherical counter parts
cases wher¥ is a spherical point of inflection. The spher- are of algebraic degree 8 (or, equivalently, of spherical de
ical radius of curvature equals the spherical distancé of gree 4), although we would expect them to be of degree
and ist center of curvatup€*. 12. Some spherical conchoids of a circle are displayed in
Figure 17.

The computation of an equation of spherical conchoids
slightly differs from that of spherical conchoids of (spher
ical) lines.

Again, we assume that the focbdies iny = 0 at latitude

@< [0,7[. It means no restriction to assume tlfais a
point on the upper hemisphere. There is a change in the
directrix| which shall henceforth be the circle of latitiude

B #0,T. Thus, the directrix is given by

L(A) = (cpcr,Cpsy,Sp) With A € [0, 2 (7)

(with cg := cosP3 andsg := sinp). Here, we should remark
that this restricts the class of spherical conchoids of-a cir

tion vields the spherical center of curvaturé X cle. In this case, there exists a greatcircle throkgh a
for a):w arbitrary I;)oint X on the spherical con- plane parallel to the plane bivhich, in general, needs not
choid be true. However, we deal with the simpler type.

Figure 16: The spherical version of Bobillier's construc-

Figure 17: Spherical conchoids of a circle show cusps, and two typesuiblg points.
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Figure 18: Spherical conchoids as intersections of a quartic and thiesphere.

Let X = (x,y,2) be the point on the conchoid bfwith re- The spherical conchoid of a circle is the intersection of a
spect toF at spherical distanc& € [0, 5[. Note thatX is quartic surface with the sphebe Some examples of the
also a point on the unit sphere, and therefgte; y? + 22 = quartic surface are displayed in Figure 18. Like in the case
1 holds. The collinearity condition &, X, andL from Eq. of spherical and planar conchoids of lines, the spherical
(4) now changes to conchoids of circles can have cusps, isolated, and ordinary

double points, see Figure 17.

S0 XF (Colp — r%p)y — G, 2=0 ®) Equations of the principal views (right side view, front
with tg := tanp. Between the poiri{t) on the directrixand  vjew, top view) can be easily derived by eliminating co-
the pointX on the conchoid we measure the spherical dis- ordinatesy, x, z) from the two equations given in Eq. (10).
tanced which is a value with sign. Consequently, Eq. (5) 1t is not necessary to go into all the details of the compu-
modifies to tations and discussions. They are similar to those in the

CACp X+ $\Cp Y+ S 2= COSD. (9) previous section. Now, we can state (cf. Theorem 2):

Theorem 4. The front and top view of spherical conchoids

of circle are algebraic curves of degr8and genuq, i.e.,
they are elliptic. The right side view is an elliptic quartic

Like in the case of the spherical conchoids of lines, we
solve the system of linear equations (8), (9) with respect to
¢\ ands,. Sincecy?+s,%> =1 for all A € C, we have the
following two equations that have to be satisfied by the co-
ordinates of a point on the spherical conchoiof a circle References
I
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