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ABSTRACT

The construction of planar conchoids can be carried over
to the Euclidean unit sphere. We study the case of con-
choids of (spherical) lines and circles. Some elementary
constructions of tangents and osculating circles are stil
valid on the sphere. Further, we aim at the illustration
and a precise description of the algebraic properties of the
principal views of spherical conchoids, i.e., the conchoid’s
images under orthogonal projections onto their symmetry
planes.
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Konhoide na sferi

SAŽETAK

Konstrukcija ravninskih konhoida može se prenijeti na euk-
lidsku jediničnu sferu. Promatramo slučaj konhoida gener-
iranih sfernim pravacima i kružnicama. Neke elementarne
konstrukcije tangenata i kružnica zakrivljenosti vrijede i
za sferne konhoide. Nadalje, naš je cilj ilustracija i pre-
cizan opis algebarskih svojstava glavnih pogleda sfernih
konhoida, tj. slika konhoida pri ortogonalnom projiciranju
na njihove ravnine simetrije.

Ključne riječi: krivulje na sferi, konhoide, algebarske
krivulje, tangenta, kružnica zakrivljenosti, singulariteti, or-
togonalna projekcija

1 Introduction

The construction of conchoids goes back to the early Greek
mathematicians [5, 13]. Assume we are given a pointF ,
calledfocusand a linel calleddirectrix one can ask for the
setc of all points in the Euclidean plane at fixed distanced
from l measured on all lines throughF , cf. Figure 1.

The setc turns out to be an algebraic curve of degree 4,
namely theconchoidof the linel with respect toF at dis-
tanced ∈R. The conchoidc can be described by the equa-
tion

(x2−d2)( f − x)2+ x2y2 = 0

provided that a Cartesian coordinate system is chosen as
depicted in Figure 1 withF = ( f ,0), f ∈ R andl : x= 0.
The conchoid has two branches, one corresponding to the
distance+d, while the other corresponds to the distance
−d. The algebraic variety contains both branches.

The conchoidc has an ordinary double point atF = ( f ,0)
if |d|> | f | (or an isolated double point if|d|< | f |). In the
case of|d|= | f |, F is a cusp of the first kind,i.e., with the
local expansion(u2 + o(u3),u3 + o(u4)), see [2, 3]. The
cusped curve can also be seen in Figure 2.
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Figure 1: The construction of the conchoid c of a line l in
the plane.

Figure 2: The planar conchoid of a line has an ordinary
double point if|d|> | f | (left), a cusp if|d|= | f |
(in the middle), and an isolated double point if
|d|< | f | (right).
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Independent of the choice ofd and f the curvec consid-
ered as a curve in the projective plane (cf. Figure 3) has a
tacnode at the ideal point of they-axis. There, two linear
branches with the same tangent emanate. Therefore, the
conchoid is of genus 0, and thus, it is a rational curve.
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c c

Figure 3: The singularities of the conchoid considered as
a curve in the projective plane.

The nameconchoidis due to the fact that its shape some-
how reminds of a conch. The conchoid of a line (the direc-
trix l is a line) is frequently called conchoid of Nikomedes,
see [4, 5, 13]. The linel can be replaced by an arbitrary
curve.

In former years, mathematicians developed elementary
constructions of points, tangents, and osculating circlesfor
some kinds of conchoids such as those of lines and circles.
The kinematic point of view allows us to see the conchoids
as traces of moving particles, and thus, further construc-
tions of tangents and osculating circles can be deduced,
see for example [6, 14].

In the last few years conchoids became popular in CAGD,
see [1, 8, 9, 10, 11]. This is mainly due to the fact that un-
der certain circumstances conchoids can be parametrized
by means of rational functions which is mainly the content
of [8, 9]. Thus, a huge class of possibly new surfaces is
available for CAGD. The conchoids of spheres and ruled
surfaces are not spheres or ruled surfaces anymore, except
in some special cases. In order to overcome this flaw, an
intrinsic construction of conchoids for some geometries is
presented in [7].

It is somehow surprising that conchoids on the sphere have
not attracted the researchers’ interest. Many constructions
that are valid in the Euclidean plane can easily be adapted
for the Euclidean unit sphere. In this article, we shall
demonstrate this at hand of the spherical analoga to con-
choids of lines and circles. The spherical conchoids of
lines are conchoids of greatcircles on the sphere. How-
ever, the spherical conchoids of circles are stil conchoids
of circles but on the sphere.

We shall describe spherical conchoids of lines and circles
and study their algebraic properties at hand of their equa-
tions. Then, we discuss the shape of the principal views of
the spherical conchoids. The principal views are obtained
as orthogonal projections to a triple of mutually orthogonal
planes where at least one of these planes is a plane of sym-
metry of the spherical curve. The resulting image curves
are at most of degree 8 as is the case for the space curves.

For some image curves the degree reduces to 4. Further,
we describe the singularities showing up on the principal
views of the spherical conchoids.

2 Conchoids of a line

AssumeΣ is the Euclidean unit sphere with the equation

Σ : x2+ y2+ z2 = 1 (1)

and let furtherl be aline onΣ, i.e., a greatcircle ofΣ. With-
out loss of generality, we can asssume thatl is the equator
of Σ in the planez= 0 (see Figure 4). Thus, a parametriza-
tion of l reads

L(λ) = (cλ,sλ,0) with λ ∈ [0,2π[ (2)

where we have used the abbreviationscλ := cosλ and
sλ := sinλ.

The focusF of the conchoid shall be at spherical distance
φ ∈ ]0,π/2[ from l . Therefore, its coordinates are

F = (cφ,0,sφ) (3)

(with cφ := cosφ andsφ := sinφ) since it means no restric-
tion to assume that the greatcircle orthogonal tol through
F lies in the planey= 0.

The points on the spherical conchoidc of l with respect to
F at distanceδ ∈ ]0, π

2 [ are found via the analogous con-
struction on the sphere: Choose a pointL on the equatorl ,
join it with F by a greatcircle, and determine the pointsP
at spherical distanceδ from L.
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Figure 4: Construction of a conchoid on the unit sphere
and the choice of a coordinate system.

We exclude the caseφ = π
2 which yields a pair ofdistance

curvesprovided thatδ 6= 0. These distance curves are cir-
cles onΣ with spherical radiusπ2 − δ in planes parallel to
the equator plane. The choiceδ = 0 shows that the equator
can be seen as a trivial conchoidc= l . The caseφ = π

2 also
yields circles as spherical conchoids ofl .
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Now we are going to derive an analytical description of the
spherical conchoid. Assume that(x,y,z) are the Cartesian
coordinates of a pointX on the conchoid ofl at the spher-
ical distanceδ ∈ ]0, π

2 [ with respect to the pointF . These
coordinates satisfy Eq. (1). Since[L,F ] is a greatcircle of
Σ, the pointsF , L, and the pointX on the conchoid are
coplanar with the center(0,0,0) of Σ. This is equivalent to

sλsφ x− cλsφ y− sλcφ z= 0. (4)

Further, we have LX
⌢

= δ which is measured along the
greatcircle[L,X]. Thus, the canonical scalar product of the
unit vectorsX = (x,y,z) andL = (cλ,sλ,0) yields the co-
sine of the angle subtained by LX

⌢
, and therefore, we have

cλ x+ sλ y= cosδ. (5)

We can eliminateλ from Eqs. (4) and (5): These equations
are linear incλ andsλ, and thus, we can solve this system
for cλ andsλ which gives

cλ =
cosδ(sφ x− cφ z)

sφ(x2+ y2)− cφ xz
,

sλ =
cosδsφ y

sφ(x2+ y2)− cφ xz
.

Sincecλ
2+sλ

2 = 1 holds for anyλ∈C, we arrive at an im-
plicit equation of the spherical conchoidsc of a (spherical)
line l :

c :















cos2 δ
(

(sφ x−cφ z)2+sφ
2y2

)

−(sφ(x2+y2)−cφ xz)2 = 0,

x2+ y2+ z2 = 1.

(6)

Obviously,c is a space curve of degree 8, since it is the
intersection of a quartic surfaceΦ (an example of which is
displayed in Figure 5) with the unit sphere. Thus, we can
say:

Figure 5: A spherical conchoid is the intersection of the
unit sphere with a quartic surface.

Theorem 1. The spherical conchoid c of a (spherical)
line l with respect to the focus F at (spherical) distance
δ ∈ ]0, π

2 [ is an algebraic space curve of degree8 and can
be given by the two equations(6).

It is clear that these curves are spherical so that it is not
worth to be mentioned that Eq. (1) is fulfilled by the coordi-
nates(x,y,z) of a generic point on the conchoid. Therefore,
only the first equation of (6) matters. Thus, such curves are
often called ofspherical degree four.

The three different shapes of conchoids of a line that can
be observed in a plane also appear on the sphere as can be
seen in Figure 6. There are conchoids with loops,i.e., they
have a spherical double point (actually a pair of opposite
double points) with real tangents at the double pointF if
δ > φ. The conchoids with spherical cusps (a pair of op-
posite cusps) appear if, and only if,δ = φ. In the case of
δ < φ, we observe thatF is an isolated (spherical double)
point on the conchoid.

As can be seen from Figures 4 and 6 the spherical con-
choids always consist of two branches. This is caused by
the fact that points in spherical geometry are actually a pair
of antipodal points on the sphere. Therefore, any singular
point on a conchoid also shows up twice. Even the spheri-
cal singularity is a pair of antipodal points.

Figure 6: Three different appearances of spherical conchoids of a theequator:δ > φ (left), δ = φ (middle),δ < φ (right).

45



KoG•17–2013 B. Odehnal: Conchoids on the Sphere

2.1 Principal views of spherical conchoids

The orthogonal projections ofc onto the three planesz= 0,
x = 0, andy = 0 shall be called top view, front view, and
(right) side view. We can state:

Theorem 2. The front and top view of a spherical con-
choid given by Eq.(6) with δ ∈ ]0, π

2[ are of algebraic de-
gree8 and of genus1, i.e., they are elliptic. The right side
view is a rational quartic.

Proof. The equations ofc’s principal views can be ob-
tained from (6) by simply eliminatingz, x, or y. Sincec is
of degree 8, the principal views ofcare at most of degree 8.
Reductions of the degree occur only in cases where the im-
age plane is a plane of symmetry of each branch,i.e., each
point of the image curve is the image of two points onc.
Because of the special choice of the coordinate system, we
see thatc is symmetric with respect to the planey= 0, and
therefore, the side view is covered twice. Hence, it is of de-
gree 4. When computing the resultants of both equations
in Eq. (6) with respect toy, we find the square of

q : (cλx+ sλz)2z2−2sλcλ sin2 δxz

−(c2λ cos2 δ+2sλ
2)z2+ sλ

2sin2 δ = 0

as the equation of the right side view of the spherical con-
choid.

The computations can be carried out by Maple. The
algcurvespackage allows us to compute the singularities
and the genus of an algebraic curve. We summarize the re-
sults in tables: Besides the degree we give the singularities
in terms of homogeneous coordinates (with the homoge-
nizing factor always in the first position), the invariants
[m,d,b], wherem is the multiplicity, d is theδ-invariant,
andb is the branching number.

Note that for an ordinarym-fold point the equationm= b
holds. In any other case we havem> d. The genusg of a
planar algebraic curvec of degreen is the integer

g=
1
2
(n−1)(n−2)−∑

S

dS ,

whereS is the set of singular points onc anddS are the
δ-invariants of all singularities onc. According to the
Milnor-Jung formula, theδ-invariantd can be computed
from the Milnor numberµ and the branching numberb of
a singularity asd = 1

2(µ+b−1). Thus, an ordinaryk-fold
point has invariants[k, 1

2k(k−1),k], see [2, 3].

We have to distinguish between two cases whetherφ 6= δ
or φ = δ.

(1) Let us first assume thatφ 6= δ:

The singularities of the right side view are given in Table
1. Since the genus equals zero, the curve showing up in
the right side view is rational. Note that both singularities
are ideal points of the[x,z]-plane. The point(0 : 1 : 0) is
an isolated tacnode,i.e., a point where a pair of complex
conjugate linear branches touches a real tangent at the real
point (0 : 1 : 0). The remaining singularity is an ordinary
double point. The right side view of the spherical conchoid
is displayed in Figure 7.

right side view

deg(c) = 4
S1 (0 : 1 : 0) [2,2,2]
S2 (0 : 1 :−cotφ) [2,1,2]

genus(c) = 0

Table 1: Singularities on the right side view.

In Figure 8 we can observe another phenomenon which
may not only appear in connection with spherical con-
choids. The algebraic image curve carries points that are
outside the silhouette of the unit sphere. Thus, these points
cannot be the images of points on the spherical curve. The
points on these parts of the curve are calledparasitic.

Figure 7: Right side view of the spherical conchoid shows
no singularity in the affine part. Note that the
image of the focus is not singular.

parasitic branch

parasitic branch

T1 T2

F

δδ
λ

Figure 8: Singularities on the principal views of spherical
conchoids of lines.
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The front view shows a curve of degree eight (shown in
Figure 9). It has a pair of complex conjugate ordinary dou-
ble points(0 : ±i : cφ) at the ideal line of the[y,z]-plane.
Further, there is an ideal 4-fold point withδ-invariant
d = 12. Among the four singularities in the affine part
of the curve (the part we can see in Figure 9) there are
two tacnodes(1 : 0 :±sinδ) which are the images of the
top most pointsT1 andT2 of the conchoid on the front and
back side of the sphere (cf. Figure 8). The fact that the two
linear branches are in contact at the common image of the
top most point is caused by the fact that the spherical con-
choid has horizontal tangents at both points,T1 andT2. The
image of the spherical focusF (antipodal pair) completes
the list of singular points, cf. Table 2.

T  =T1 2

Figure 9: The front view of the spherical conchoid shows
up to four singularties.

front view

deg(c) = 8
S1,2 (1 : 0 :±sφ) [2,1,2]
T1,2 (1 : 0 :±sinδ) [2,2,2]
S5 (0 : 1 : 0) [4,12,4]

S6,7 (0 :±i : cφ) [2,1,2]
genus(c) = 1

Table 2: Singularities on the front view.

The top view has six real ordinary double points (see Fig-
ure 10). These are the image points(±cφ,0) of F and its
antipode. Further, there are four ordinary double points at
(0,w) wherew is a solution of the quartic equation

t4sφ
2+ t2cos2 δ(cφ

2− sφ
2)− cφ

2cos2 δ = 0.

Two of these double points are real, two are complex con-
jugate. The ideal points(0 : 1 :±i) of the [x,y]-plane are
double points on the top view of the spherical conchoid.
However, they are not ordinary double points, for theirδ-
invariant equals four. At these points the curve hyperoscu-
lates itself. Further, we find tacnodes at(1 : ±cosδ : 0)
being the images of the front and back most points of the

conchoid on the upper and lower hemisphere, see Figures
8 and 10. The singularities of the spherical conchoid’s top
view are listed in Table 3.

Figure 10:The top view of the spherical conchoid shows up
to six singular points.

top view

deg(c) = 8
S1,2 (1 :±cosδ : 0) [2,2,2]
S3,4 (1 :±cφ : 0) [2,1,2]

S5,6,7,8 (1 : 0 :w) [2,1,2]
S9,10 (0 : 1 :±i) [2,4,2]
S11,12 (0 :±sφ : 1) [2,1,2]

genus(c) = 1

Table 3: Singularities on the top view.

(2) Finally, we deal with the caseφ = δ, i.e., the curves
with cusps.

We do not have to go through all the details. There are
some minor changes in the types of some singularitiers
showing up on the different views. Figure 11 shows the
right side view, the front view, and the top view.

right side view

deg(c) = 4
S1 (0 : 1 : 0) [2,2,2]

genus(c) = 1

Table 4: Singularities of the right side view of the curve
with cusp.

The right side view of the spherical conchoid with cusp
shows no singularity in the affine part. There is only one
ideal point which is a tacnode, cf. Table 4. In this case
the curve is of degree four, but nevertheless, it has genus
1 and is, therefore, elliptic since the only singularity has
δ-invariantd = 2.
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Figure 11:From left to right: the right side view, the front view, and the top view of the spherical conchoid with
cusp. The front and top view show triple points that are composed of cusps and linear branches.

front view

deg(c) = 8
S1,2 (1 :±sinδ : 0) [3,3,2]
S3 (0 : 1 : 0) [4,12,4]

S4,5 (0 :±i : cosδ) [2,1,2]
genus(c) = 1

Table 5: Singularities of the front view of the curve with
cusp.

The front view shows a pair of triple points. Here, the im-
ages of the top most points and the image of the focusF
coincide. These triple points haveδ-invariantd = 3 and
branching numberb = 2, cf. Table 5. Thus, these triple
points are composed singularities, consisting of an ordi-
nary cusp sitting on a linear branch. Further, there are two
complex conjugate ideal singular points on the front view.

top view

deg(c) = 8
S1,2 (1 :±cosδ : 0) [3,3,2]
S3,4 (0 : 1 :±i) [2,1,2]
S5,6 (0 :±i sinδ : 1) [2,1,2]

S7,8,9,10 (1 : 0 :w) [2,1,2]
genus(c) = 1

Table 6: Singularities of the top view of the curve with
cusp.

Again, the top view shows more singularities then any
other view. The two triple points (see Table 6) showing
up are composed singularities of the same type as those in
the front view. Furthermore, there are four ordinary double
points (two real ones and a pair of complex conjugate) at
(1 : 0 :w) wherew is a solution of the quartic equation

t4sφ
2− t2cos2 δ(2− cos2 δ)− cos4 δ = 0.

According to the genus formula the front and top view are
of genus 1, and thus, elliptic. �

There is a special type of spherical conchoid if we choose
δ = π

2 . In this case the conchoid construction assigns to
each pointL ∈ l the absolute polar point,i.e., theorthogo-
nal point. Hence, the two branches toδ =− π

2 and toδ = π
2

are identic since opposite points represent the same point.
All the three principal views oforthogonal conchoidsare
curves of degree four. Figure 12 shows an axonometric
view of some orthogonal conchoids together with the three
principal views of them.

Figure 12:Above: Some orthogonal conchoids of the equa-
tor. Below: Right side view, front view, and top
view of some orthogonal conchoids.

The curves in the right side view are two-fold hyperbolae
in a pencil of the second kind with the images of the north
and south pole as well as the ideal point of thex-axis for
the base points.
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2.2 Constructive approach

2.2.1 Planar and spherical tangents

The kinematic generation of conchoids allows us to con-
struct tangents to conchoids in the plane, see for example
[14]. The same holds true in the spherical case, cf. [6, 12].

L

F

P

X

t

l

c

Figure 13:The instantaneous pole P of the motion of the
line [L,X] with respect to the fixed system is
found as the intersection of two normals.

In Figure 13, the construction of the tangent to the planar
conchoidc at some pointX is shown. The kinematic gen-
eration of the curve shows the way: In order to find the
instantaneous poleP of the motion of the line[L,F ] we
observe thatL is gliding on the linel , and thus, the pole
of the motion of[L,F ] with respect to the fixed systeml
is the ideal point of the lines orthogonal tol . Since[L,F ]
is gliding throughF and rotating aboutF at the same time
the instantaneous poleP is also contained in the line or-
thogonal to[L,F ] throughF, see [14]. The construction
also works at the double point since this is a singularity of
the algebraic curve but not for the trace ofX. The tangent
t of c at X is orthogonal to[P,X].

L

F

P

X

c

l

t

c

Figure 14:The construction of the instantaneous pole P
and the tangent t on the sphere.

Figure 14 illustrates the construction of the tangentt to
the spherical conchoid at some pointX. Actually, the pla-
nar construction has to be translated into the spherical set-
ting: We intersect the greatcircle orthogonal to the equator
l through the pointL with that greatcircle throughF that
is orthogonal to the greatcircle joiningL andF and obtain
the instantaneous spherical poleP (actually a pair of an-
tipodal points). The spherical normal of the conchoid at
X is the great circle joiningX andP. Finally, the spheri-
cal tangentt is the greatcircle orthogonal to the spherical
normal through the pointX.

2.2.2 Planar and spherical osculating circles

Figure 15 shows the construction of the osculating circleo
at a generic pointX on a planar conchoidc. We use Bo-
billier’s construction (see [14]). For that purpose we have
to find two pairs of assigned points of the quadratic trans-
formation that maps a pointU to its center of curvature
U⋆. The pointL is moving on a straight linel , and thus,
the center of its path is the ideal pointL⋆ of all lines or-
thogonal tol . Further, we observe that the line[L,F ] is
rotating aboutF while gliding throughF . Thus,F is the
envelope of[L,F ] andF = A⋆ is the center of curvature for
the trace of the ideal pointA= [L,F ]⊥ of all lines orthog-
onal to [L,F ]. The two pairs(L,L⋆) and(A,A⋆) uniquely
define thequadratic curvature mapping.

F=A

L
L

L

A

A

A

t

P

X

X

Q

l c

o

AX

*
*Q

AL

*

*

Figure 15:Bobilier’s construction simplifies in the case of
the conchoid.

Now, we can apply Bobbilier’s construction to any of the
pairs(L,L⋆) or (A,A⋆) in order to complete(X,X⋆) with
the yet unknown pointX⋆. Note that[L,A]∩ [L⋆,A⋆] =:
QAL defines an auxiliary lineqAL := [QAL,P] with the prop-
erty<) (qAL, p) = <) (qAX, p) (after proper orientation), see
[14], wherep is the pole tangent,i.e., the common tangent
to the two polhodes atP.

In the case of the conchoid it is not necessary to con-
struct the pole tangentp since we only have to add an
angle as shown in Figure 15. On the auxiliary lineqAX

we find the pointQAX := [A,X]∩ qAX, and finally,X⋆ =
[X,P]∩ [A⋆,QAX].
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In order to find the spherical osculating circleo (as shown
in Figure 16) we translate all the constructions done in
the planar case to the sphere. We are allowed to do this
since the quadratic curvature mapping can be lifted to the
sphere. We consider the Euclidean unit sphere to be placed
such that it touches the Euclidean plane (carrying the pla-
nar figure) at the instantaneous poleP. Then, we perform
a gnomonic projection from the plane to the sphere. The
center of the projection is the center of the sphere, and thus,
the projectively extended Euclidean plane is mapped to the
sphere model of projective geometry. The gnomonic pro-
jection is locally (aroundP) conformal, and therefore, the
quadratic curvature mapping is lifted to that on the sphere.

Figure 16 shows the construction of the spherical center of
curvature. At this point we shall remark that the spherical
osculating circleo is not a greatcircle onΣ, except in those
cases whereX is a spherical point of inflection. The spher-
ical radius of curvature equals the spherical distance ofX
and ist center of curvatureX⋆.

l

F
X

P

c

c

L

X

o
Q
LX

Q
AL

*

Figure 16:The spherical version of Bobillier’s construc-
tion yields the spherical center of curvature X⋆

for an arbitrary point X on the spherical con-
choid.

3 Conchoids of a circle

The construction of a conchoid is independent of the
choice of the directrix curve. If we replace the linel by
a circle, we obtain the conchoids of circles. The analytic
as well as the constructive treatment of conchoids of circles
does not differ that much from the affore mentioned types
of conchoids. Since circles can also be found on a sphere,
we can also find conchoids of circles on the sphere. We
will not discuss the conchoids of a circle in the plane and
on the sphere in all details. We shall just show that the
equations of these special spherical curves can be derived
in a similar way.

Conchoids of a circle in the Euclidean plane are of alge-
braic degree 6. Surprsingly, their spherical counter parts
are of algebraic degree 8 (or, equivalently, of spherical de-
gree 4), although we would expect them to be of degree
12. Some spherical conchoids of a circle are displayed in
Figure 17.

The computation of an equation of spherical conchoids
slightly differs from that of spherical conchoids of (spher-
ical) lines.

Again, we assume that the focusF lies in y= 0 at latitude
φ ∈ [0, π

2 [. It means no restriction to assume thatF is a
point on the upper hemisphere. There is a change in the
directrix l which shall henceforth be the circle of latitiude
β 6= 0, π

2. Thus, the directrix is given by

L(λ)=(cβcλ,cβsλ,sβ) with λ ∈ [0,2π[ (7)

(with cβ := cosβ andsβ := sinβ). Here, we should remark
that this restricts the class of spherical conchoids of a cir-
cle. In this case, there exists a greatcircle throughF in a
plane parallel to the plane ofl which, in general, needs not
be true. However, we deal with the simpler type.

Figure 17:Spherical conchoids of a circle show cusps, and two types of double points.
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Figure 18:Spherical conchoids as intersections of a quartic and the unit sphere.

Let X = (x,y,z) be the point on the conchoid ofl with re-
spect toF at spherical distanceδ ∈ [0, π

2 [. Note thatX is
also a point on the unit sphere, and therefore,x2+y2+z2 =
1 holds. The collinearity condition ofF , X, andL from Eq.
(4) now changes to

sφsλ x+(cφtβ − cλsφ)y− cφsλ z= 0 (8)

with tβ := tanβ. Between the pointl(t) on the directrix and
the pointX on the conchoid we measure the spherical dis-
tanceδ which is a value with sign. Consequently, Eq. (5)
modifies to

cλcβ x+ sλcβ y+ sβ z= cosδ. (9)

Like in the case of the spherical conchoids of lines, we
solve the system of linear equations (8), (9) with respect to
cλ andsλ. Sincecλ

2+ sλ
2 = 1 for all λ ∈ C, we have the

following two equations that have to be satisfied by the co-
ordinates of a point on the spherical conchoidc of a circle
l :

c :



















































































(2cφ
2−1)x2− sφ

2y4

+(cφ
2−2sφ

2)x2y2

+2cφsφ(x2z+ y2)x
−4cφsφsβ cosδ(y+ x)y2

+2sβ cosδ(2cφ
2−1)x2z

−2sφ
2sβ cosδy2z

+((cos2 δ+sβ
2)(1−2cφ

2)−cφ
2)x2

+(cos2 δ(1+2cφ
2)+ sφ

2sβ
2)y2

−2cφsφ(cosδ2+ sβ
2)xz

+2cφsβ cosδ(2sφx− cφz)
cφ

2(cos2 δ+ sβ
2) = 0,

x2+ y2+ z2 = 1.

(10)

From that we can infer in analogy to Theorem 1:

Theorem 3. The spherical conchoids of a circle at latitude
β with respect to a point F is an algebraic curve of degree
8 or of spherical degree4. The coordinates of all points on
the spherical conchoid fulfill Equation(10).

The spherical conchoid of a circle is the intersection of a
quartic surface with the sphereΣ. Some examples of the
quartic surface are displayed in Figure 18. Like in the case
of spherical and planar conchoids of lines, the spherical
conchoids of circles can have cusps, isolated, and ordinary
double points, see Figure 17.

Equations of the principal views (right side view, front
view, top view) can be easily derived by eliminating co-
ordinates (y, x, z) from the two equations given in Eq. (10).
It is not necessary to go into all the details of the compu-
tations and discussions. They are similar to those in the
previous section. Now, we can state (cf. Theorem 2):

Theorem 4. The front and top view of spherical conchoids
of circle are algebraic curves of degree8 and genus1, i.e.,
they are elliptic. The right side view is an elliptic quartic.
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[12] W. STRÖHER: Raumkinematik. Unpublished
manuscript.

[13] H. WIELEITNER: Spezielle ebene Kurven.G.J.
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