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This paper investigates the genetic based re-planning search strategy, using neural learned vibration behavior
for achieving tolerance compensation of uncertainties in robotic assembly. The vibration behavior was created
from complex robot assembly of cogged tube over multistage planetary speed. Complex extensive experimental
investigations were conducted for the purpose of finding the optimum vibration solution for each planetary stage
reducer in order to complete the assembly process in defined real-time. However, tuning those parameters through
experimental discovering for improved performance is a time consuming process. Neural network based learning
was used to generate wider scope of parameters in order to improve the robot behavior during each state of the
assembly process. As a novel modelling formalism of reactive hybrid automata, we propose the Wormhole Model
with both learning and re-planning capacities (WOMOLERE). For our application, the states of hybrid automa-
ton include amplitudes and frequencies of robot vibration module. The transition action is a function of minimal
distance and uncertainty effects due to jamming during the assembly process. The results suggest that the method-
ology is adequate and could be recognized as an idea for designing of robot surgery assistance methods, especially
in soft-robotics.

Key words: Hybrid Automaton, Learning Behavior, Re-planning Search Strategy, Robot Assembly, Wormhole
Model

Genetski bazirana strategija re-planiranja modela crvotǒcine korištenjem neuronski naǔcenog vibraci-
jskog ponašanja u robotskoj montaži.Ovaj članak prezentira strategiju re-planiranja kretanja, baziranu na genet-
skom algoritmu, korištenjem neuronski naučenog vibracijskog ponašanja u cilju postizanja kompenzacije toleran-
cije neizvjesnosti u procesu robotske montaže. Vibracijsko ponašanje jekreirano iz kompleksne robotske montaže
nazubljene cjev̌cice preko višestupanjskog planetarnog reduktora brzine motora. Provedeni su brojni eksperimenti
s ciljem odre�ivanja optimalnih amplituda i frekvencija vibracijskog modula robota za svaki stupanj reduktora s
ciljem završetka procesa montaže u definiranom realnom vremenu. Me�utim, podešavanje ovih parametara kroz
eksperimente u cilju unaprje�enja perfomansi je vremenski zahtjevan proces. Učenje bazirano na neuronskim
mrežama je korišteno za generiranje šireg opsega parametara stanja modela u cilju unaprje�enja robotskog pon-
ašanja tijekom svake faze procesa montiranja. Kao novi formalizam modeliranja reaktivnog hibridnog automata,
predložili smo model crvotǒcine, sa sposobnostima i učenja i re-planiranja (WOMOLERE). Za našu aplikaciju,
stanja hibridnog automata sadrže amplitude i frekvencije robotskog vibracijskog modula. Akcija tranzicije je
funkcija minimalne distance i ǔcinaka neizvjesnosti uslijed zaglavljenja pri procesu montiranja. Rezultatipokazuju
da je metodologija prikladna i kao ideja se može koristiti u dizajniranju metoda robotske asistencije pri operacijama,
osobito u soft robotici.

Klju čne riječi: hibridni automat, ǔcenje ponašanja, strategija re-planiranja, robotska montaža, model crvotočine

1 INTRODUCTION

Planning is the key ability of intelligent systems, as it
increases their autonomy, reliability, efficiency and flex-
ibility, through the construction of action sequences and
achieving their goals. In artificial intelligence, planning
originally is a search for a sequence of logical operators
or actions that transforms an initial world state into a de-

sired goal state[1]. Robot motion planning usually ig-
nores dynamics and considers other aspects, such as un-
certainties, differential constraints, modeling uncertainties
and optimality. The robotic assembly, wheelchair navi-
gation, sewer inspection robot, autonomous driving sys-
tem in urban and off-road environments, task planning of
machine for the robotic systems are all examples of au-
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tonomous systems, which solve path planning/re-planning
problems. Dynamic re-planning is necessary because at
any time during the execution of its tasks, the robot might
unexpectedly run into problems[2]. The typical approach
used for re-planning is repair plans, which are prepared in
advance and invoked to deal with specific exceptions dur-
ing the execution. This type of approach may work well in
a relatively static and predictable environment. In a more
dynamic and uncertain environment, where it is hard to
anticipate possible exceptions, the re-planning generates a
(partially) new plan in case when one or more actions have
problems during execution[3].

The mechanical assembly is the dominant application
domain of industrial robots. A key problem in high-
precision robotic assembly tasks, is how to make robots
operate reliably in the presence of uncertainties (such as
mechanical, control, sensor, kinematical or dynamical un-
certainties). The main difficulty in automated assembly is
the kinematical uncertainty in the relative position of the
parts that are being assembled[4]. Since there is no gen-
eral and unconditional solution for the problem, the un-
certainty handling for robot assembly must be a dynamic
process involving sensory information and general knowl-
edge of contacts among the assembled parts. The success
is guaranteed only if certain constraints on the nominal de-
sign parameters, tolerances, and sensor error parameters
are enforced. For robotic assembly, the tolerance is espe-
cially a difficult problem because in the process of assem-
bling it must be compensated but it takes time and requires
corresponding algorithms.

Compliant motion control (or force control, or torque
control) is a reactive control model in which a tight control
loop is expected to make comparatively simple decisions
based on the measured signal outputs of a variety of sen-
sors measuring velocity, position, acceleration, and force.
The application of force control is essentially one of re-
lating measured forces to one or more system variables in
the form of a mass-spring damper for tuning and stability.
There exists a wide variety of compliant motion control
algorithms relating measured force to virtually any combi-
nation of position, velocity, acceleration, and applied force
[5,6]. The industrial world has been slow to adopt force-
based practices in automating assembly tasks [7]. There
are several factors that have influenced this slow migra-
tion, not least of which is the cost involved, both in terms
of the time necessary to implement and the steep learning
curve. Some of the most prohibitive aspects are the failed
promises of reliability and throughput; reliable solutions
are not fast, and fast solutions are not reliable.

One of novel methods[8] demonstrates precise motion
control using parallel robots with manufacturing tolerances
and inaccuracies by migrating the measurements from their
joint space to task space in order to decrease the control

system’s sensitivity to any kinematical uncertainty rather
than calibrating the parallel plant. The problem of dynam-
ical model uncertainties and its effect on the derivation
of the control law is also addressed in this work through
disturbance estimation and compensation. The both task
space measurement and disturbance estimation were com-
bined to formulate a control framework that is unsensitive
to either kinematical and dynamical system uncertainties.

A concept that allows the cognitive automation of
robotic assembly processes is presented in[9]. To verify
the concept, an assembly cell comprised of two robots was
designed. For the purpose of validation a customer-defined
part group consisting of Hubelino bricks is assembled. One
of the key aspects for this process is the verification of the
assembly group. The software component was designed to
perceive depth and color data in the assembly area. This
information is used to determine the current state of the as-
sembly group and compared to a CAD model for validation
purposes. The implications for an industrial application
were demonstrated by transferring the developed concepts
to an assembly scenario for switch-cabinet systems.

To address the shortcomings of the motion primitive
approach, adaptive techniques in the form of event-based
search strategies recognize and attempt to compensate for
part and position variance. In many cases a given as-
sembly task may have numerous strategies defined for its
completion. For instance, a peg-in-hole assembly may be
completed by “dumb” searches in which the peg to be in-
serted is moved around a candidate hole position (either
randomly, or by a structured geometric pattern like rasters
[10] or spirals) until it can be pushed in. Alternatively,
more explicit methods can be employed that intelligently
probe the candidate hole position and, based on the effec-
tor position and force moments, accurately identify the lo-
cation and orientation of the hole into which the peg will
be inserted [11]. Other assemblies that are more specific in
nature (for example, automobile clutch assemblies) can be
parameterized and generalized, or broken down into sepa-
rate motion primitives.

The complex tasks such as multi-staged assemblies
with component location uncertainties require an adaptive
system which capable of automatically adjusting to both
identify and compensate for changes in operational condi-
tions. This capacity may either be explicitly programmed
or automatically adapted to via machine learning. In either
case, some form of feedback basis is required for the op-
timization process; this task-specific feedback (e.g., time
or bandwidth) is considered for process optimization, and
is distinct from the feedback for force-control parameter
tuning. As important as the time required to complete an
assembly, successfully completing assemblies rather than
prematurely aborting them due to time constraints or im-
properly seated parts is an integral component of process
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automation [12, 13].

Some other intelligent-control methods have been re-
searched[14, 15]. For example, work[15] describes an
intelligent mechanical assembly system. A correct assem-
bly path is chosen by using a form of Genetic algorithm
search, so the new vectors are evolved from the most suc-
cessful “parents”.

As a novel modelling formalism of reactive hybrid
automata, we propose the biologically inspired Worm-
hole Model with both learning and re-planning capaci-
ties (WOMOLERE). This paper investigates the genetic
based re-planning strategy, using neural learned behavior
for achieving tolerance compensation in robotic assem-
bly. For our application, the states of hybrid automaton in-
clude amplitudes and frequencies of robot vibration mod-
ule. Transition action is a function of the minimal distance
and uncertainty effects due to jamming during the assem-
bly process.

The behavior model is created from complex robot as-
sembling of multistage planetary speed reducer. Assembly
of the tube over the planetary gears was recognized as the
most difficult problem of overall assembly and favourable
influence of vibration and rotation movement on compen-
sation of tolerance was analyzed. The neural network
based learning gave us extended successful vibration mod-
ule solutions for each stage of reducer. With this extended
vibration parameters as the main source of information for
the Planning/Re-planning Task, we introduce intelligent
search strategy, which overcomes uncertainties during the
robot assembly process.

2 ROBOT ASSEMBLY BEHAVIOR SETTING

The main difficulty in the robot assembly of planetary
speed reducers is the installation of the tube over planetary
wheels. Namely, the teeth of all three planetary wheels
must be assembled with the cogged tube (Fig. 1).

 

Fig. 1. One of the stages at planetar reducer

In this research, the complete assembly of each part
of planetary reducer has not been considered, but only the
process of connecting the cogged tube to the five-stage

 

Fig. 2. Exterior view of planetary speed reducer

planetary speed reducer (cross-section 20mm, height five
degrees 36mm), Fig. 2.

By solving the problem of assembling the gears, there
will be no problem to realize the complete assembly of
planetary speed reducer. For the process of assembly, the
vertical-articulated robot with six-degrees of freedom, type
S-420i of the firm FANUC has been used, completed by vi-
bration module, developed at Fraunhofer- Institute für Pro-
duktionstechnik and Automatisierung (IPA) in Stuttgart,
Germany (Fig. 3).

 

Fig. 3. Vibration module

The analysis of the assembly process showed that
movement based on vibration and rotation acted positively
on the course of the process. The vibration module pro-
duced vibration in the x- and y- direction and rotation
around the z-axis. By starting the robot work, the vibration
module vibrated with determined amplitude (to +/-2mm)
and frequency (to max. 10Hz) for each stage of reducer.
The ideal Lisague figures (double eight, circle and line)
have been used as figures of vibration for extensive exper-
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iments. The vibration figure horizontal EIGHT (Fig. 4)
was selected for further experiments, because we achieved
the best performance in the assembly process. In that case,
the frequency ratio between the lower and upper plate is
fD/fU= 2.

 

Fig. 4. One example of vibration figure –EIGHT

During the robot assembly of two or more parts we en-
countered the problem of tolerance compensation.

According to the functionality, the individual systems
of tolerance compensation can be divided into:

1. The controllable (active) system for tolerance com-
pensation, where on the base of the sensor informa-
tion on tolerance, the correction of movement is made
for the purpose of tolerance compensation

2. The uncontrollable (passive) system for tolerance
compensation where the orientation of external parts
is achieved by the means of an advanced determined
strategy of searching or influenced by connection
forces

3. Combination of the above two cases.

For this system of assembly, the passive mechanism of
tolerance compensation has been used with a specially ad-
justed vibration of installation tools. In order to compen-
sate the tolerance during robot assembly, in an experimen-
tal setup, we used the ‘search strategy’, which adjusted am-
plitudes and frequencies gained from the experimental ex-
perience (amplitudes of upper and lower plate, frequencies
of upper and lower plate). The optimal amplitudes for all
stages of the reducer wereAD= AU= 0.8mm.

We noticed from experiments that smaller frequencies
of vibration were better (fD/fU= 4/2 or 6/3) for the first
and second stage (counting of stages starts from up to
down), while for each next stage the assembly process was
improved with higher frequencies (fD/fU= 8/4 or 10/5).

The assembly process started with the gripper posi-
tioned together with cogged tube exactly 5mm above the
base part of the planetary reducer and then moving in the
direction of the negative z-axis in order to begin assem-
bling. In case of jamming because of different physical
reasons (position, friction, force etc.), the robot will return
to the previous stage, where the jamming has happened.
The technique of “blind search” was used in an optimal
parameter space with repeated trials at manipulation tasks.
When the jamming is solved, the robot will keep moving
until it reaches the final point in the assembly[16].

The time of the complete assembly process for a given
range of speeds depends on the frequency, amplitude of
upper and lower plate of vibration module, amplitude and
frequency of motor rotation and the speed of motor move-
ment in z-direction. The fastest process of the complete as-
sembly process of 4s was the robot movement speed value
of 16mm/s.

Complex extensive experimental investigations were
conducted for the purpose of finding the optimum solution,
because many parameters had to be specified in order to
complete the assembly process in defined real-time. How-
ever, tuning those parameters through experimental dis-
covering for improved performance is a time consuming
process. To make this search strategy more intelligent, ad-
ditional learning software was created to enable improve-
ments of performance[17].

Our strategy in this paper is focused on modeling tasks
of tolerance compensation using the Re-planner Learning
Hybrid Automaton (WOMOLERE) in robot assembly.

3 WORMHOLE MODEL AS HYBRID AUTOMA-
TON

Hybrid systems are dynamical systems that consist
of discrete controls embedded in the continuous environ-
ments. Due to their large representation in the real-world,
especially in the process and the automotive industries, the
significance of hybrid systems cannot be overemphasized
[18].

One of the most used model-based formalism of hy-
brid systems is the hybrid automaton. The expressiveness
of this formalism enables the modeling of both discrete
and continuous dynamics, with the inclusion of the tim-
ing and probabilistic information (i.e. modeling the times
and the probabilities of signal changes). Model-based ap-
proaches are used in different applications, e.g. in opti-
mization, anomaly detection, testing and design.

Although hybrid automata have huge significance in
modeling hybrid systems, there is a serious lack in the hy-
brid automata learning. Despite the dominant use of hybrid
automata in technical disciplines, the first attempts toward
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their automatic learning came from biological application.
The algorithm given in [19] is learning the dynamics of the
action potentials, i.e. the electrical signals of certain types
of cells in the living organisms. However, this algorithm
does not account for discrete signals. The second example
is learning of hybrid automaton for anomaly detection in
production plants [20].

We propose here a novel biological inspired hybrid au-
tomaton model (WOMOLERE), which overcomes uncer-
tainties with learned behavior solutions and re-planning ca-
pabilities in the application of rigid-link robot assembly.

The configuration space of each wormhole’s knuckle is
discretized. Each knuckle of wormhole will be searched in
order to make an optimal path from start to target position.
In the following, the formal definitions of the components
are given.

Definition 1 The optimal basis cluster parameters are a
set of optimal parameters, gained from experiments and
can be presented for each knuckle of wormhole k=1,. . . ,N
in 2D space:

ξkB =
(
(xk

1 , y
k
1 ), ..., (x

k
m, ykm)

)
, k = 1, .., N. (1)

The optimal extended cluster parameters are a set an opti-
mal extended parameters, gained through learning of sys-
tem’s behavior and can be presented for each knuckle of
wormhole k=1,. . . ,N in 2D space:

ξkE =
(
(xk

1 , y
k
1 ), ..., (x

k
l , y

k
l )
)
, k = 1, .., N. (2)

Definition 2 The re-planning strategy through wormhole
of N depending knuckles using learned parameters can be
presented with

SRP = (ΨB ,ΨE ,ΦB ,Ω,T) (3)

where each knuckle of wormhole k=1,...,N is described
with:

1. basis cluster parametersξkB

ΨB = (ξ1B , ξ
2
B , ..., ξ

k
B), k = 1, .., N. (4)

2. extended cluster parametersξkE

ΨE = (ξ1E , ξ
2
E , ..., ξ

k
E), k = 1, .., N. (5)

3. uncertainty for each knuckle of system during
planning/re-planning process

ωk,Ω = (ω1, .., ωk), k = 1, .., N. (6)

4. learning behavior transform functionΦBand

5. transition actionsak+1
k between knuckles of worm-

hole,

T = (S∗
k , S

∗
k+1, a

k+1
k ), k = 1, .., N. (7)

where T gives the set of transitions.
Definition 3 The learning behavior functionΦB

ΦB : ΨB → ΨE (8)

transforms the set of basis clusters parametersΨB =
(ξ1B , .., ξ

k
B , .., ξ

k
B), k = 1, .., N in set of extended clusters

parametersΨE = (ξ1E , .., ξ
k
E , .., ξ

k
E), k = 1, .., N , i.e.:

ΨE = FB (ΨB ,Ω) (9)

where

ξ1E = f1
B

(
ξ1B

)
, .., ξkE = fk

B

(
ξkB

)
, ..., ξNE = fN

B

(
ξNB

)

(10)
are universal approximator functions, used as learning
functions.

Definition 4 The fitness transition functionLMbetween
all knuckles of wormhole is defined with

LM = min(

N∑

k=1

dk+1
k (S∗

k , S
∗
k+1, a

k+1
k )+K

N∑

k=1

wk) (11)

where dk+1
k is minimum distance from selected optimal

valueS∗
k =

(
xk
i , y

k
i

)
, i = 1, .., l of current knuckle to se-

lected optimal value of next wormhole’s knuckleS∗
k+1 =(

xk+1
i , yk+1

i

)
, i = 1, .., l using transition actionak+1

k ;
valuewk indicates uncertainty effects for each knuckle.

Genetic algorithm calculates minimal fitness transition
functionLM which depends on how suitable is the solution
(path) according to physics boundary problem.

4 RE-PLANNER STRATEGY OF WORMHOLE
MODEL

The problem of finding a sequence of actions to reach
a desired goal state is task planning. This is a classical
AI problem that is commonly formalized using a suitable
language to represent task relevant actions, states and con-
straints[21]. The robot has to be able to plan the demon-
strated task before executing it if the state of the envi-
ronment has changed after the demonstration took place.
The objects to be manipulated are not necessarily at the
same positions as during the demonstration and thus the
robot may be facing a particular starting configuration it
has never seen before.

The planning under uncertainty is a hard job and re-
quires re-planning task structure. The re-planning is used
as a specific case of planning process.

We propose the Re-planning Strategy of Wormhole
Model using Learning Behavior. Our planning/re-planning
search strategy consists of three important phases:
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1. Learning phase(from basic experiments, trying vari-
ous actions and data collecting).

2. Planning phase(off-line modus).

3. Re-planning phase(on-line modus).

We can describe each phase of this re-planning strategy
as follows:

Learning phase.Using learning behavior transform
function ΦB , we create a set of optimal extended pa-
rametersΨEas a source information for the Planning/Re-
planning Task.

Planning phase. The initial planning problem could
be presented as a plan

Pa = (S0, SN , a, LM ) (12)

whereS0 is an initial state parameter,SN is a goal state
parameter and a planPa is a network of actionsak+1

k that
lead fromS0 to SN (result from optimal search strategy).

Re-planning phase.If an actiona in Pa fails, we de-
fine a re-planning areaRA = {a′} . RAis treated as a par-
tially/new plan and a re-planning problem is constructed

P
′
a′ =

(
S

′
k, SN , a

′
, L

′
M

)
(13)

We take enough offsetε from critical optimal pointSkto
another optimal solutionS

′
k which is the new start point

used byRA

S
′
k = f(Sk, ε). (14)

The strategy continues searching from a new selected op-
timal value of current knuckle to selected optimal value
of next wormhole’s knuckle using the new planP

′
a′ with

transition actiona
′
, which is a function of new minimum

distance and uncertainty effects. If new action inP
′
a′ fails,

we will defineP
′′
a′′ =

(
S

′′
k , SN , a

′′
, L

′′
M

)
and so on in or-

der to achieve the goal point.

When calculating the total fitness function for new
plan, the cost of returning to previous phase was excluded,
so the fitness function consists of two parts: a fitness func-
tion before re-planning (from start point to last feasible
point) and a fitness function of the new re-planned path
(from new start point to goal point). In this way, the fitness
function values can be compared with the values where re-
planning does not occur.

Figure 5 presents the Re-planning Search Strategy ef-
fects using learned behavior parameters (biologically in-
spired Wormhole Model).

Figure 6 presents the re-planning search strategy of
Wormhole Model for the robot assembly. Using the WOM-
ELERE hybrid automaton in robotic assembly is focused

 

Fig. 5. Re-planning Search Strategy effects using learned
behavior parameters

on modeling tasks of tolerance compensation, which trans-
forms orginal problem in a problem of path planning/re-
planning using learned behavior. The inputs into the plan-
ning process are geometric descriptions of the robot and
the environment through the parameter space and the ini-
tial and final position of the robot(qi, qf ). The output of
the path planning process is the pathT (qi, qf )from initial
qi to target positionqf .

The worm knuckles include relevant state variables
(amplitudes and frequencies of robot vibration module).
The requirements for the process of path planning be-
tween the wormhole knuckles are: minimum length of
the path between relevant state variables (in our research
are associated with the minimum of time execution) and
the choice of the parameters which comply the other con-
straints (physical limitation).

We suggest the neural network based learning because
it gives us new successful vibration module solutions for
each stage of the planetary reducer. Combing the efforts
of the planner and learned optimal values, the re-planner
is expected to guarantee that hybrid automaton (WOMOL-
ERE) enters the region of convergence of its final target
location. The error model (on Fig. 6) is used to model
various dynamic effects of uncertainties and physical con-
straints made by jamming.

5 NEURAL LEARNED VIBRATION BEHAVIOR
OF ROBOT ASSEMBLY

In order for the robots to react to stochastic and dy-
namic environments, they need to learn how to optimally
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Fig. 6. Re-planning Search Strategy using Neural network
Parameters Learning in Robot Assembly

adapt to uncertainty and unforeseen changes[22]. Artifi-
cial neural networks (ANN), as universal approximators,
are capable of modelling complex mappings between the
inputs and outputs of a system up to an arbitrary preci-
sion. Another advantage of neural networks is learning
[23]. Learning is a process, through which the implicit
rules are extracted from patterns of experience. These rules
become the foundation for generalizations in the networks
that enable a robot to respond [24].

The formalism from our strategy is accommodated to
the learning task. Neural network based learning was used
in this research to generate wider scope of parameters in
order to improve the robot behavior. The amplitude and
frequencies vibration data were collected during the as-
sembly experiments and used as sources of information for
the learning algorithm.

In our research we used the Multi-layer feed-forward
network (MLF) neural network that contains 10 tansig neu-
rons in a hidden layer and 1 purelin neuron in its out-
put layer. The feed-forward neural networks were formed
and tested for each stage of the assembly process. Each
one was initialized with random amplitudesAD= AU= Ai

between 0 and 2 and frequencies values fi between 0
through 4. Namely, the range of the frequencies mea-
surement is normalized by mapping from frequencies ratio
fD/fU= (4/2, 6/3, 8/4, 10/5) onto the range of the state
frequencies values (0 through 4). For training the MLF net-
work, we used 35 vibrations sets for each 5 phases of as-
sembly. The mean square errors (MSE) during the training
of 5 MLF networks were achieved for 7-10 epochs. Two

thousand data points were taken as a testing sample.
The feed-forward neural networks were formed and

tested for each stage of assembly process. Figure 7, Fig-
ure 8 and Figure 9 represent learning of new optimal stage
vibration sets indicated by their respective picture.
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Fig. 7. Results of neural network training-stage one
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Fig. 8. Results of neural network training-stage two
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Fig. 9. Results of neural network training-stage three

The results show that the scope of adjusted vibration
parameters obtained from autonomous learning has ex-
tended in respect to adjusted vibration sets from the ex-
perimental robot assembly. In this way, we dicretized the
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parameter space of the wormhole model. We can see that
a critical moment in the assembly process is the second
phase, which represents the medium clutter position of op-
timal vibration parameter sets through stages. With these
extended vibration parameters as the source information
for the planning/re-planning task, we introduce the genetic
based search strategy through the wormhole model.

6 RESULTS OF ROBOTIC ASSEMBLY RE-
PLANNER STRATEGY

Genetic algorithms are a class of adaptive methods that
can be used to solve search and optimization problems in-
volving large search spaces.

In this research, the genetic algorithm, a powerful non-
traditional approach, has been acquired for search solving
[25]. The chromosome structure must have sufficient infor-
mation about the entire path from the start point to the end-
point in order to represent the complete state space in each
stage. The encoding technique uses vibration parameters
of the robot vibration module as a part of the chromosome
(Fig. 10).

The population of paths is evaluated during each gen-
eration and it is based on the fitness of path, which
depends on how suitable the solution (path) is accord-
ing to the physics boundary problem. Genetic algo-
rithm calculates the fitness function F, use (11) for N=5,
wheredk+1

k is a distance from the selected optimal value
S∗
k =

(
Ak

i , f
k
i

)
, i = 1, .., l; k = 1, .., 5 of a current

stage to the selected optimal value of next stageS∗
k+1 =(

Ak+1
i , fk+1

i

)
, i = 1, ..l gained from learning process:

dk+1
k =

√
(Ak+1

i −Ak
i )

2 + (fk+1
i − fk

i )
2. (15)

 

Fig. 10. Chromosome structure for all five stages

Weighting factor K must be set to be larger than the maxi-
mum possible sum ofdk+1

k , so the algorithm can eliminate

infeasible (jammed) solutions from the population. There-
fore, value K = 5000 is chosen to calculate the fitness func-
tion.

Genetic based agent has been implemented in C# (Mi-
crosoft Visual Studio.NET 2005). GA applies techniques
such as crossover, selection, and mutation. Implementa-
tion in the algorithm included three ways of crossing over:
node crossover, which combines bits of two parents in each
phase (multi-point crossover where a number of points
equals the number of phases) and path crossover, which
copies the first part of the path from one parent, and the
second part from the other (crossing over can occur only
in specific points, on the border of two phases). An asex-
ual crossover, swap crossover, was also added – it included
swapping the amplitudes and frequencies in two adjacent
phases of single chromosome.

Elitism refers to the process of ensuring that the best in-
dividuals of the current population survive to the next gen-
eration. Since there is a very large infeasible area, there is a
possibility that the feasible solutions could be lost through
generations, and the reducer would jam as a result. There-
fore, elitism was introduced to help preserve quality solu-
tions in the population.

It is possible in program way to adjust characteristic pa-
rameters of GA. For this experiment, the parameters used
are: population number: 100, maximal number of genera-
tion: 500, probability of crossover operation: 60%, proba-
bility of mutation operation: 4%, percentage of elite: 5%.

If jamming occurs, it is necessary to generate a (par-
tially) new plan, i.e. return to the previous phase and restart
the algorithm to generate a new valid solution. Amplitude
and frequency of the new start point should be modified.
Since the algorithm is not restarted from the beginning (ex-
cept when jamming occurs in the second phase), the chro-
mosome length is modified – a new chromosome is shorter
since it contains smaller number of phases. In order to de-
crease the possibility of successive jamming, a small offset
is added to the last valid point. This offset is generated ran-
domly

O = K × exp(−x2) (16)

using Gaussian distribution, where K=50 for this particular
search space ([0, 512] for each parameter in chromosome).
Number x is chosen randomly. Offset is applied for both
amplitude and frequency.

The performance of Re-planning Motion Agent is
demonstrated in Table 1 and Table 2, where the actual val-
ues of frequencies arefb= 2× fa.

We use the random start point in feasible vibration pa-
rameter space: (0.70, 2.9) for first experiment (Table 1). In
case of detecting the error event signal at the fourth level,
the search strategy tries instead of the optimal value (1.53,
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Table 1. The parameter settings and value of the fitness
function for first experiment with Re-planning Agent

States Amplitude and frequences
values for states
Planned path
(Ak, fak)

Re-planned
path(
A

′
k, f

′
ak

)

1 (0.70, 2.9) -
2 (0.99, 3.2) -
3 (1.53, 3.75) (1.57, 3.63)
4 (1.56, 3.71)* (1.66, 3.63)
5 (1.71, 3.83) (1.71, 3.83)
FITB,
FITA

238.38 101.26

FIT 339.64

Table 2. The parameter settings and value of fitness func-
tion for second experiment with Re-planning Agent

States Amplitude and frequences
values for states
Planned path
(Ak, fak)

Re-planned
path(
A

′
k, f

′
ak

)

1 (0.36, 0.73) -
2 (0.76, 3.17) (0.79, 3)
3 (1.22, 3.68)* (1.29, 3.7)
4 (1.50, 3.69) (1.31, 3.73)
5 (1.66, 3.84) (1.66, 3.84)
FITB,
FITA

115.49 255.44

FIT 370.92

3.75) to continue the assembly process with another op-
timal assembly vibration parameter stage set value (1.57,
3.63) (re-planned path in Table 1). New transition action
is made from this new optimal value from the current state
with a minimal path distance towards optimal vibration pa-
rameter stage set in next state (1.66, 3.63) until it reaches
the final point in the assembly simulation process. Table 2
presents the experimental results, where the jamming has
occurred in the third stage.

When calculating total fitnessFITT for these stages,
the cost of returning to previous phase was excluded, so
the fitness consist from two parts: fitness value before jam
FITB (from start point to last feasible point) and fitness
value of the new pathFITA that was re-planned after the
jam (from new start point to end point). This way, the
fitness values can be compared with the values where no
jamming occured.

Figure 11 and Figure 12 show graphical demonstration
of the experiments.

Fig. 11. Result of re-planning process for all 5 stages for
first experiment

7 CONCLUSION

High-precision robot assembly tasks cannot be suc-
cessfully done without taking into account the effect of
uncertainties. For the robot assembly, the different solu-
tions were used: compliant motion control, cognitive al-
gorithms, adaptive search strategiesa and intelligent based
strategies.

The main contribution of this paper is solving toler-
ance compensation’s problem in robot assembly using the
novel model of hybrid automaton inspired by the Worm-
hole Model (WOMOLERE), which involves both learning
algorithm and re-planning search strategy. The experimen-
tal setup was the complex assembly of cogged tube over
multistage planetary speed.

The supervised neural network based learning is used
to generate wider scope of vibration state parameters of the
robot vibration module in order to accommodate the uncer-
tainty in the complex assembly of cogged tube over plane-
tary gears. The genetic based strategy is used to reach the
goal assembling point with minimum function costs using
the wormhole state solutions. The results show that this
approach can satisfactorily resolve the complex problem
of tolerance compensation under uncertainty.

While a robot can be programmed to be an expert at a
single assembly problem, generalizing this expertise across
all assemblies is difficult. Our approach could be easily
scalable for other applications, for example robot surgery
assistance methods, especially in soft-robotics.
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Fig. 12. Result of re-planning process for all 5 stages for
second experiment
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