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ABSTRACT 

In this paper we give some rigorous conditions for the occurrence of super chaotic attractors 

in a general piecewise smooth map of the plane. 
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INTRODUCTION 

There are many works that focused on the topic of chaotic behaviours of a discrete mapping. 

For example it has been studied from a control and anticontrol (chaotification) schemes or 

from the use of Lyapunov exponents [1-4], or by the use of several modified versions of the 

Marotto theorem [5], to prove the existence of chaos in n-dimensional dynamical discrete 

system, where the results in some way are to making an originally non-chaotic dynamical 

system chaotic, or enhancing the existing chaos of a chaotic system. 

Robust chaos is defined by the absence of periodic windows and coexisting attractors in some 

neighbourhood of the parameter space, since the existence of these windows in some chaotic 

regions imply that with small changes of the parameters would destroy the chaotic behaviour. 

This effect implies the fragility of this type of chaos. Contrary to this situation, there are 

many practical applications as in communication and spreading the spectrum of switch-mode 

power supplies to avoid electromagnetic interference [2-9], where it is necessary to obtain 

reliable operation in the chaotic mode where the robustness of chaos is required. A practical 

example can be found from electrical engineering to demonstrate robust chaos as shown in [6]. 

If all Lyapunov exponents are positive throughout the range, then the resulting attractors are 

called super-chaotic attractors. The importance of these attractors is that are more non-regular, 

and the iteration points are seemingly “almost” full of the considered space, which explains 

one of applications of chaos in fluid mixing, for example, refer to [7, 8]. A super-chaotification 

(or hyper-chaotification) scheme by making all Lyapunov exponents of a controlled 

dynamical system positive via the controller of some simple triangular function is given in [2]. 

In this paper, we shall determine rigorously a range in the parameters space for the existence 

of super chaotic attractors in a general 2-dimensional piecewise smooth discrete mapping, 

using an equivalence relation between the two matrices of the corresponding normal form of 

the considered map, and hence we compute analytically and assure the positivity of all the 

Lyapunov exponents. Since many practical applications require piecewise smooth map under 

discrete modeling [1, 6, 10], we consider a general two-dimensional piecewise smooth map 

f(x, y; ρ), which depends on a single parameter ρ. Let Γρ, given by x = h(y, ρ) denotes a 

smooth curve that divides the phase plane into two regions R1 and R2. The map is given by: 
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For obtaining the general conditions of occurrence of super-chaotic attractors, it is assumed 

that the functions f1 and f2 are both continuous and have continuous derivatives. The map f is 

continuous but its derivative is discontinuous at the line Γρ, called the “border”. It is further 

assumed that the one-sided partial derivatives at the border are finite, and in each subregions 

R1 and R2 the map (1) has one fixed point P1 and P2, for certain value ρ of the parameter ρ. A 

normal form theory for border-collision bifurcations of two-dimensional piecewise smooth 

maps has been developed in [10]. Obviously, it has been shown that it is possible to choose 

an appropriate coordinate transformation so that the choice of axis is independent of the 

parameter. In so doing, the normal form of the map (1) is given by: 
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where μ is a parameter and τi, δi, i = 1, 2 are the traces and determinants of the corresponding 

matrices of the linearised map in the two subregions R1 and R2 evaluated at P1 and P2, 

respectively. 

Assume that: 

 τ1 > 1 + δ1, and τ2 < − (1 + δ2). (3) 

Then there are no fixed points for the map (1) when μ < 0, and there are altogether two fixed 

points, one in R1 and the other in R2, for μ > 0, given by: 
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Since as the parameter μ is varied through zero, the local bifurcation of the map (1) depends 

only on the values of τi and δi, (i = 1, 2), then it suffices to study the bifurcations in the 

normal form (2), and it is shown in [6] that the map (1) has a robust chaotic attractor for some 

parameter space region, when in first the condition (3) is verified. On the other hand, it is also 

shown in [6] that there is periodic attractor in the piecewise smooth map of the form (2) when 

τ1 > 1 + δ1, and −(1 + δ2) < τ2 < (1 + δ2), thus, we exclude this region from our analysis when 

looking for super chaotic behaviour. 

MAIN RESULT 

In this section, a rigorous proof for the occurrence of super chaotic attractors in the piecewise 

smooth map (1) is given, using an equivalence relation between the two matrices of the 

corresponding normal form (2), and hence we compute analytically all the Lyapunov 

exponents. The existence of fixed points P1 and P2 given in (4) imply that it is possible to 

write the map (1) under the normal form (2). Therefore, assume that 
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2  −42 > 0 and these inequalities imply that the eigenvalues in R1 are 

2/)4( 1

2

1111   , 2/)4( 1

2

1112   , while in R2 the eigenvalues are 

2/)4( 2

2

2221   , 2/)4( 2

2

2212   . On the other hand, there are many ways 

for realizing an equivalence between matrices A1 and A2, with 
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A simple way is to assume that their eigenvalues are equal. Suppose for example that 11 = 21 

and 12 = 22, thus we obtain the following condition 
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Hence equation (6) has a solution if 2(1+2) – 12 < 0, or 
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so that equation (6) becomes 
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with the discriminant  = (2 – 1)
2
(1

2
 – 41) > 0. Since (1

2
 – 41) > 0, solutions of (8) with 

respect to 2 are 
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For brevity, we consider only the case 2 = 2
(1)

, the case 2 = 2
(2)

 being quite similar. 

Condition (7) with 2 = 2
(1)

 gives the following inequality 
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with the additional condition 
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so that solution of the inequality (11) is possible. It is easy to verify that the inequality (11) 

still holds for all values of τ1, τ2, and δ1, thus we consider only the condition (12) for this case. 

Condition (3) with 2 = 2
(1)

 gives 
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Thus inequalities (3), (10), (12) and (13) imply that 
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We remark that 
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because of what the condition (14) transforms into 
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Note that λ11 = λ21 > 1, if (3) holds. i.e., δ1 < τ1 − 1, and λ12 = λ22 < −1, if and only if: 

 )1( 11   . (16) 

Lyapunov exponents of the map (1) in the region R1 are 1(X0) = ln|λ11|, and 2(X0) = ln|λ12|, and 

in the region R2 the Lyapunov exponents are 1(X0) = ln|λ21| and 2(X0) = ln|λ22|, for all X0 ∈  R2, 

thus, according to (3) and (16) we obtain: 
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 1(X0) = 1(X0) = ln|λ11| > 0 and 2(X0) = 2(X0) = ln|λ12| > 0 (17) 

Finally, the Lyapunov exponents are identical in both regions R1 and R2, then the map (1) has 

a super chaotic attractor when conditions (9), (15) and (16) are verified. 

The main result of this article is now given. 

Theorem 1. Consider the piecewise smooth map (1) written in the normal form (2), and 

assume the following: 
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Then the map (1) converges to a super chaotic attractor. 

ELEMENTARY EXAMPLE 

Let us consider the following piecewise linear map of the plane: 
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It is easy to verify that the map (18) is a special case of the map (1) with all its assumptions 

given in this paper. Indeed, using the main theorem of this article we find that if a = 1,2 then 

a portion of the range for the occurrence of super chaotic attractor is b < −1,6667, and in this 

case the Lyapunov exponents are 
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On the one hand, the super chaotic attractor and the bifurcation diagram of the map (18) are 

shown in Fig. 1a) and Fig. 1b), respectively. On the other hand, we remark that the given 

attractor is more non-regular, and the iteration points are seemingly “almost” full of the 

considered space, which explains an application of chaos in fluid mixing, for example, see [7, 8]. 

 
Figure 1. a) The super chaotic attractor obtained for a = 1,2, b = −1,6668, and the initial 

condition x = y = 0,001. b) The border collision bifurcation for the map (18) for −1,66685 < b < 0 

and a = 1,2. 

a)      b) 
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CONCLUSION 

We have reported some analytical results on the existence of super chaotic attractors in a 

general piecewise smooth map of the plane. An elementary example is also given and discussed. 
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EGZISTENCIJA SUPERKAOTIČNIH ATRAKTORA 
U PO DIJELOVIMA GLATKOJ RAVNINI 

E. Boukhalfa i E. Zeraoulia 

Odsjek za matematiku – Sveučilište u Tebessi 
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SAŽETAK 

U radu su dani rigorozni uvjeti za pojavu superkaotičnih atraktora u po dijelovima glatkoj mapi ravnine. 
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