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 In a multi-sensor target tracking system, the 
correlation of the sensors is unknown, and the 
cross-covariance between the local sensors can not 
be calculated. To solve the problem, the multi-
sensor covariance intersection fusion steady-state 
Kalman filter is proposed. The advantage of the 
proposed method is that the identification and 
computation of cross-covariance is avoided, thus 
the computational burden is significantly reduced. 
The new algorithm gives an upper bound of the 
covariance intersection fused variance matrix 
based on the convex combination of local 
estimations, therefore, ensures the convergence of 
the fusion filter. The accuracy of the covariance 
intersection (CI) fusion filter is lower than and 
close to that of the optimal distributed fusion 
steady-state Kalman filter, and is far higher than 
that of each local estimator. A numerical example 
shows that the covariance intersection fusion 
Kalman filter has enough fused accuracy without 
computing the cross-covariance. 
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1 Introduction 
 
In recent years, filtering algorithms have been 
widely used in maneuvering target tracking [1-3]. 
After the model of maneuvering target has been 
established, the goal of the target tracking system is 
to accurately estimate the parameters and states of 
the target by observed data in real time, which is 
called the state estimation. Compared to the 
traditional single-sensor system, a multi-sensor 
system can obtain higher estimation accuracy. A 
multi-sensor system analyses and combines the local 
state estimators or local measurements from each 
sensor to get the fused state estimation. It can 
eliminate redundancy and contradiction between 
sensor information, reduce uncertainty, and thus 

form a relatively complete and consistent 
understanding to the system. It has become a hot 
research topic that applies multi-sensor information 
fusion technology to resolve the target tracking 
problems. 
The basic methods of information fusion include 
centralized and distributed fusion based on Kalman 
filtering. The centralized fusion Kalman method can 
give the globally optimal state estimation by directly 
combing local measurement equations to obtain an 
augmented measurement equation, but the 
computational burden is heavy. Compared with the 
centralized fuser, the distributed fusion Kalman 
method can reduce the computation burden and is 
more flexible and reliable.  
Based on linear unbiased minimum variance rules, 
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there are three kinds of distributed weighted fusion 
algorithm concepts: the matrix weights, scalar 
weights and diagonal matrix weights. They can give 
the globally suboptimal state estimators by 
weighting the local state estimators [4-7]. These 
weighting fusion estimators have the limitation that 
they need to compute the cross-covariance among 
the local estimation errors. However, in many 
theoretical and application problems, the cross-
covariance is unknown, or the computation of the 
cross-covariance is very complicated [8, 9]. If the 
cross-covariance is assumed to be zero, it will cause 
not only an increase of the variance of the local 
filtering error, but even the divergence of the 
filtering. In order to overcome the drawback, the 
covariance intersection (CI) fusion algorithm is 
presented by Julier and Uhlmann in [10-12], and 
developed in references [13-15]. The advantage of 
the CI fusion Kalman filter is that it can avoid 
computing the local cross-covariance.  
In this paper, based on the CI fusion algorithm, the 
CI fusion Kalman filter is proposed for multi-sensor 
target tracking systems. The accuracy comparison of 
the CI fusion Kalman filter, the local Kalman filters 
and the optimal distributed fusion Kalman filters is 
given. In order to verify the correctness of the 
theoretical accuracy relations, an experiment of a 
three sensor tracking system is given, and the 
simulation results validated by the proposed CI 
fusion Kalman filter has enough accuracy, good 
fusion performance and convergence. 
 
2 Problem formulation 
 
Consider a multi-sensor target tracking system 
 
                             1x t x t w t    ,                (1) 
 

     i i iy t H x t v t  , 1, ,i L  ,           (2) 
 

where t  is the discrete time,       T

1 2,x t x t x t     is 

the state vector, the exponent T denotes the 
transpose.  1x t ,  2x t  are the position and velocity 

of the target,  iy t  is the measurement signal of the 

ith  sensor, L  is the number of sensors,  w t  is the 

input white noise,  iv t  is the measurement noise of 

the ith  sensor,  ,   and iH  are known constant 
matrices with compatible dimensions.   is the state 
transition matrix, iH  is the measurement matrix. 

Assumption 1  w t  and  iv t  are uncorrelated 
white noises with zero mean and variances Q  and 

iR  respectively.  
 

 
     T T

0
E

0j tk
ij iji

Qw t
w k v k

Rv t



            
     

     (3) 

 
where E  denotes the mathematical expectation, ij  

is the Kronecker   function,  1, 0ii ij i j    . 

Assumption 2 The initial state  0x  is uncorrelated 

with  w t  and  iv t . 
Assumption 3 The system is completely observable 
and completely controllable. 
 
3 The local steady-state Kalman filter 
 
For the target tracking system (1)-(2) with the 
assumptions 1-3, based on the classical Kalman 
filtering theory, the local steady-state Kalman filter 
is given as [4,5]: 
 

     ˆ ˆ| 1 | 1i i i i ix t t x t t K y t              (4) 
 

 =i n i iI K H       1T T=i i i i i i iK H H H R 


    (5) 

 
n  is the dimension of state, i  satisfies the steady-
state Riccati equation 

  1T T T T=i i i i i i i i i iH H H R H Q        
            

                                                                               (6) 
The actual filtering error variance matrix iP  is 
denoted as 
 
                           i n i i iP K    ,                        (7) 
 
and iP  also satisfies the Lyapunov equation 
 

   TT T T
i i i i n i i n i i i i iP P Q I K H K R K          

(8) 
 

The actual steady-state filtering error cross-
covariance ijP  satisfies the Lyapunov equation 

  TT T
ij i ij j n i i n j jP P Q I K H                (9) 
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4  The optimal distributed fusion steady-state 
Kalman filter 

 
According to the above local steady-state Kalman 
filter when the local error variances  1, ,iP i L   

and the error cross-covariances  , 1, ,ijP i j L   are 
exactly known, based on the linear unbiased 
minimum variance rule, the form of the fused 
steady-state Kalman filter is as follows: 
 

   0
1

ˆ ˆ| |
L

i i
i

x t t A x t t


                       (10) 

 
where iA  denotes the weights. 
 
4.1 The steady-state fusion Kalman filter 

weighted by matrix [7,9] 
 
The optimal Kalman filter weighted by matrix is 
given as  
 

        
1

ˆ ˆ| |
L

m i i
i

x t t x t t


        
1

L

i n
i

I


               (11) 

 
The optimal weights are computed as 
 

  1T 1 T 1
1 , , L e P e e P 

                 (12) 

 

where  T , ,n ne I I  ,  ij nL nL
P P


 . 

The optimal fused error variance matrix is obtained 
by 
 

  1T 1
mP e P e

                       (13) 

 
4.2 The steady-state fusion Kalman filter 

weighted by scalar [7] 
 
The optimal Kalman filter weighted by scalar is 
given as  
 

   
1

ˆ ˆ| |
L

s i i
i

x t t x t t


 , 
1

1
L

i
i




          (14) 

 
The optimal scalar weights are computed as 
 

    1T 1 T 1
1 tr tr, L e P e e P 

            (15) 

where  T 1, ,1e   ,  tr tr ij L L
P P


 , and the symbol 

tr  denotes the trace of matrix. 
The optimal fused error variance matrix weighted by 
scalar is obtained by 
 

1 1

L L

s i j ij
i j

P P
 

                      (16) 

 
4.3 The steady-state fusion Kalman filter 

weighted by a diagonal matrix [7] 
 
The optimal Kalman filter weighted by a diagonal 
matrix is given as  
 

   
1

ˆ ˆ| |
L

d i i
i

x t t A x t t


                  (17) 

 
where iA  satisfies the constraints  
 

 1, ,i i inA diag a a  ,
1

1, 1, ,
L

ij
i

a j n


     (18) 

 
The optimal diagonal matrix weights are computed 
as 
 

   
11 1T T

1 , , ii ii
j Lja a e P e e P

        
        (19) 

 

where  T 1, ,1e   ,  ii ii
sk L L

P P


 , , 1, ,s k L  , ( )ii
skP  

is the  ,i i  diagonal element of skP . 
The fused error variance weighted by a diagonal 
matrix is given by 
 

T

1 1

L L

d i ij j
i j

P A P A
 

                 (20) 

 
Apparently, for the above three distributed weighted 
fusion algorithms, computing the cross-covariance 
of the local errors is necessary. With an increasing 
number of the sensors, the difficulty and complexity 
of computation is greater. Further, in many practical 
applications, the cross-covariance is either 
unknownor the computational burden of the cross-
covariance is very heavy. So, this paper presents a 
CI fusion Kalman filter that can avoid the 
computation of the cross-covariance  ijP i j . 
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5  The covariance intersection fusion steady-
state Kalman filter 
 
Usually, the covariance intersection algorithm is the 
convex combination of mean and covariance 
estimates. Assume that there are two random 
variables a , b , whose covariance values are aP , bP  
respectively. The measurement errors are a a a  , 
b b b  , where a , b  are the mean of the a  and b
respectively. The actual variances and cross-

covariance are  TEaP aa   ,  TEbP bb   , 

 TEabP ab    respectively. The cross-covariance abP  

is unknown or is difficult to be obtained, and is not 
generally zero. If the cross-covariance is ignored, 
the filtering will diverge. 
By means of fusing the local sensor information 
 , aa P  and  , bb P , we get a new estimate  , cc P , 
with the constraints that the local estimates are 
consistent, i.e., 0a aP P  , 0b bP P  . The new 

estimate is consistent too, i.e., 0c cP P   [11-13]. 
The computation is given as 
 

 1 1 11c a bP wP w P                      (21) 
 

 1 11c a bc P wP a w P b                   (22) 

 
where 0 1w  . The coefficient w  determines the 
weights of the random scalar a , b . According to 
different criteria, we can select different 
optimization methods to improve the weight w . w  
has the only optimal value in the interval 0 1w  . 
The intersection domain of the covariance is shown 
in Fig. 1. 

 
Figure 1. The covariance ellipses. 
 

In Fig. 1, the dotted lines represent the covariance 
intersection fusion covariance matrix ellipses.  
Obviously, the CI fusion ellipse encloses the 
intersection region of covariance ellipses for aP  and 

bP , and passes through the four intersections of 
covariance ellipses for aP  and bP . The smaller the 
CI fusion ellipse is, the higher the accuracy of the 
fusion algorithm is. The dashed red ellipse is the 
optimal covariance ellipse by optimizing the 
coefficient w . 
In this paper, for the target tracking system, 
applying the multi-sensor CI fused algorithm, the 
multi-sensor CI steady-state Kalman fuser is 
presented as follows: 
 

   1
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ˆ ˆ| |
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c c i i i
i

x t t P P x t t 



               (23) 
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

 
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1

1
L

i
i




 , 0i           (24) 

 
The weighting coefficients i  can be obtained by 
minimizing the performance function as 
 

 
1

1

1

0,1
11

min tr min tr
i i

L

L

c i i
i

P P
 

 







  

      
   




       (25) 

 
For the nonlinear optimization formula (25), the 
optimal weighting coefficients i  can be obtained 
by means of Matlab fmincon function. From (25), 
we can know that when the number of the sensors L  
increases, the computation burden of the nonlinear 
equation (25) is heavier. 
From (13), (16) and (20), we can know that the 
complexity of the fuser with matrix weights is 
nL nL , and they all need to compute the cross-
covariances ijP , while from (24) and (25) we can 
know the complexity of the CI fuser is a nonlinear 
L-dimensional function and the computation of the 
cross-covariances is completely avoided, so  the CI 
fuser can reduce the computation burden. 
 
6  Simulation example 
 
Consider a three- sensor two- channel tracking 
system 
 

     1x t x t w t                   (26) 
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      , 1, 2,3i i iy t H x t v t i              (27) 
 

2
0 0

0

1 0.5
, ,

0 1

T

T


 

  
    
   

 

 1 1 0 ,H  2 2 ,H I  3 1 0H          (28) 
 

where 0 0.5T   second is the sample period, 

      T

1 2,x t x t x t     is the state vector,  1x t ,  2x t  

and  w t  are the position, velocity and acceleration 

of the target at time t ,  iy t  is the measurement of 

the ith  sensor,  w t  is the input white noise,  iv t  

is the measurement noise of the ith  sensor.  w t  

and  iv t  are independent Gaussion white noises 

with zero mean and variances Q  and iR  
respectively. In the simulation, we take 2.5Q  , 

1 1.8R  , 2 (12,0.25)R diag , and 3 1.64R  . 

The simulation graphics of  1x t  are shown in Fig. 

2 – Fig. 8. The simulation graphics of  2x t  are 
shown in Fig. 9 – Fig. 15, where the solid lines 
represent the true values of the state and the dotted 
lines represent the estimated values.  

 

Figure 2. The simulation graphics of  1x t  in the 
local sensor 1. 

 

Figure 3. The simulation graphics of  1x t  in the 
local sensor 2. 

 
Figure 4. The simulation graphics of  1x t  in the 

local sensor 3. 

 

Figure 5. The simulation graphics of  1x t  in the 
filter weighted by the/a matrix. 

 
Figure 6. The simulation graphics of  1x t  in the 

filter weighted by scalar. 

 
Figure 7. The simulation graphics of  1x t  in the 

filter weighted by a diagonal matrix. 
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Figure 8. The simulation graphics of  1x t  in the CI 

fusion filter. 

 
Figure 9. The simulation graphics of  2x t  in the 

local sensor 1. 

 
Figure 10. The simulation graphics of  2x t  in the   

local sensor 2. 

 
Figure 11. The simulation graphics of  2x t  in the 

local sensor 3. 

 
Figure 12. The simulation graphics of  2x t  in the 

filter weighted by the/a matrix. 

 
Figure 13. The simulation graphics of  2x t  in the 

filter weighted by scalar. 

 
Figure 14. The simulation graphics of  2x t  in the 

filter weighted by a diagonal matrix. 

 
Figure 15. The simulation graphics of  2x t  in the 

CI fusion filter. 
 
 
 
 
 

100 200 300 
-30 

0 

-20 

-10 

0 

10 

t/step 

-3 
0 100 200 300 

-2 

-1 

0 

1 

2 

t/step 

0 100 200 300 
-3 

-2 

-1 

0 

1 

2 

t/step 

0 100 200 300 
-3 

-2 

-1 

0 

1 

2 

t/step 

0 100 200 300 
-3

-2 

-1 

0

1

2

t/step 

-3 
0 100 200 300 

-2 

-1 

0 

1

2

t/step 

300 200 100 0 
-3 

-2 

-1 

0 

1 

2 

t/step 

0 100 200 300 
-3 

-2 

-1 

0 

1 

t/step 

2 



Engineering Review, Vol. 34, Issue 1, 47-54, 2014. 53 
 

 

In order to further verify the accuracy relations, the 
values of mean square error (MSE) in the local and 
fusion Kalman filters are shown in Table 1. 
 
Table 1. The values of MSE in the local filters and 

fusion Kalman filters 
 
 MSE 
The local sensor 1 0.0053
The local sensor 2 0.0099
The local sensor 3 0.032 
The filter weighted by a matrix 0.0012
The filter weighted by scalar 0.0015
The filter weighted by a diagonal matrix 0.0014

The CI fusion filter 0.0036
 
From Table 1, we can see that the accuracy of the CI 
fusion filter is higher than the accuracy of the local 
estimates, and a little lower than the accuracy of the 
optimal distributed fusion Kalman filters. 
The computation time of the proposed CI fusion 
Kalman filter and the three optimal distributed 
fusion Kalman filters is shown in Table 2. The unit 
of time is second. 
 
Table 2. The computation time of error variances in 

the fusion Kalman filters 
 
 Computation 

time 
The filter weighted by a matrix 0.025s 
The filter weighted by scalar 0.0030s 
The filter weighted by a diagonal 
matrix 

0.0032s 

The CI fusion filter 0.0026s 
 
From Table 2, we can see that the computation time 
of the CI fuser is shorter than other fusers. 
In general, the CI fusion Kalman filter has enough 
filtering accuracy, light computation burden, which 
avoids computing the cross-covariance of the local 
filters. 
 
7  Conclusion 
 
In this paper, for the target tracking system, the 
multi-sensor CI fusion Kalman filter is presented 
based on the covariance intersection algorithm. Its 
advantage is that it can avoid computing the cross-
covariance of the local filtering errors, thus, it can 
decrease the computational complexity. Compared 
with the three distributed weighted fusion 

algorithms, the CI fusion filter shortens the 
computational time, eases the computational burden, 
and solves the problems with unknown correlations. 
The accuracy of the CI fusion filter is much higher 
than the accuracy of the local estimates, and is a 
little lower than the accuracy of the optimal 
distributed fusion Kalman filters. The simulation 
results of the three- sensor two - channel tracking 
system show that the CI fusion Kalman filter has a 
good fused performance. The proposed fusion 
Kalman filter can be extended into a time-varying 
system with relevant noise variances. It will be 
researched in the future. 
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