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Introduction

Balanced cell growth under favourable external 
conditions is characterized by the existence of 
key-species homeostasis, which corresponds to qua-
si-invariance of key species concentrations (en-
zymes, proteins, metabolites) ensuring content rep-
lication and metabolism maintenance despite 
external perturbations (in nutrients and metabolites) 
or internal cell changes. Such an internal regulation 
of synthesis/degradation reactions is realized by a 
complex genetic regulatory network that links a 
large number of GRCs used to control individual 
gene expression, such as:1–5 toggle-switch (mutual 
repression control in two gene expression modules, 
that creates decision-making branch points between 
on/off states according to the presence of certain in-
ducers); hysteretic / history-dependent behaviour 
(in the presence of certain exogenous inducers); os-
cillators (producing regular fluctuations of cell spe-
cies levels); specific treatment of external signals 

by controlled gene expression such as amplitude 
filters, noise filters, or signal/ stimuli amplifiers; 
signalling circuits and cell–cell communicators. As 
the cell regulatory systems are module-based orga-
nized,6 complex feed-back and feed-forward loops 
are employed for self- or cross-activation / repres-
sion of interconnected gene expression, leading to 
different interaction alternatives (directly/inversely, 
perfect/incomplete coupled/uncoupled connec-
tions1,7) of a gene with up to 23–25 other genes.8 
Consequently, the cell metabolism can be changed 
by modifying/designing GRCs conferring new 
properties/functions to the mutant cells (i.e. desired 
‘motifs’), while engineered/synthetic gene circuits 
can be designed by using the Synthetic Biology 
tools.4,9–14

A key step in the GRC analysis is the possibil-
ity to in-silico (model-based) test their properties, 
and to design modified circuits by simulating their 
regulatory effectiveness.15 Structured mechanis-
tic-based kinetic models, including hundreds to 
thousands biochemical cell reactions, continue to be 
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developed, leading to considerable improvement in 
the predictive power at a cellular but also at a mac-
roscopic (bioreactor) level. These models are suit-
able for accurately predicting the cell response/ad-
aptation to environmental perturbations by 
modelling GRCs controlling the cell metabolism, 
and the behaviour of cloned/modified microorgan-
isms of industrial or medical interest.16–21 Thus, the 
modern bioengineering concept “from gene to prod-
uct”22 focused on improving the industrial biopro-
cess performance by designing modified cells, can 
be efficiently assisted by adequate GRC simulators. 
The in-silico analysis of a GRC uses a reductionis-
tic approach by decoupling simple networks from 
the complex cell system to be studied individually, 
followed by rules to “recreate” the real system.23–24

In particular, modelling and designing genetic 
switches in modified cells continues to be a very 
attractive subject due to its tremendous importance 
in adapting the cell metabolism to certain objec-
tives.42 Starting from the classical Jacob-Monod25 
GS mechanism and from the simple model pub-
lished by Griffith in 1968,26 a large number of mod-
els continues to be reported, their complexity de-
pending on the approached system. Examples 
include GS from E. coli, such as: lactose(lac)-oper-
on (including three mutually repressed gene expres-
sion regulatory modules acting as a ‘multi-
ple’-switch27); galactose(gal)-operon (including 
three structural genes, one dimeric repressor and 
two promoters28,29); tryptophan(trp)-operon (includ-
ing five structural genes, one promoter and one op-
erator30), the uncoupled GRCs of asparagine (asn), 
purine (pur), and guanine (gua) operators, etc. (see 
Hasty et al.23 for other GSs).

Modelling GRCs responsible for gene expres-
sion/GS control requires steady experimental and 
computational efforts to decipher the regulatory 
loops/motifs at a quantitative level.4 The number of 
involved species in GRCs (genes, mRNA, proteins) 
is of O(103–104), the number of gene TFs of O(103), 
while the number of parameters of gene-TF interac-
tions theoretically corresponds to the number of 
states multiplied by the number of TFs.31 For in-
stance, in E. coli there are 350 proteins working as 
TFs able to bind to DNA, 43 % of proteins act as 
repressors, 35 % as activators, and 22 % as dual 
regulators,30 their activity being modulated by small 
molecules of effector species (amino acids or me-
tabolites). However, the genetic networks in a cell 
are known as being sparsely interconnected, a gene 
expression being related to a small number (up to 
23–25) of other gene expressions, and thus the ma-
jority of the parameters of such a “complete” gene 
network model will be zero.31 Alternatively, the 
modular-based representation of such a complexity 
becomes more suitable in reproducing the GRC 

characteristics,10,23 in an ‘expandable building-
blocks’-like construction able to represent the tight 
control of gene expression of optimized properties, 
a quick dynamic response of high sensitivity to spe-
cific inducers, and robustness of the genetic circuit 
(i.e. low sensitivity vs. external noise).

Griffith26 proved that in a gene expression the 
mRNA level can easily display bistable (low or high) 
expression levels depending on the demand for the 
encoding protein, being simultaneously regulated by 
positive and negative feedback loops involving sev-
eral regulatory components (allostery) of high non-
linearity. As these GRC motifs constitute the building 
blocks of large gene regulatory networks, the modu-
lar modelling approach appears to be justified.6 One 
semi-autonomous Gene Expression Regulatory Mod-
ule (GERM) includes all individual and lumped cell 
components and reactions that participate in the con-
trol of a certain gene expression.18 Linking GERM in 
regulatory networks leads to the control of the whole 
cell metabolism, ensuring metabolic efficiency (min-
imum energy and substrate consumption), individual 
or associative component functions, hierarchical or-
ganization, system homeostasis, balanced cell 
growth, and regulatory efficiency at various network 
levels.32 Moreover, the main steps in a GERM can be 
modulated by varying the TF level, i.e. either an in-
hibitor protein binding the operator to prevent a cer-
tain gene expression (negative regulation), or a pro-
tein binding the promoter to enable RNA polymerase 
to initiate the gene transcription (positive regulation), 
or RNA processing, RNA translation, post-transla-
tional protein modification, enzyme inactivation or 
degradation, etc.15

To dynamically represent the GERM/GS char-
acteristics in a quantitative way, a large variety of 
models using continuous, Boolean, or stochastic 
variables have been proposed, in a structured ap-
proach accounting for individual or lumped TFs, 
intermediates, metabolites, enzyme complexes, 
etc.24 The continuous variable mechanistic models, 
using ordinary differential equations (ODE) and re-
quiring more structured information, are still largely 
used as being computationally very tractable to ad-
equately represent continuous cell processes, re-
sponse to perturbations, cell adaptation, and system 
complex nonlinear behaviour, by accounting for 
mechanistically-based interactions among individu-
al or lumped species and reactions (aggregate 
pools), of physical significance.33 The Boolean ap-
proach, with variables taking only discrete values, 
is suitable only for a rough representation of the 
GRC, becoming unrealistic for large networks, be-
ing unable to reproduce molecular interactions in 
detail, such as slow and continuous responses to 
perturbations.15 The stochastic variable approach, 
replacing the ‘average’ solution of continuous-vari-
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able ODE models by a detailed random-based sim-
ulator, is very suitable for representing stochastic 
events such as cell signalling, gene mutation, faulty 
switches, random interactions of species present in 
small amounts, etc. Inherent stochastic fluctuations 
in the species concentrations can introduce signifi-
cant variability into the dynamics of genetic regula-
tion, and can even “mask” some GRC steady-
states.33 Because stochastic models are very 
laborious, hybrid models (e.g. stochastic-continuous 
variables) have often been reported as being feasi-
ble to represent inducible GRCs (review of Ma-
ria18,34).

This paper is focused on developing mechanis-
tic ODE models of GSs based on the reported mod-
elling experience. Recently, Maria5,34 tested some 
simplified representations of GS, by including a 
Hill-type gene expression activation (of fourth or-
der), and single cross- and self-repression buffering 
reactions to control the gene transcription using di-
meric TF-s, all being formulated in a VVWC mod-
elling framework.

The aim of this paper is to extend the GS mod-
elling investigation of Maria,5 by comparing re-
duced Hill-type kinetic models from literature with 
proposed non-Hill type extensions that replace the 
Hill coefficients with complex repression mecha-
nisms. The proposed models include multiple and 

adjustable elementary steps of the nonlinear 
cross-repression control in inducible GS by means 
of rapid reversible elementary reactions involving 
DNA/mRNA. The GS properties are tuned by 
means of several parameters, i.e. the number of re-
pression steps, TF-level, and adjustable self-repres-
sion strength according to the stability and effec-
tiveness targets. Model comparison is made by 
employing several GS regulation indices, such as: 
switch certainty, steady-state stability and sensitivi-
ty to exogenous inducers, response rate and tran-
sient or recovering times after a stationary or dy-
namic perturbation in the external inducers or GS 
target proteins. The designed GS is placed in an E. 
coli cell (K-12 strain of known characteristics35), by 
analysing the influence of some system parameters 
(level of inducer, TFs, target protein, and induction/
repression nonlinearity) on the GS efficiency. The 
analysis points out the close relationship between 
regulatory system complexity, its efficiency and GS 
stability. Model versatility suggests further exten-
sions and use for in-silico design of engineered 
gene circuits of practical interest.

Continuous variable GERM/GS models in literature

Literature includes a large number of attempts 
in representing GSs, by including the main species 
involved in the gene expression, that are (Fig. 1): 

F i g .  1  – Simplified representations (a-c) of a gene G expression regulatory module. Horizontal arrows indicate reactions; vertical 
arrows indicate catalytic actions; G = gene encoding protein P; M = mRNA; R, R’ = transcriptional factors (repressors); 
In = inducer; MetG = DNA precursor metabolites.
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DNA (gene G), mRNA (intermediate M), end prod-
uct/enzyme (P), repressor (R), inducer/activator 
(A,I,In), RNAP (RNA polymerase binding to free 
promoter), operon (O), and various individual or 
lumped metabolites. Some models also account for 
the delay time before re-initiation of the transcrip-
tion, or to synthetize mRNA. As reviewed by Smo-
len et al.,33 the time delays in GRC loops and 
multi-stability lead to a history-dependent response 
to perturbations. Also, TFs are reported acting in di-
meric or even tetrameric forms involving feedback 
loops with several intermediates, while highly-non-
linear species interactions are essential in getting a 
large variety of complex dynamic behaviours.3,23,36 
However, extended kinetic models incorporate too 
many species mass balances, with parameters diffi-
cult to estimate from often incomplete data and, 
consequently, difficult to use for practical applica-
tions. An alternative is to use reduced or “multi-
scale” models that combine unstructured with struc-
tured process characteristics to generate more 
precise predictions.19,24,31,37,38

Depending on the structure and manner of rep-
resenting the kinetic terms, the ODE models of 
GERM/GS can be classified as follows:15

i) Extended ODE dynamic models trying to 
mechanistically include a significant number of ele-
mentary steps involved in the gene expressions. As 
an example, Salis & Kaznessis3,36 designed a 
bistable switch from the lac and ara operons of E. 
coli, in which the transcriptional regulation is mod-
elled by using a stochastic approach accounting for 
40 elementary reactions and 27 species (reduced 
version) or 70 reactions and 50 species (extended 
version), with repressors in dimeric or tetrameric 
form. Several reviews on extended mechanistic 
GRC models including a large array of experimen-
tal data, kinetic parameters, regulatory indices (sen-
sitivity, robustness, efficiency, responsiveness, sta-
bility strength, species connectivity) are given in 
literature.5,24,26,34

ii) Reduced ODE models include lumped spe-
cies and reactions, with both elementary and Mi-
chaelis-Menten/Hill-type kinetic expressions based 
on quasi-steady-state assumptions for mRNA, TFs 
(activators, repressors), or intermediates.39 The empi-
rical Hill-like activation  [ ] / ( [ ] )n n

ok A K A  ,39 
or inhibition/repression  [ ] / ( [ ] )n n nR K R 30 terms 
of transcriptional kinetics account for the existence 
of a saturating phenomenon, “a passive diffusion of 
the inducer throughout the cell membrane” (param-
eter ok ), and a non-linearity of the gene expression 
response to the activation/repression action of 
TFs.15,39 To get a GS, n > 1 should be set to avoid 
existence of only one unique stable steady-state.33,40 
In fact, n ≥ 2 Hill-type kinetics is a lumped repre-
sentation of an allosteric control (i.e. at least two 

successive rapid reversible buffering reactions) at 
various levels:30 operator site or mRNA binding the 
repressor, RNA polymerase binding the activator/
inducer. The Hill exponents also determine the 
co-operative characteristics of repressor-operator 
and repressor-inducer binding.41 There are different 
ways of simplifying the GERM representation in a 
GS, as follows:

– include only the two mRNA (M1,M2), or 
only the two product proteins synthesis (P1,P2) 
with Hill type cross-repression terms of n ≥ 2 expo-
nents (usually n = 2–4);30,40,42

– include mRNA (M), protein P and repressor R 
synthesis (Jacob & Monod25 model), with mutual 
Hill repression of mRNA formation in the two or 
three GERMs of {M,P,R}-type 27,43 of Hill exponent 
n ≥ 2. Many times the repressors of M1-M2 synthe-
sis are considered being the protein products P2-P1 
respectively, with strong Hill cross-repression expo-
nents sec ( / )pn p   > 1, depending on the concen-
tration of the activator or inhibitor (usually n = 2–4; 
sec = reciprocal to the cosine; p = no. of successive 
repression steps of the negative feedback loop).26,44 
The self-repression of gene expression can also be 
included with a Hill exponent n = 2.45 Polynikis et 
al.15 studied the influence of the two Hill repression 
coefficients (n1, n2 for the repression of M1, M2 syn-
thesis) on the GS properties and found that for n1, n2 
> 2 the system exhibits multi-stationarity with a 
Hopf bifurcation point, while for n1n2 > 4 the system 
exhibits oscillatory behaviour in certain regions of 
the parametric space. Voit46 pointed out for a 
{G,M,P,I} reduced GERM that Hill induction coeffi-
cient n > 1 (usually n = 4) leads to multi-stationarity 
of different stability type depending on the initial 
species concentrations, by recommending the Hill 
self-repression exponent of value 0.5. Widder et al.47 
considered a {G,M,P} system without self-regulation 
(repression), with activation and cross-repression 
Hill exponents n ≥ 3 inducing Hopf multi-stability. 
Smolen et al.33 and Tabaka30 detailed the importance 
of time delays (of tenths of seconds) for the GS syn-
theses (due to species diffusion reasons), and of the 
degradation rate of activator/repressor in adjusting 
the GS protein levels.

iii) S-type ODE models, with an apparent pow-
er-law representation of the nonlinear GERM/GS 
kinetics, are simple and computationally very con-
venient.48 Even if the apparent rate constants lack of 
any physical meaning and fictitious auxiliary vari-
ables are necessary for non-power-law terms, such a 
modelling approach was proved to be versatile and 
effective in representing complex behaviour of 
GRC, such as: saturation or sigmoidal response, 
multi-stability, bifurcations, oscillatory behaviour, 
and hysteresis.1,10 However, lacking the essential in-
formation on key-intermediates and elementary 
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steps dynamics, such representations cannot accu-
rately reproduce some GRC properties, such as 
steady-state stability strength, or responsivity to 
nonlinear perturbations. Also, most of the model pa-
rameters’ lack of significance, and min/max thresh-
olds are usually imposed on the activators/repres-
sors.34,46,49

iv) Piece-wise-linear approximations of Hill 
functions, or discretized ODE models, use simple 
algebraic relationships among species concentra-
tions to overcome the incomplete quantitative data 
cases, without using kinetic parameters required by 
the detailed mechanistic models.15,49,50

In spite of tremendous progress made in the 
cell process analysis and “-omics” databanks, a 
consensus concerning a mathematical framework to 
decide the best modelling approach does not exist. 
However, an adequate, even simple GRC model 
needs to include all relevant steps and intermediates 
of the reaction pathway, but also to reproduce con-
nections of the GRC with the rest of the cell respon-
sible for the holistic response of bacteria to different 
environmental perturbations under a continuous 
cell-volume growth and content replication.

When continuous variables are used, the de-
fault-modelling framework is that using species con-
centrations, by accounting for the cell-growing rate 
as a ‘constant decay’ rate of key-species (often 
lumped with the degrading rate) in a so-called ‘dilut-
ing’ rate. Such a representation might be satisfactory 
for many applications, but could distort the predic-
tions of an accurate modelling of cell regulatory pro-
cesses under perturbed conditions, as long as connec-
tion with the whole-cell content dynamics is not 
accounted for.18,32 By contrast, the variable-volume 
whole-cell (VVWC) modelling framework formulat-
ed by Grainger et al.,51 and adopted in this study in 
the variant of Maria,18 explicitly links the volume 
growth, external conditions, osmotic pressure, cell 
content ballast and net reaction rates for all cell-com-
ponents.52 As underlined by Maria,18,32 in a VVWC 
representation the dilution rate is not constant, the 
large cell ballast tending to stabilize the system by 
smoothing the perturbations. Thus, the GRC respon-
siveness is slightly lower comparatively to an isolate 
GRC and, consequently, some of the regulatory prop-
erties are not overestimated.

The proposed bistable genetic switch model

Isotonic variable volume modelling framework

The VVWC modelling framework promoted by 
Maria,18 basically accounts for the cell volume dy-
namics and cell content dilution rate by linking the 
osmotic pressure, system temperature and the sum 
of all species reaction rates (individual or lumped; 

see the simplificatory hypotheses in Table 1). Such 
a supplementary constraint equation increases spe-
cies connectivity, and better reproduces some of the 
cell holistic properties, such as the cell large content 
inertial effect in treating perturbations, the effect of 
the indirect or secondary perturbations of cell spe-
cies concentrations transmitted via cell-volume 
variation under isotonic conditions (ca. 80 % of the 
cell cycle). It should also be mentioned that a 
VVWC model must include all cell species at some 
level of detail (i.e. individual or lumped species and 
reactions), in order to be consistent with the men-
tioned hypotheses because all components contrib-
ute to the common volume dynamics. In such a 
manner, the number of model rate constants in-
creases, leading to a corresponding increase in the 
identification effort. The GRC model rate constants 
are estimated from experimental concentrations of 
key-species at homeostasis (i.e. fulfilment of the 
steady-state condition under a balanced cell growth), 
from experimental species dynamics information 
(kinetic data, if any), and from imposing optimum 
regulatory properties in terms of maximum respon-
siveness and efficiency (i.e. minimum transition or 
steady-state recovering times after a stationary or 
dynamic perturbation). Some physical meaning 
constraints, such as bounded rate constants and spe-
cies concentration levels are also included.

The dynamics of the individual species but also 
of the lumped content can be mimicked under sim-
ulated stationary or perturbed environmental condi-
tions, by “placing” the GERM chain in a growing 
cell. Reported tests with simple GRC models under 
a VVWC formulation are very promising in predict-
ing local and holistic features of the metabolic net-
work vs. classical formulation that tends to over-
estimate some of the regulatory dynamic 
properties.18,32,53,54 The main VVWC modelling ad-
vantages come from the possibility of linking the 
dynamics of the studied metabolic pathway to the 
rest of the (lumped) cell, thus offering a holistic 
evaluation of the involved GRC in the cell context. 
Even if the VVWC models work in parallel with 
species copynumbers and cytosolic concentrations 
(see the linking formula in Table 1 – last column), 
one disadvantage of using continuous variable for-
mulations is the possibility of translating fractional 
concentrations to fraction of copynumbers. For in-
stance, for a born E. coli cell volume of ,cyt oV  = 
1.66 · 10–15 L, one gene G copynumber translates to 
1 nmol L–1 concentration, while a concentration of 
[G] = 0.5 nmol L–1 must be interpreted either as an 
average of time-invariant in a population of cells 
(e.g. half of all cells containing 1 copynumber of 
G), or as a time-dependent average for a single cell 
(e.g. that cell contains 1 copynumber of G half of 
the time).
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The two gene expression regulatory 
modules of the switch

Detailed representation of a GERM includes a 
multi-level control of intermediate and product syn-
thesis (mRNA, enzymes, regulators) by means of 
positive/negative feedback loops and (dimeric) TFs 
of variable concentration. Such adjustable effector 
species range the catalytic activity at each cascade 
level to cope with internal and external perturba-
tions.5,32 Negative self-regulation is proved to speed 
up the response time of the GRC to external stimuli, 
and promotes robustness to fluctuations in produc-
tion rate.4,5 In contrast, positive self-regulation 
slows responses and can lead to bi-stability of the 
expression module.

The proposed GS reaction pathway of Fig. 2 
(in a VVWC formulation) includes two intercon-
nected GERMs, of identical structure, with mutual-
ly (cross-)repressed gene G2 and G3 expression. An 
additional GERM is added to mimic the cell ballast, 
inertial effect to perturbations, and the controlled 
replication of the lumped cell content (genome G1 
and proteome P1). The G1/P1 cell content replica-
tion module is necessary to make the cell model 
consistent with the isotonic assumption, the VVWC 
holistic formulation requiring inclusion of all cell 
species at a certain detailing degree (individual or 
lumped). Thus, the dilution constant D in Table 1, 
kept constant over the cell cycle in the classical ki-

Ta b l e  1  – Dynamic variable cell-volume modelling frame-
work (after Maria18).

1
 ( , )j j
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Species mass balance 
(continuous state variables)

1 dV
D

V dt
  = 

1sn
j

j

dnRT
V dt
  
  

   


Cell content dilution rate 
(from Pfeffer’s law in 
diluted isotonic solutions)

1 1 1

s s sn n n

j j jo
j j j

n c c
RT V   

     Constant osmotic pressure 
constraint

, ,

all all

j cyt j env
j j

c c  Isotonic osmolarity 
constraint

Hypotheses:
– open cell system of uniform content (negligible diffusion 
resistance);
– semi-permeable membrane, of negligible volume and resistance 
to nutrient diffusion, following the cell growing dynamics;
– constant osmotic pressure, ensuring membrane integrity 
( cyt  = env  = constant);
– average logarithmic growing rate: o c =ln( / ) ln(2)/sD V V t ;
– balanced cell growth with a constant growing rate over the 
cell-cycle under quasi-constant environmental conditions;
– homeostatic stationary growth for:  / ( , ) 0j j ss

dc dt g c k ;
– isotonic perturbations in cell volume result from variations in 
the species copynumber;
– species concentration formula: (no. of copies per cell)/ ,( ).A cyt oN V

F i g .  2  – Genetic switch model including two gene G2 and G3 expression (self- and cross-) regulatory modules. The GRC is placed 
in a growing E. coli cell, by mimicking the homeostasis and cell response to stationary and dynamic perturbations in environmental 
NutI2 and NutI3 inducers with a VVWC model. The cell content (‘ballast’) influence is mimicked by including the lumped proteome 
P1 and genome G1 replication module. Notations: G1/P1 = lumped genome/proteome; MetG1/MetP1 = lumped metabolome; P2, P3 
= genetic switch target proteins; MetG2, MetG3, MetP2, MetP3 = individual metabolites; I2, I3 = inducers; NutI2, NutI3 = external 
stimuli; NutG, and MetG (lumped external nutrients) are the precursors of DNA, mRNA, and amino-acids respectively;  /Θ = pos-
itive/negative regulatory loops. Horizontal arrows indicate reactions; vertical arrows indicate catalytic actions (dashed vertical ar-
rows indicate effects included in only some of the presented GS models).
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Ta b l e  2  – Estimated kinetic parameters of tested GS models for stationary E. coli cell growth conditions of Table 2 (TF level of 
[P2P2]s = [P3P3]s = 5 nmol L–1). Rate constant units correspond to minutes and nmol L–1, while rates ( / ) /jdn dt V  are 
formulated for variable volume conditions.

Reaction Rate expression 
(nmol L–1 min–1)

Rate constants
pure Hill model buffering reactions of cross-repression

WC-B0 WC-B1 WC-B4
 1 1 1 1NutG P MetG P ®  1[ ][ 1]k NutG P 4.61 · 10–10 4.61 · 10–10 4.61 · 10–10

 2 1 1 1NutP P MetP P ®  2[ ][ 1]k NutP P 7.11 · 10–10 7.11 · 10–10 7.11 · 10–10

 3 1 1 1 1MetG P G P ®  3[ 1][ 1]k MetG P 1.56 · 10–13 1.56 · 10–13 1.56 · 10–13

 4 1 1 1 1MetP G P G ®  4[ 1][ 1]k MetP G 1.03 · 10–7 1.03 · 10–7 1.03 · 10–7

 5 1 1 1 1G P G P ® 5[ 1][ 1]k G P 1.00 · 10–2 1.00 · 10–2 1.00 · 10–2

 6 1 1 1 1G P G P®  6[ 1 1]k G P 510 (a) 510 (a) 510 (a)

 7 2 2 2 2NutI P I P ®  7[ 2][ 2]k NutI P 1.38 · 10–3 1.38 · 10–3 1.38 · 10–3

 8 3 3 3 3NutI P I P ®  8[ 3][ 3]k NutI P 1.38 · 10–3 1.38 · 10–3 1.38 · 10–3

 9 2 2 2NutG P MetG P ®  9[ ][ 2]k NutG P 4.62 · 10–7 4.62 · 10–7 4.62 · 10–7

10 1 2 1NutP P MetP P ®  10[ ][ 1]k NutP P 2.31 · 10–12 2.31 · 10–12 2.31 · 10–12

11 2  ( 1 2 2) 2MetG P P I G   ®
4

11
4

2

[ 2][ 1](1 [ 2] )
( [ 2] )[ 2]nR

G

k MetG P B I
K I P





11k  = 3.46 · 10–13

B  = 2
nR  = 1

2GK (b)

3.46 · 10–13

B  = 2
nR  = 1

2GK (b)

8.66 · 10–12

B  = 2
nR  = 3

2GK (b)

12 2 2 2 2MetP G P G ® 
12

2

[ 2][ 2]
[ 3]nH

P

MetP G
k

K P

12k  = 4.33 · 10–6

nH  = 2

2PK (c)

9.70 · 10–8

nH  = 0

2PK  = 1

6.58 · 10–7

nH  = 0

2PK  = 1
13 3 3 3NutG P MetG P ®  13[ ][ 3]k NutG P 4.62 · 10–7 4.62 · 10–7 4.62 · 10–7

14 1 3 1NutP P MetP P ®  14[ ][ 1]k NutP P 2.31 · 10–12 2.31 · 10–12 2.31 · 10–12

15 3  ( 1 3 3) 3MetG P P I G   ®
4

15
4

3

[ 3][ 1](1 [ 3] )
( [ 3] )[ 3]nR

G

k MetG P B I
K I P





15k  = 3.46 · 10–13

B  = 2
nR  = 1

3GK (b)

3.46 · 10–13

B  = 2
nR  = 1

3GK (b)

8.66 · 10–12

B  = 2
nR  = 3

3GK (b)

16 3 3 3 3MetP G P G ® 
16

3

[ 3][ 3]
[ 2]nH

P

MetP G
k

K P

16k  = 4.33 · 10–6

nH  = 2

3PK (c)

9.70 · 10–8

nH  = 0

3PK  = 1

6.58 · 10–7

nH  = 0

3PK  = 1
17 2 2 2 2P P P P ® 17[ 2][ 2]k P P – 2.00 · 103 2.00 · 104

18 2 2 2 2P P P P®  18[ 2 2]k P P – 510  (a) 510  (a)

19 3 3 3 3P P P P ® 19[ 3][ 3]k P P – 2.00 · 103 2.00 · 104

20 3 3 3 3P P P P®   20[ 3 3]k P P – 510  (a) 510  (a)

21 2 3 3 2( 3 3)G P P G P P ® 21[ 2][ 3 3]k G P P – 2.00 · 105 2.00 · 104

22 2( 3 3) 2 3 3G P P G P P®  22[ 2( 3 3)]k G P P – 510  (a) 510  (a)

23 22( 3 3) 3 3 2( 3 3)G P P P P G P P ® 23[ 2( 3 3)][ 3 3]k G P P P P – – 2.00 · 104

24 22( 3 3) 2( 3 3) 3 3G P P G P P P P®  24 2[ 2( 3 3) ]k G P P – – 510  (a)

25 2 32( 3 3) 3 3 2( 3 3)G P P P P G P P ® 25 2[ 2( 3 3) ][ 3 3]k G P P P P – – 2.00 · 104

26 3 22( 3 3) 2( 3 3) 3 3G P P G P P P P®  26 3[ 2( 3 3) ]k G P P – – 510  (a)

27 3 42( 3 3) 3 3 2( 3 3)G P P P P G P P ® 27 3[ 2( 3 3) ][ 3 3]k G P P P P – – 2.00 · 104

28 4 32( 3 3) 2( 3 3) 3 3G P P G P P P P®  28 4[ 2( 3 3) ]k G P P – – 510  (a)

29 3 2 2 3( 2 2)G P P G P P ® 29[ 3][ 2 2]k G P P – 2.00 · 105 2.00 · 104

30 3( 2 2) 3 2 2G P P G P P®  30 [ 3( 2 2)]k G P P – 510  (a) 510  (a)

31 23( 2 2) 2 2 3( 2 2)G P P P P G P P ® 31[ 3( 2 2)][ 2 2]k G P P P P – – 2.00 · 104

32 23( 2 2) 3( 2 2) 2 2G P P G P P P P®  32 2[ 3( 2 2) ]k G P P – – 510  (a)

33 2 33( 2 2) 2 2 3( 2 2)G P P P P G P P ® 33 2[ 3( 2 2) ][ 2 2]k G P P P P – – 2.00 · 104

34 3 23( 2 2) 3( 2 2) 2 2G P P G P P P P®  34 3[ 3( 2 2) ]k G P P – – 510  (a)

35 3 43( 2 2) 2 2 3( 2 2)G P P P P G P P ® 35 3[ 3( 2 2) ][ 2 2]k G P P P P – – 2.00 · 104

36 4 33( 2 2) 3( 2 2) 2 2G P P G P P P P®  36 4[ 3( 2 2) ]k G P P – – 510  (a)

(a) adopted value for rate constant of ca. 107
sD .12,18,20,56

(b) 2GK  = [I2ref]
4; 3GK  = [I3ref]

4; [I2ref] = [I3ref] = 1 nmol L–1;
(c) 2PK  = [P3ref]

nH; 3PK  = [P2ref]
nH; [P2ref] = [P3ref] = 10 nmol L–1.
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netic formulations, becomes slightly variable with 
an evolution depending on the internal reactions as 
response to external perturbations.

The GS reaction rate expressions are presented 
in Table 2, model formulation being made in two 
alternatives:

i) model WC-B0 (reactions no. 7–16 in Table 
2), used as a reference model, is inspired from liter-
ature.40,46 The model includes only reduced Hill-
type kinetic expressions for genes {G2,G3} and tar-
get proteins {P2,P3} synthesis, similar to the 
reported models of Voit,46 Widder et al.,47 and Ty-
son et al.26 The Hill-exponent for gene expression 
activation with {I2,I3} is adopted at a value of n = 
4, as recommended by Voit46 and Widder et al.,47 
corresponding to a cooperative binding of four in-
ducer molecules to the promoter, thus resulting in a 
highly nonlinear amplification of the gene expres-
sion. The Hill-type cross-repression of protein syn-
thesis (P2 by P3, and vice-versa40) was applied di-
rectly to the {mRNA,DNA} lump (reactions 12 and 
16, similar to Griffiths’ formulation;26 Fig 2). As 
suggested in literature, different Hill exponents nH 
≥ 2 (for multi-stability reasons) and self-repression 
coefficients nR ≥ 1 will be investigated in relation 
to other GS properties. The apparent dissociation 
constants GK  and PK  are adopted at the average 
value of inducer and repressor concentrations (tak-
en at the powers 4 and nH respectively). Low val-
ues for the self-repression exponent nR << 1 (that is 
less than one effector molecule per gene operator, 
as suggested by Voit46) are avoided, being consid-
ered unrealistic in most of reported GERMs.10 The 
WC-B0 model is completed with the nutrient and 
inducer import reactions into the cell, and formation 
of gene and protein metabolic precursors {Met-
G2,MetG3,MetP2,MetP3}.

ii) models WC-Bn are original extensions of the 
WC-B1 model proposed by Maria,5 and include 
Hill-type rate expressions only for genes {G2,G3} 
synthesis, by replacing the Hill-expression for 
{P2,P3} synthesis (reactions 12 and 16) by a non-
Hill type complex repression mechanism. This 
complex includes a certain number buffn  of explicit 
rapid reversible (buffering) elementary reactions 
cross-binding dimeric repressors TF = P2P2 and TF 
= P3P3 to the gene G3 and G2 operator, respectively. 
The “catalytic” gene activity can be adjusted in such 
a manner by employing successive buffering reac-
tions of type Gi + PjPj  GiPjPj  …  Gi(PjPj)n. 
Consequently, models WC-Bn include the core re-
actions no. 1–16, plus reactions 17–20 for revers-
ible synthesis of dimeric TF = {P2P2,P3P3}, and 
the reactions 21–36 corresponding to buffn  = 1–4 
buffering steps. The TFs were adopted in a dimeric 
form, as reported by most of the experimental stud-
ies (even if tetrameric repressors are also possi-

ble3,36). It should be mentioned that WC-Bn models 
include extensions of the WC-B1 model proposed 
by Maria5 in detailing the cross-repression mecha-
nism and self-repression strength by means of a 
number of tunable model parameters (nR,  ,buffn  [TF], 
repression scheme).

The proposed models are quite flexible, the GS 
regulatory properties being adjusted by varying the 
level of external inducers, TFs, target proteins, and 
the strength of cross-/self-repressing elements (nH, 

,buffn   nR). In this lumped representation, the pro-
teins play the role of permeases and metabolases for 
exogenous stimuli {NutI2, NutI3} import and in-
ducer {I2,I3} production. There are also some other 
simplificatory hypotheses adopted, which are as fol-
lows: the dilution rate is uniform for all species, the 
degradation steps (of repressor, expressed protein, 
activator) are neglected, and no delay time con-
stants have been included in kinetic expressions to 
account for successive protein synthesis steps of ri-
bosome binding, peptide elongation, protein fold-
ing, dimeric complexes formation, and their diffu-
sion to the DNA-binding site. In contrast to other 
simplificatory GS models,48,49,55 no min/max thresh-
olds have been imposed to the inducers or repres-
sors to “artificially” limit the DNA/mRNA synthe-
sis rate.

Mimicking the cell content ‘ballast’ replication

To mime the GS behaviour in the VVWC envi-
ronment, the two GERMs of the GS have been 
placed in an E. coli cell of known characteristics 
(the K-12 strain35). To also mime the whole content 
replication and volume growth under stationary or 
perturbed environmental conditions, a GERM de-
scribing the replication of the lumped genome (G1) 
and proteome (P1) (reactions 1–6 in Table 2) has 
also been added. For simplicity, the P1/G1 synthesis 
is assumed to be controlled by a rapid buffering re-
action G1 + P1  G1P1, close to its equilibrium, 
with a dissociation constant much larger than those 
of the core synthesis.18 The lumped proteome P1 
plays the role of permease for nutrients NutG, NutP 
import, of a metabolase for metabolites MetG1, 
MetP1, MetP2, MetP3 synthesis, and of a poly-
merase for the lumped genome G1 and target genes 
G2 and G3 production (Fig. 2). Thus, some holistic 
cell properties can be modelled, such as the cell 
content inertial/smoothing effect in treating pertur-
bations, the effect of the indirect or secondary per-
turbations transmitted via the cell-volume under 
isotonic osmolarity conditions.18

Genetic switch performance indices

When environmental concentration of an exog-
enous inducer (e.g. NutI2) changes, its cytosolic 
level (I2) varies, leading to activation of G2 expres-
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sion and, as a consequence, to the repression of the 
other gene of the switch (G3). The cell GS reacts 
vice-versa when raising NutI3 inducer level instead 
of NutI2. The resulting GS is either “On” when [P2] 
> [P3], or “Off” otherwise. The short transient 
times, high sensitivity to specific inducers, robust 
dynamic response, and tight control of gene expres-
sion are the common goals when designing an opti-
mised GS.1 To quantitatively characterize the GS 
efficiency, several indices have been defined, some 
of them in a similar way to those used by the non-
linear system control theory:5

– switch certainty (SC), which is high when the 
stationary ratio of the two co-expressed proteins 
[P2]s/[P3]s is high following an induction with 
NutI2. A “good” switch must usually realize SC 
>5–10 (depending on the inducer level).36,40

– steady-state stability strength, related to the 
firmness of GS steady-states (of local stability) ob-
tained for certain inducer level. For the ODE model 
of general form /d dtc  = ( , , )tg c k  T J c  (Table 
1), the stability condition requires that Re( ) 0jl   
for all j (where jl  are the eigenvalues of Jacobian 

/d dJ g c  matrix evaluated at the steady-state). 
One proposed alternative in this paper is to relate 
the stability strength to how much is the smallest 
absolute eigenvalue jl  different than sD  (it 
should be mentioned that in a VVWC model formu-
lation, the minimum of ( )jl J  is equal to sD  at all 
times due to the imposed isotonic conditions).56 
Various other alternatives, such as the stability re-
gion,1 or the smallest absolute eigenvalues of the 
monodromy matrix54 might be used instead.

– relative sensitivity coefficients of species 
steady-state concentrations (vector c) vs. stationary 
perturbations of external inducers/nutrients (vector 
Nut), numerically evaluated by performing the cell 
model differentiation:18

 
s s s

      
           Nut Nut

g c g
0

c c c
. (1)

– stationary responsiveness of homeostatic spe-
cies levels to stationary environmental perturba-
tions, expressed by the small transient times jt  
necessary for a reference species j stationary-level 
(e.g. the GS target proteins P2,P3) to reach a new 
steady-state (with a tolerance of 1 %18) after apply-
ing a stationary (“step-like”) perturbation in the ex-
ternal stimulus. In some reported models, explicit 
thresholds are imposed on the expressed enzymes, 
which will eventually determine activation or re-
pression limits for the GS gene expression.46,57

– dynamic responsiveness (efficiency) of ho-
meostatic species levels vs. dynamic perturbations, 
expressed by the small recovering times ,rec jt  nec-
essary for a reference species j (e.g. the GS target 

proteins P2,P3) to return to the initial steady-state 
(with a tolerance of 1 %18) after applying a dynamic 
(“impulse-like”) perturbation in a cytosolic or ex-
ternal species.

– overall responsiveness of the modular GRC 
approximated by the average of the transient times 
AVG( )jt  of all cell species after applying a sta-
tionary (“step-like”) perturbation in the external 
stimulus. Moreover, a global measure of the species 
connectivity (synchronisation) during the transition 
can be done by the standard deviation of species 
transient times jt .18

Comparing several ODE models 
for a GS design in E. coli

The two GERMs in Fig. 2 are placed in an 
E. coli cell of nominal characteristics presented in 
Table 3 (K-12 strain,35 the lumped genome/proteo-
me = [P1]s / [G1]s = 107 nmol L–1 / 4500 nmol L–1 
being known) in order to exemplify the GS proper-
ties predicted by models WC-B0 and WC-Bn under 
a VVWC framework. The accounted high levels of 
P1, G1, MetGj, MetPj will mimic the cell ‘ballast’ 
effect when small perturbations occur. A generic GS 
including proteins {P2,P3} of initial levels given in 
Table 3 (in the absence of GS external inducers) has 
been formulated for an easy comparative analysis. 
Other intermediate species, such as TFs and induc-
ers, are taken at different levels to study their influ-
ence on the GS efficiency.

The rate constants of every tested GS-model 
have been identified by solving the stationary mod-
el equations (Table 1) with substituted nominal con-
centrations of species from Table 3 (locally stable 
system), and for average [TF]s = 5 nmol L–1 (in the 
inducer absence). As proved by several authors, the 
dissociation constants of the buffering reactions 
used in the cross-repression for adjusting the gene 
activity, of type Gi + PjPj  GiPjPj   …   Gi(PjPj)n, 
must be adopted at a much higher value than the 
dilution rate (107

sD  here, see Table 2 footnote-a). 
Thus, the control reactions of G + P  GP type are 
kept near equilibrium, because K = /bind dissk k  = 
[ ](1 / )/[ ][ ]dissGP D k G P .18 The buffn  = 1–4 revers-
ible buffer reactions employed by models {WC-B1, 
WC-B2, WC-B3, WC-B4} use dimeric TF = 
{P2P2,P3P3}. Equal concentrations of catalytically 
active/inactive forms [Gj]s = [GjTFn]s are adopted at 
steady-state to ensure maximum regulatory efficien-
cy vs. perturbations.53,54 The Hill constants in 
{G2,G3} and {P2,P3} syntheses (reactions 
11,12,15,16 of Table 2), are adopted at values which 
follow the average concentration of inducers {I2,I3} 
and target proteins {P2,P3}, which means B = 2 
(similar to Voit46), and 2GK  = [I2ref]

4 = 1 (nmol L–1)4, 
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3GK   = [I3ref]
4 = 1 (nmol L–1)4, 2PK   = [P3ref]

nH = 10nH 
(nmol L–1)nH , 3PK  = [P2ref]

nH = 10nH (nmol L–1)nH . 
These constants can be easily ranged for every GS 
case according to the average {P2,P3} and {I2,I3} 
level of “sensitivity”. The estimated rate constants 
for the nominal cell conditions are presented in Ta-
ble 2 for models WC-B0, WC-B1 ( buffn  = 1), and 
WC-B4 ( buffn  = 4).

A typical simulation of the individual/lumped 
GS species response in E. coli is plotted in Fig. 3 
after a “step” perturbation in the environmental 
stimulus NutI2 from 0 to 1 nmol L–1. Predictions 
are generated by simulation over tenths of cell cy-
cles by using the model WC-B4 with four cross-re-
pressing reactions of {G2,G3} expression, for nR = 
3 self-repression exponent ([TF] = 5 nmol L–1). As 
expected, species present in large amounts (of order 
105–108 nmol L–1) display a negligible response to 
the NutI2 small perturbation (of 1 nmol L–1), while 
the cellular species directly connected to the NutI2/I2 
inducer pathway are very strongly affected. Even if 

the plots in Fig. 3 are represented for a large time-
scale (thousands of minutes), the species transient 
times for recovering their homeostasis are from the 
order of minutes up to few cell-cycles (hundreds of 
minutes, see Table 4, last column; see also the 
Elowitz & Leibler27 discussion on transmission of 
the effect of certain perturbations from generation 
to generation as an expression of cell adaptation to 
the environment).

Various values have been checked for the Hill 
cross-repression exponent nH = 2–8 when employ-
ing the model WC-B0 (with only Hill-type kinetics) 
in order to compare the GS-model characteristics 
from the perspective of regulatory efficiency indi-
ces. To keep similar terms of comparison, models 
WC-Bn have been considered with the number of 
TFs per gene operon corresponding to buffn  = nH/2 
successive repression reactions. For every studied 
case, the self-repression exponent nR, and [TF] lev-
el have been varied, by computing every time the 
GS regulatory indices after applying a stationary 

Ta b l e  3  – E. coli cell characteristics and nominal stationary concentrations of key-species considered in the GS model (inner cell 
concentrations are evaluated with formula in Table 1)

Variable Value Observations

– initial cell volume (cytoplasma, ,cyt oV ) 1.66 · 10–15 L Volkmer & Heinemann59

– cell cycle time ( ct ) 100 min Trun & Gottesman60

– lumped nutrients used for genome synthesis, [NutG]s 3 · 107 nmol L–1 referring to the environmental volume34,56

– lumped nutrients used for proteome synthesis, [NutP]s 3 · 108 nmol L–1 referring to the environmental volume34,56

– lumped metabolites used for proteome synthesis, [MetP1]s ~ 3 · 108 nmol L–1 Morgan et al.56; Maria34

– lumped metabolites used for target {P2,P3} synthesis, [MetP2]s, 
   [MetP3]s

106 nmol L–1 adopted 

– lumped metabolites used for genome synthesis, [MetG1]s ~ 2 · 107 nmol L–1 footnote (a)
– lumped metabolites used for target {G2,G3} synthesis, [MetG2]s, 
   [MetG3]s

104 nmol L–1 adopted (by keeping comparable ratios 
vs. MetP1/MetG1)

– lumped genome (active part), [G1]s 4500/2 nmol L–1 footnotes (b,c)

– lumped proteome, [P1]s 1 · 107 nmol L–1 footnote (b)

– target proteins [P2]s, [P3]s 5 nmol L–1 adopted

– gene [G2]tot or [G3]tot expressing the P2 or P3 proteins, respectively 1 nmol L–1 footnote (c)

– inactive catalytic forms of target genes, [Gi(PjPj)n]s [Gi]tot/(n+1) nmol L–1 footnote (c)
– environmental species [NutI2]s, [NutI3]s inducing target genes 
   G2, G3 expression 0–10 nmol L–1 referring to the environmental volume

– cytosolic species [I2]s, [I3]s inducing target genes G2, G3 
   expression 0–10 nmol L–1 adopted

(a) calculated from the state-law constraint for an isotonic and isothermal cell system:

   , ,

all all

j cyt j env
j j

c c     , , , , ,

all all all all all

MetGj cyt j env MetPj cyt Gj cyt Pj cyt
j j j j j

c c c c c        .

(b)   The considered K-12 strain of E. coli genome includes ca. 4500 genes, ca. 1000 ribosomal proteins of 1000–10000 copies, 
  ca. 3500 non-ribosomal proteins of avg. 100 copies, and ca. 4500 polypeptides of avg. 100 copies.35

(c) Maximum regulatory expression effectiveness takes place for active and inactive equal G-forms at steady-state, i.e. [Gj]s = [GjTFj]s, 
    where TF denotes the transcription factor adjusting the gene activity.18 For instance, in a system including G2 inactivation through 
    two ( buffn  = 2) successive buffering reactions 3 3 3 3

22 2( 3 3) 2( 3 3) ,P P P PG G P P G P P ® ®   the active G2 concentration results 
    from the steady-state equality: [G2]s = [G2(P3P3)]s = [G2(P3P3)2]s = [G2]tot/3.
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perturbation in external stimulus NutI2, or a dy-
namic perturbation in the target protein P2 (with the 
initial cell condition in Table 3). The results, sum-
marized in Table 4 (for all models), Fig. 4 (model 
WC-B0), and Fig. 5 (model WC-B1), lead to the 
following conclusions:

i) The SC increases with the decrease of self-re-
pression strength (nR), with the inducer level 
{NutI2, NutI3} up to a certain ‘saturation’ (depend-
ing on the imposed B, 2GK , 3GK  constants), and 
slightly with the initial target protein {P2,P3} level. 
For the WC-B0 model, the switch certainty SC in-
creases very sharply with the induction exponent 
nH for weak (nR = 0.5) self-repression (from SC = 
373 for nH = 2 to SC = 2031 for nH = 4), but pres-
ents much lower values for a stronger self-re-
pression (nR = 1) in the two GERMs (SC ≈ 4, 
Fig. 4 – top row). A similar SC behaviour is re-
ported for WC-Bn models (Table 4), but with a 
much more moderate variation (from SC = 18 for 
nR = 0.5 and buffn  = 1, until SC ≈ 3 for nR = 3 and 

buffn  = 4; Table 4). In contrast, WC-B0 model pre-
dictions seem to be too optimistic as long as the 
gene ‘catalytic’ activity moderation due to the suc-
cessive buffering reactions synchronization is ne-
glected.

ii) GS-steady-state local stability (i.e. all 
Re( ) 0jl  ) is a sensitive issue when comparing 
different models (Table 4). While stable steady-
states are predicted by WC-B0 for Hill coefficients 
nH ≥ 2 (as previously reviewed), for the WC-Bn 
model cases the GS stability is closely related to the 
number of repression steps (i.e. buffn  and nR pa-
rameters). While the WC-B1 model (with buffn  = 1 
cross-repression reaction) predicts two stable 
steady-states for nR ≥ 0.5, the model WC-B2 (with 

buffn  = 2) offers similar predictions for nR ≥ 2, 
while WC-B4 model ( buffn  = 4) for nR ≥ 3 (with a 
reduced stability strength). It appears that the in-
crease in the complexity of the repression mecha-
nism, with involving more synchronized reactions 
and intermediates, “works” against the system sta-
bility.

iii) The GS sensitivity to external stimuli, expressed 
here by the relative sensitivity ([ 2];[ 2])S P NutI at 
nominal state (Table 4), indicates the large WC-Bn 
constructions as being less sensitive to external in-
ducers than the simple WC-B0 formulations (from 
1.5 to 5 times, depending on the nR and TF level; 
Figs. 4–5).

iv) The stationary responsiveness to external 
stimuli {NutI2,NutI3}, quantified here by the 

F i g .  3  – Individual or lumped cellular species dynamics after a “step”-like stationary perturbation in the external 
stimulus [NutI2] from 0 to 1 nmol L–1 (applied at time t = 0). Predictions generated by model WC-B4 
under nominal conditions in Table 2 (TF level of [P2P2]s = [P3P3]s = 5 nmol L–1; nbuff = 4; nR = 3).
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{P3,P3} rise-time jt , and the cell average 
AVG( )jt  to reach the new steady-state after a sta-
tionary perturbation in stimuli {NutI2,NutI3}, indi-
cates comparable high values for all models, the 
perturbation effect being transmitted over 10–20 
cell generations (similar to experimental observa-
tions of (5 22)   reported by Voit46). As under-
lined by Elowitz & Leibler,27 the transition times in 
the inductive/co-repressed GS can be much higher 
than the cell-division cycle, the state of the transient 

switch or amplifier being transmitted from genera-
tion to generation of cells. A sharp reduction in the 
transient time can be given by the self-repression 
level, larger nR ≥ 3 values reducing the transition 
period and increasing the stability index (to the det-
riment of SC).

v) The dynamic responsiveness efficiency of 
 WC-Bn models is incomparably better (tenths of 
times) than those predicted by the Hill-WC-B0 
models, the small ( ± 10 %) “impulse”-perturba-

Ta b l e  4  – Genetic-switch performances designed in an E. coli cell, predicted by models WC-B0 (Hill-type cross-repression), and 
WC-Bn (P2,P3 synthesis cross-repression by TFs over buffn  buffering reactions). Notations: TF = {P2P2, P3P3}; AVG 
= average; NG = negligible (less than 1 min); nH = Hill cross-repression exponent of P2,P3 synthesis; nR = self-repres-
sion exponent of G2,G3 synthesis rate; nbuff = no. of successive repression reactions used in WC-Bn models for P2,P3 
synthesis; Index ‘s’ = stationary-state.

Model 
(cross-repression 

parameter)

nR 
(self-repression 

parameter)
[TF]

Switch 
certainty(a) 

[P2]s/[P3]s

Stability 
index(c) 

3
min| | 10l 

Sensitivity index(c) 

| ([ 2];[ 2])S P NutI | 
· 1013

Response to perturbations
stationary [NutI2]s dynamic ± 0.1[P2]s

transient 3Pt /AVG 
(min/min)(d)

recovering , 2rec Pt /AVG 
(min/min)(e)

tw
o 

TF
s 

pe
r g

en
e 

op
er

at
or

 s
ite WC-B0 

(nH = 2)
0.5 – 373.7 0.26 2.7 4918 / 2195 1122 / 247

1 – 4.21 1.56 1.7 3738 / 1595 258 / 96

WC-B1(f) 
(nbuff = 1)

0.5 5 18.1 8.23 0.64 4650 / 2758 43 / 15

1 0.5 13.8 0.41 0.14 3808 / 2206 393 / 397

1 5 3.31 1.33 0.31 3676 / 2206 58 / 18

1 10 2.57 1.53 0.35 3448 / 2128 NG / 4

2 5 1.43 3.32 0.11 1449 / 892 46 / 20

fo
ur

 T
Fs

 p
er

 g
en

e 
op

er
at

or
 s

ite

WC-B0 
(nH = 4)

0.5 – 2031 9.25 3.35 4938 / 2169 998 / 235

1 – 4.12 1.85 2.00 3685 / 1502 225 / 77

2 – 1.41 3.65 1.10 1087 / 610 125 / 50

WC-B2(f) 
(nbuff = 2)

2 0.5 3.85 1.63 0.41 2122 / 1389 245 / 230

2 5 2.56 2.12 0.31 2274 / 1529 55 / 56

2 10 2.28 2.24 0.29 2284 / 1550 NG / 22

3 5 1.39 4.13 0.49 1000 / 762 41 / 42

ei
gh

t T
Fs

 p
er

 g
en

e 
op

er
at

or
 s

ite

WC-B0 
(nH = 8)

1 – 3.45 2.15 2.4 3793 / 1500 211 / 74

3 – 1.18 4.69 0.81 NC / 22 130 / 42

WC-B4(f) 
(nbuff = 4)

3 0.5 2.52 1.78 0.55 1300 / 928 428 / 364

3 5 2.79 1.07 0.61 1359 / 959 410 / 519

3 10 2.92 0.72 0.64 1382 / 977 NG / 436

4 5 1.58 4.54 0.68 576 / 630 50 / 177

(a) Switch certainty index expressed as [P2]s/[P3]s ratio in the presence of an exogenous inducer of [NutI2]s = 1 nmol L–1.
(b) Stability strength expressed as the minimum of ( )jl J  different from sD  (for a stable cell in a VVWC model formulation, the 
  minimum of ( )jl J  is equal all the time to sD .56

(c) Relative sensitivity of P2 level vs. the environmental level of its synthesis inducer NutI2 (under the same nominal conditions).
(d) P3 species transient time ( 3Pt ), and average AVG transient times of all cell species to reach the steady-state (with a tolerance of 
  1 %18) after a “step-like” perturbation in [NutI2]s from 0 to 1 nmol L–1.
(e) P2 species recovering time ( , 2rec Pt ), and average AVG recovering times of all cell species to reach the steady-state (with a 
  tolerance of 1 %18) after an “impulse-like” perturbation of ± 10 %[P2]s.
(f) WC-B1 stable for nR > 0.5, WC-B2 stable for nR ≥ 2, WC-B4 stable for nR ≥ 3.
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tions in the key species being “extinguished” over a 
few minutes during the cell cycle (e.g. ,AVG( )rec jt  
= 4–18 minutes for WC-B1 with [TF] = 5–10 
nmol L–1, nR = 1 in Table 4). The dynamic efficien-
cy increases with the TF-level and stability index 

(to the detriment of SC index), and decreases with 
the strength/complexity of the repression control 
(i.e. with the increase of nH, nR, buffn  parameters) 
(Fig. 4–5). This GS efficiency index better reflects 
the superiority of more elaborated GS models of 

F i g .  4  – Model WC-B0 predictions of genetic-switch certainty (1st and 2nd rows), sensitivity index ([ 2];[ 2])S P NutI  (3rd row), and 
P2 recovery time (4th row) as a function of model parameters nH, nR, [NutI2]s, initial [P2]s = [P3]s level (nominal [P2]s 
= [P3]s = 5 nmol L–1).
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WC-Bn type that explicitly include intermediate 
steps of the key regulatory loops.

vi) The GS properties depend on the employed 
model structure and parameters. For solving practi-
cal GS applications, the most flexible model here 
seems to be the WC-B0 with nH = 2 (lumped Hill-
type), or its corresponding model WC-B1 (with 

buffn  = 1 explicit cross-repression step), being easi-
ly adaptable to a certain case study (of known 
P2,P3,G2,G3 and inducer levels) by means of sev-
eral tuning parameters (nH, nR, buffn , B, 2GK , 3GK , 

2PK , 3PK , [TF]o), using ‘wild’- or cloned cells 
with known {G2,G3} plasmid levels. The WC-Bn 
models seem to be more flexible, by replacing the 

adjustment of nH with the adjustment of two pa-
rameters { buffn , [TF]o}.

vii) The estimated rate constants of the buffer-
ing reactions of {G2,G3} activity in WC-Bn models 
(Table 2) are comparable to those reported in the 
literature. For instance, the repressor monomer dim-
merization/dissociation, as well as the repressor 
binding to operator/repressor–operator complex dis-
sociation constants of ca. (102 L nmol–1 min–1 / 
1–103 min–1)36 are comparable to (103 L nmol–1 min–1 
/105 min–1) in WC-B1 model, the differences com-
ing from the adopted large dissociation constant 
(105 min–1) for all reactions involving TFs. The ap-
parent rate constants in WC-Bn reactions that in-

F i g .  5  – Model WC-B1 predictions of genetic-switch certainty (1st and 2nd rows), sensitivity index ([ 2];[ 2])S P NutI , and P2 recov-
ery time (3rd row) as a function of model parameters nR, [NutI2]s, initial [P2]s = [P3]s, and [TF]s level (nominal [P2]s = 
[P3]s = 5 nmol L–1, and [TF]s = 5 nmol L–1).
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clude large lumps (i.e. P1, MetP1, MetP2, MetP3, 
MetG1, MetG2, MetG3) are obviously much small-
er than those reported in literature. However, these 
constants become comparable when including the 
lumped cell ‘ballast’ contribution. For instance, the 
mRNA (genes G2,G3) synthesis rate constants of 
ca. 10–6 L nmol–1 min–1 (including [P1]) is compara-
ble to the reported 10–4 L nmol–1 min–1 values,58 the 
differences coming from the considered large 
lumped {MetG2,MetG3} precursors (of 104 nmol 
L–1 levels). However, such adopted high levels of 
metabolites do not reduce the generality of the anal-
ysis, trying to highlight the influence of the “rest” 
of the cell on the GS behaviour.

As a general observation, the GS efficiency de-
pends not only on the model type, but also on the 
levels of external nutrients and inducers (NutG, 
NutP, NutI2, NutI3), the cell cycle period, and the 
levels of key-intermediates involved in the reaction 
pathway (TF represented by P2P2 and P3P3 here). 
Even if GS modelling analysis is kept at a generic 
level, comparison of hybrid WC-Bn models with 
Hill-type reduced models (of GERMs similar to 
those of Voit46) under the VVWC framework is rel-
evant enough to promote such constructions as a 
worthy alternative to the classical representations.

The explicit models of some allosteric regulato-
ry steps (like cross-repression in WC-Bn models) 
seems to be a promising alternative for the better re-
production of GS dynamic responsiveness and stabil-
ity properties, and better reflection of the diminished 
SC due to the cell ‘ballast’ effect in smoothing all 
perturbations, but especially those of the existing 
species in small amounts. Moreover, the reduced 
Hill-type models (e.g. WC-B0) seem to offer too ‘op-
timistic’ predictions, such as very high SC or large 
regions of stability independent of the nR exponent 
or TF level (Table 4). In contrast, the WC-Bn models 
appear to be more suitable for pointing out complex 
relationships between GS bi-stability strength and the 
negative regulatory loops of self- (via nR exponent) 
and cross-repression (via buffn , TF level), implying 
more intermediate species.

Conclusions

As underlined in literature and pointed out by 
the present numerical analysis, the detailed GS 
models that include a complex repression mecha-
nism with lumped terms (reactions, species, rate ex-
pressions) but also explicit intermediate control 
steps (concerning induction, cross- and self- repres-
sion) can offer a more flexible and mechanis-
tic-based GS model structure of higher tunability 
(due to the larger number of parameters), even if the 
required estimation/tuning effort increases consider-
ably. An acceptable trade-off between the model 

simplicity, its estimability vs. available information 
(by including a reasonable number of parameters of 
physical significance), computing tractability, and 
predictive quality should be realized every time 
when simulating the dynamic properties of the com-
plex genetic regulatory networks.

A combination of Hill-type activation steps 
completed with rapid buffering reactions (using di-
meric TFs) adjusting the genes activity, and a mod-
ular GERM construction (like WC-Bn models here) 
seem to be promising for obtaining increased accu-
racy in the evaluated regulatory GS indices com-
pared to the lumped power-law/Hill-type kinetic 
models. The local/holistic GS regulatory properties 
can be easily ranged according to available dynamic 
data by tuning the model parameters and TF-levels 
controlling the repressing enzymes, for known aver-
age levels of key-species. For instance, our study 
demonstrates how an increase in the complexity of 
the repression mechanism, with involving more 
synchronized reactions and intermediates, can nega-
tively affect the GS system state stability.

Moreover, the modular approach is proved to 
be more appropriate to study GRCs, by offering the 
advantage of an expandable simulation framework 
in accordance with the modelling purposes. The lo-
cal but also the holistic GRC regulatory properties 
can be studied in such a manner, allowing a more 
realistic characterisation of the system (in terms of 
stability, flexibility, multiplicity, efficiency, robust-
ness).

The VVWC modelling framework employed in 
this study can be viewed as another level of com-
plexity used in developing dynamic cell models, 
when the GRC dynamic properties should be evalu-
ated from another perspective. In particular, by 
placing the two gene expression regulatory modules 
of a GS in a simulated cell of known characteristics, 
the GS properties can be studied by mimicking sta-
tionary or perturbed environmental conditions, by 
accounting for direct but also indirect GS interac-
tions with the genome and proteome transmitted via 
the common cell-volume under isotonic osmolarity 
conditions.

Being formulated at a generic level, such rea-
sonable simple GS models can be included in larger 
metabolic network models by simply tuning the 
model parameters, being able to simulate some ob-
servable effects, such as: i) quick and efficient 
cross- and self-control of the gene expressions by 
means of adjustable dimeric TFs; ii) gene expres-
sion amplification at low levels of exo/endogenous 
inducers; iii) quantitative characterization of the GS 
response to various perturbations; iv) ‘inertial’/
smoothing cell content effect in treating perturba-
tions under isotonic conditions; v) GS synchroniza-
tion in adjusting the target gene expression. Desir-
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able properties of a GS, such as SC, stability 
strength, stationary and dynamic efficiency, switch 
responsiveness, robustness and selectivity to exter-
nal stimuli, can be checked quite easily by adjusting 
the GS model parameters, leading to the use of GS 
models for cell design purposes.

N o m e n c l a t u r e

B – rate constant in Hill expressions
jc  – species (individual, lump, or ‘pool’) concentration

D  – cell content dilution rate
g – kinetic model function vector

/d dJ g c  – dynamic model Jacobian matrix
k, K – kinetic constants
n, nH, nR – Hill-kinetics exponents

buffn  – number of repressing reversible reactions binding 
dimeric TFs to gene operator

jn  – species j number of moles
sn  – number of species

AN  – Avogadro number
jr  – species j reaction rate

R – universal gas constant
( ; ) ln( ) / ln( )S y x y x   – relative sensitivity of y vs. x

t – time
ct  – cell-cycle time

T – temperature
V – cell volume (cytoplasma)

G r e e k s

λ(J) – eigenvalues of the Jacobian matrix
  – osmotic pressure

,rec jt – species j recovering time of the steady-state
jt  – species j transition time from one steady-state to 

another 

I n d e x   

cyt – cytoplasm
diss – dissociation
env – environment
o – initial
ref – reference (nominal)
s – steady-state
tot – total

A b b r e v i a t i o n s   

A  – activator
AVG () – average of ()
G  – gene
GERM – gene expression regulatory module

GRC  – genetic regulatory circuit
GS  – genetic switch
I  – inducer
M  – mRNA
Met  – metabolite
Nut  – nutrient
ODE  – ordinary differential equations
P  – protein
R  – repressor
SC  – switch certainty
TF  – transcription factor
VVWC – variable-volume whole-cell
WC  – whole-cell
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