RESEARCH AND RANKING OF THE FACTORS OF IMPACT ON EFFICIENCY AND EFFECTIVENESS OF THE QUALITY MANAGEMENT SYSTEM CERTIFICATION PROCESS USING THE PRIOR FACTOR RANKING METHOD

Đuro Tunjić, Milan Kljajin, Veljko Kondić

This article shows the method of ranking the factors in the study of efficiency and effectiveness of the process of quality management system certification compliant with the requirements of international standard ISO 9001. During the research of efficiency of the quality management systems certification process in enterprises of metal processing industry in Croatia, various impact factors that affect the certification process have been identified. Therefore, the issue arose whether each factor could be treated equally, i.e. whether there are factors that are more important and have a more pronounced effect and greater impact on the certification process. The survey collected the opinions of competent experts in certification institutions, i.e. of external auditors who are directly involved in the certification process, and the representatives of the quality of the companies that have certified the system for at least two years. After the data was collected, ranking of impact factors and analysis of results was conducted.

Keywords: certification, efficiency, effectiveness, impact factors, prior factor ranking method, quality, quality management system

Istraživanje i rangiranje utjecajnih faktora na efikasnost i uspješnost procesa certifikacije sustava upravljanja kvalitetom metodom apriornog rangiranja faktora

U članku se prikazuje primjena metode rangiranja faktora u istraživanju efikasnosti i uspješnosti procesa certifikacije sustava upravljanja kvalitetom usklađenim sa zahtjevima međunarodne norme ISO 9001. Tijekom istraživanja ofikasnosti procesa certifikacije sustava upravljanja kvalitetom u poduzećima metaloprađivačke djelatnosti u Republici Hrvatskoj, identificirani su različiti utjecajni faktori koji djeluju na sam proces certifikacije. Zbog toga se postavilo pitanje, može li se svaki faktor ravnopravno tretirati, odnosno postoje li faktori koji su važniji i koji imaju izraženije djelovanje i veći utjecaj na sam proces certifikacije? Istraživanjem su prikupljena mišljenja kompetentnih stručnjaka iz certifikacijskih ustanova, odnosno eksternih auditora koji su direktno uključeni u proces certifikacije, te predstavnika za kvalitetu poduzeća koja imaju certificirani sustav u trajanju od najmanje dvije godine. Nakon prikupljenih podataka provedeno je rangiranje utjecajnih faktora i analiza rezultata.

Ključne riječi: certifikacija, efikasnost, kvaliteta, metoda apriornog rangiranja faktora, sustav upravljanja kvalitetom, uspješnost, utjecajni faktori

1 Introduction

A large number of certified companies in the world confirm the need for an independent and objective verification of the quality management system and for proving its good organization and structure on the market [5]. Although numerous advantages of certification companies are well known, we can still hear the opposing views. Significant influence of functional and stochastic factors (management, employees, markets, customers, etc.), the complexity of their relationship and the possibility of different effects, make the certification a very demanding process in terms of planning and implementation. The companies that align their quality management systems with the requirements of these standards are expecting "benefit" not only from the implemented system, but also from the certification process. For these reasons, a study has been conducted [1] in relation to the identification and recognition of impact factors on the efficiency of the certification process, as well as their ranking with the goal of finding the factors with the greatest impact levels [2]. In this way, the priorities in the process of improving the certification process have been defined.

2 Research and defining of procedures of ranking the impact factors

In previous research [1, 8] of the efficiency of the process of certification of quality management systems, nine impact factors have been identified:

- \(F_1 \) – Communication before the audit: term of audit, audit team, audit plan, etc.
- \(F_2 \) – Auditor’s expertise
- \(F_3 \) – Auditor’s competence
- \(F_4 \) – Professional and correct behaviour of auditors
- \(F_5 \) – Expertise, knowledge and quality of preparation of employees in the company for audit.
- \(F_6 \) – The accuracy of determination of non-compliance and areas for improvement by the auditor.
- \(F_7 \) – Quality of the final meeting: Completeness of information on the results of the audit.
- \(F_8 \) – Communication after audit conduction: text of certificate, audit report, etc.
- \(F_9 \) – Quality in conducting surveillance of audits: changing auditors, constant improvement, etc.

For the implementation of ranking the impact factors, 15 external auditors (from different certification companies - \(EA_i \)) and 15 quality management representatives (\(QMR_i \)) were employed. To identify the dominant factors, according to [2], the method of their a priori ranking was applied. The ranking process and analysis of the impact factors are presented in [9].

3 Ranking of impact factors

3.1 Ranking of factors and realignment of the original rankings

The external auditors \(EA_i \) and quality managers (\(QMR_i \)) assigned certain ranks to identified impact factors, in terms of their dominance at the very efficiency
Research and ranking of the factors of impact on efficiency and effectiveness of the quality management system certification process … Đ. Tunjić, M. Kljajin, V. Kondić

of the process of certification of quality management systems (rank 1 most influential, rank 9 least influential). In the evaluating rank, the importance of these factors is shown by using the rating scale (1 ÷ 7): 1 equals the greatest impact, and 7 the lowest. More factors could have the same rank. As the subjects used the possibility of assigning the same rank to various factors, it was necessary to pre-form the ranks. In that case, the factors with the same rank got a new rank, equal to the mean value of the place which factors divided among themselves. In this way, we came from the base table of ranks to the preformed table of ranking the impact factors. Tab. 1 shows the final preformed table of ranks on the example of interviewing E_A.

In Fig. 1, through comparative diagram Box – Whisker, the impact factors and assigned ranks of preformed ranks E_A are shown.

Table 1 Preformed table ranking of impact factors

<table>
<thead>
<tr>
<th>No.</th>
<th>External auditors E_A</th>
<th>Impact factors j</th>
<th>Correction factor T_j</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>F_1</td>
<td>F_2</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>8,5</td>
<td>6,5</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>7</td>
<td>8,5</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>4,5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1,5</td>
<td>3,5</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>4,5</td>
<td>6,5</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>4,5</td>
<td>4,5</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>9</td>
<td>5,5</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>1,25</td>
<td>1,25</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>3,5</td>
<td>6,5</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

3.2 Checking the adequacy of the original and preformed table

Checking the adequacy of the original and preformed tables was conducted by using the Spearman rank correlation coefficient [4], which can take the values from the closed interval, from −1 to +1:

$$r_s = 1 - \frac{6 \cdot \sum_{j=1}^{k} (Q_{ij}^{(1)} - Q_{ij}^{(2)})^2}{k \cdot (k^2 - 1)}; \quad -1 \leq r_s \leq 1,$$

where:

k – number of impact factors ($k = 1 ÷ 9$)
Q_{ij}^{(1)} – ranks assigned to the factors in the initial table according to the total sum of ranks
Q_{ij}^{(2)} – ranks assigned to the factors in the preformed table according to the total sum of ranks.

The statistical value \(r_s \) was checked using the \(t \) – distribution whose value was calculated according to the formula [6]:

\[
t_r = \frac{r_s}{\sqrt{1 - r_s^2}},
\]
\[
(2)
\]

where:
\(k \) – number of impact factors (\(k = 1 \div 9 \))
\(r_s \) – Spearman rank correlation coefficient.

If the calculated value of \(t_r \) exceeds the table values, it is concluded that the correlation coefficient is significant [4, 6].

3.3 Checking the level of consent opinions of respondents

The degree of conformity of opinions of respondents was checked using the Kendall coefficient of consent \(W \) which takes the values between 0 and +1 (0 if there is no consent, and +1 if there is full compliance) [4]. Since it came to the repetition of ranks in the actual analysis, the formula for Kendall coefficient consent was added for correction factor for the related ranks \(T_i \) [6].

\[
W = \frac{12 \sum_{j=1}^{k} A_j^2}{m^2 \cdot k(k^2 - 1) - m \sum_{i=1}^{m} T_i},
\]
\[
(3)
\]

where:
\(k \) – number of impact factors (\(k = 1 \div 9 \))
\(m \) – number of EA and QMR (\(m = 1 \div 15 \))
\(\sum_{j=1}^{k} A_j^2 \) – The sum of squared deviations of the sum of ranks of all external auditors
\(\sum_{i=1}^{m} T_i \) – The sum of correction factors related to ranks.

Calculation of the correction factor was performed using the expression [2]:

\[
T_i = \sum_{j=1}^{k} (A_j^2 - t_i),
\]
\[
(4)
\]

where \(t_i \) is the number of repetition of the \(i \)-th rank in the \(j \)-th row.

To check the values of Kendall coefficient of consent \(W, \chi^2 \) – test with the following indicator was applied [7]:

\[
\chi^2_r = m \cdot (k - 1) \cdot W,
\]
\[
(5)
\]

where the following is required

\[
\chi^2_r > \chi^2_f,
\]
\[
(6)
\]

where:
\(m \) – number of EA and QMR (\(m = 1 \div 15 \))
\(k \) – number of impact factors (\(k = 1 \div 9 \))

3.4 Ranking of competence

Respondents (EA and QMR) differentiated (work experience, vocational training, character, etc.), so it was necessary to carry out the ranking of their competence (Tab. 2).

Table 2 Ranked competences of individual ED by experts

<table>
<thead>
<tr>
<th>No.</th>
<th>Experts (h)</th>
<th>External auditors (EA_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>(\sum_{h=1}^{5} a_{ih})</td>
<td>54</td>
</tr>
<tr>
<td>3</td>
<td>(\sum_{h=1}^{5} a_{ih} - \sum_{h=1}^{5} b_{ih})</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>(A_i^2)</td>
<td>196</td>
</tr>
<tr>
<td>5</td>
<td>(Z_i = a + b \sum_{h=1}^{5} a_{ih})</td>
<td>0,72</td>
</tr>
</tbody>
</table>

\(b = -0,019 \)
\(a = 1,746 \)

3.5 Testing of the degree of agreement of the respondents

The degree of respondents’ conformity of opinions was checked out by using the Kendall coefficient of
that the series of ranks were mutually dependent, the hypothesis of the existence of experts consent opinions was accepted.

3.6 Assigning "weight" or "important" to respondents

Respondents were assigned weight or their significance. Respondents who had the smallest sum of ranks were assigned the greatest significance, and those with the highest number of ranks the lowest. For other respondents, significance was determined by the expression [2]:

\[Z_i = a + b \sum_{h=1}^{5} a_{ih} \]

(7)

The values of the parameters \(a \) and \(b \) were calculated using the system of equations with two unknowns, which were included in the value of the maximum and minimum \(Z \), and the value of minimum and maximum rank sum.

3.7 Weighting of preformed ranks of impact factors with importance of \(EA \) and \(QMR \)

By weighting of preformed ranks of factors of influence with importance \(Z \) of individual \(EAs \) and \(QMRS \), the ranks were assigned with certain weight and statistically relevant data was obtained (Tab. 3). Since the Spearman rank correlation coefficient proved the adequacy of the original and preformed tables of the ranks, there is a conclusion that the table of preformed factors of influence weighted with the importance of \(EAs \) and \(QMRS \) is adequate to the source table and could be used in future work.

Table 3 Preformed impact factors weighted with the importance of \(EA \)

<table>
<thead>
<tr>
<th>No.</th>
<th>External auditors (EA)</th>
<th>Impact factors (j)</th>
<th>(F_1)</th>
<th>(F_2)</th>
<th>(F_3)</th>
<th>(F_4)</th>
<th>(F_5)</th>
<th>(F_6)</th>
<th>(F_7)</th>
<th>(F_8)</th>
<th>(F_9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>6,12</td>
<td>4,68</td>
<td>2,16</td>
<td>2,88</td>
<td>0,72</td>
<td>1,44</td>
<td>4,68</td>
<td>6,12</td>
<td>3,60</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>3,85</td>
<td>4,67</td>
<td>0,66</td>
<td>0,66</td>
<td>0,66</td>
<td>0,66</td>
<td>4,67</td>
<td>3,30</td>
<td>0,66</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>5,68</td>
<td>7,10</td>
<td>1,89</td>
<td>1,89</td>
<td>11,36</td>
<td>8,52</td>
<td>9,94</td>
<td>12,78</td>
<td>1,89</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>2,25</td>
<td>5,25</td>
<td>5,25</td>
<td>2,25</td>
<td>9,75</td>
<td>13,5</td>
<td>7,50</td>
<td>12,00</td>
<td>9,75</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>6,57</td>
<td>9,49</td>
<td>1,94</td>
<td>6,57</td>
<td>1,94</td>
<td>1,94</td>
<td>9,49</td>
<td>12,41</td>
<td>12,41</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>4,76</td>
<td>5,44</td>
<td>1,02</td>
<td>4,08</td>
<td>6,12</td>
<td>1,02</td>
<td>2,38</td>
<td>2,38</td>
<td>3,40</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>2,88</td>
<td>3,60</td>
<td>0,96</td>
<td>0,96</td>
<td>5,76</td>
<td>4,32</td>
<td>5,04</td>
<td>6,48</td>
<td>0,96</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>3,91</td>
<td>3,91</td>
<td>1,74</td>
<td>2,61</td>
<td>6,96</td>
<td>0,87</td>
<td>7,83</td>
<td>5,65</td>
<td>5,65</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>7,29</td>
<td>5,67</td>
<td>0,81</td>
<td>4,45</td>
<td>4,45</td>
<td>3,24</td>
<td>2,02</td>
<td>6,48</td>
<td>2,02</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>11,61</td>
<td>7,09</td>
<td>1,29</td>
<td>3,22</td>
<td>3,22</td>
<td>5,16</td>
<td>7,09</td>
<td>9,03</td>
<td>10,32</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>1,47</td>
<td>1,47</td>
<td>1,47</td>
<td>1,47</td>
<td>9,44</td>
<td>7,67</td>
<td>7,67</td>
<td>10,62</td>
<td>5,90</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>8,73</td>
<td>3,88</td>
<td>0,97</td>
<td>1,94</td>
<td>7,27</td>
<td>5,33</td>
<td>5,33</td>
<td>7,27</td>
<td>2,91</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>3,71</td>
<td>3,18</td>
<td>1,32</td>
<td>1,32</td>
<td>0,53</td>
<td>2,12</td>
<td>2,65</td>
<td>4,77</td>
<td>4,24</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>3,92</td>
<td>7,28</td>
<td>1,12</td>
<td>2,24</td>
<td>10,08</td>
<td>7,28</td>
<td>3,92</td>
<td>5,60</td>
<td>8,96</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>5,82</td>
<td>3,88</td>
<td>0,97</td>
<td>2,42</td>
<td>2,42</td>
<td>4,85</td>
<td>7,27</td>
<td>8,73</td>
<td>7,27</td>
</tr>
</tbody>
</table>

\[\sum a_j Z_i = 71,49 \]

\[\sum a_j Z_i = 14,79 \]

\[M_j' = \frac{\sum_{i=1}^{m} a_j Z_i}{\sum_{j=1}^{M} \sum_{i=1}^{m} a_j Z_i} \]

\[\sum_{j=1}^{M} \sum_{i=1}^{m} a_j Z_i = 643,45 \]
2.8 Checking the level of consent opinions surveyed after the introduction of the factors of significance

The degree of conformity of opinions of respondents was checked by using the Kendall coefficient of consistence for which check of statistical values \(\chi^2 \) – test was applied. The results confirmed the hypothesis of the existence of consent opinions surveyed by EA and QMRs.

2.9 Determining the degree of each impact factor

The degree of influence of each factor on certain occurrence was determined by using the coefficient of significance of impact factors [5]:

\[
M_j = \frac{\sum_{i=1}^{m} a_{ij}Z_i}{\sum_{i=1}^{m} \sum_{j=1}^{m} a_{ij}Z_i}.
\] (8)

Fig. 2 shows an a priori diagram of the factors ranks impact on the efficiency of the certification of quality management systems process according to the ranking of the EA, and Fig. 3 of the QMRs.

![Figure 2](image1.png)

Figure 2 A priori diagram of the factors ranks impact on the efficiency of the process of certification audit of QMS (Quality Management System), according to EA opinion

![Figure 3](image2.png)

Figure 3 A priori diagram of the factors ranks impact on the efficiency of the process of certification audit of SUK, according to QMR opinion

The factors that affect the efficiency of the certification audit of quality management system can be classified into three groups (Tab. 4).

![Figure 4](image3.png)

Figure 4 A priori line diagram of the factors ranks impact on the efficiency of the process of certification audit of QMS, according to the EA and QMR opinion

Table 4 Factors that affect the efficiency of the certification

<table>
<thead>
<tr>
<th>Rank</th>
<th>Importance of factor</th>
<th>EA</th>
<th>QMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>The most influential factors</td>
<td>(F_1, F_4)</td>
<td>(F_3)</td>
</tr>
<tr>
<td>II</td>
<td>Less influential factors</td>
<td>(F_6, F_9, F_{10}, F_{11}, F_8)</td>
<td>(F_7, F_8, F_6)</td>
</tr>
<tr>
<td>III</td>
<td>The least influential factors</td>
<td>(F_7, F_8)</td>
<td>(F_3, F_4, F_5)</td>
</tr>
</tbody>
</table>

4 Conclusions

From the obtained results, the difference in approach by QMR and EA is visible. QMRs consider expertise, knowledge and quality of preparation of the firm’s staff for audit as the most important factors, while EA puts the expertise and professionalism of auditors in the first place. These are simply two views and two groups with different interests, and the situation in which both sides are right. EA sees its job of auditing, and from its aspect, expertise and knowledge of the auditor himself are the most important. They review the functioning of the system and do not think that preparation of employees can significantly affect the results of the audit. On the other hand, QMRs with their point of view and everyday situations that they have, see just the active involvement of all employees in the preparation for audit as the most important factor. Further research would likely come to the conclusion that this assessment basically relates to things on a daily basis active involvement in the implementation of the system. QMRs themselves are also aware that it is not possible to prepare for the audit in only a few days, but that the daily use of the system requirement is necessary.

On average, three factors (\(F_3, F_4 \) and \(F_5 \)) are separated as the most influential. Particularly interesting is the factor \(F_4 \), because QMR rated it as the most influential, and significant impact is assigned by EA too. Since this factor relates to the expertise, knowledge and proper preparation of employees, in this way the need for the action to raise awareness about the quality of employees in enterprises has been proven yet another time. It is necessary to implement the education of a wider group of employees, not just those who are active in building up and auditing systems. Without education and raising of awareness about the importance of quality, it will be difficult to raise the system to a higher level and to direct it towards business excellence.
5 References

Authors’ addresses

Duro Tunjić, Ph.D.
TÜV Croatia d.o.o., TÜV NORD Group
Savska 41, 10000 Zagreb, Croatia
E-mail: dtunjic@tuv-croatia.hr

Milan Kljajin, Ph.D., full professor
J. J. Strossmayer University of Osijek,
Mechanical Engineering Faculty in Slavonski Brod,
Trg Ivane Brlić-Mažuranić 2,
35000 Slavonski Brod, Croatia
E-mail: mkljajin@sfsb.hr

Veljko Kondić, Mag. Eng. ME
Polytechnic of Varaždin,
J. Križanića 33,
42000 Varaždin, Croatia