The Effects of Parental Smoking on Anthropometric Parameters, Peak Expiratory Flow Rate and Physical Condition in School Children

Ivan Pavić¹, Sonja Anić Jurica², Pero Pavić³, Jasna Čepin Bogović⁴, Martina Krmek² and Slavica Dodig⁵

¹ University of Zagreb, Children’s Hospital Zagreb, Department of Pulmonology, Allergology, Immunology and Rheumatology, Zagreb, Croatia
² University of Zagreb, University Hospital Center Zagreb, Zagreb, Croatia
³ Elementary School Trijlić, Trijlić, Croatia
⁴ University of Zagreb, Children’s Hospital Zagreb, Zagreb, Croatia
⁵ Children’s Hospital Srebrnjak, Zagreb, Croatia

ABSTRACT

Passive smoking in children is a considerable health problem, mainly arising from parental smoking. The objectives of the present cross-sectional study were to assess the impact of passive smoking on 1) anthropometric parameters; 2) peak expiratory flow rate (PEFR); and 3) physical condition in school children. The target population included 177 children attending elementary school 5th to 8th grade. Study subjects were divided into two groups according to parental smoking habits. Body weight and height were determined using a digital weighing scale and digital stadiometer; PEFR was measured between 8 a.m. and 10 a.m. using a Peak Flow Meter; and physical condition was assessed by the 6-minute run test. Sixty-six percent of study children were exposed to passive smoking. The children of smoking parents had higher BMI [18.79 (17.50–21.13) kg/m²] than children of nonsmoking parents [17.90 (16.00–20.00) kg/m²; p=0.036]. There was no statistically significant difference in body height and weight. The children of smoking parents had statistically lower values of PEFR [M(IQR) = 84 (78–88)%, M(IQR) = 94 (89–101)%, respectively; p<0.0001] and 6-minute run test than children of nonsmoking parents [M(IQR) = 2 (1–3), M(IQR)=4(3–5); respectively; p<0.0001]. The results of the present study showed that exposure of school children to passive smoking by their parents resulted in an increase of BMI, impairment of lung function, and impairment of physical condition, especially in children of both smoking parents.

Key words: children, parental smoking, antropometric parameters, peak expiratory flow rate, physical condition

Introduction

Since 1981, when a Japanese study showed that second-hand smoke caused lung cancer in nonsmokers¹, a vast number of published data have revealed that passive smoking is associated with a range of adverse health outcomes. It seems that the unfavorable impact of passive smoking is more pronounced in children, which could be due to the fact that their undeveloped systems are more susceptible to the harmful effects of second-hand smoke.

Unfortunately, the most common source of passive smoking in children is parental tobacco smoking at home. According to the World Health Organization (WHO), 43% of all children in the world are exposed to passive smoking at home by at least one smoking parent². In Croatia, it is estimated that 73.4% of children are exposed to second-hand smoke at home³.

Passive smoking is strongly linked to a range of adverse health outcomes in children. The harmful effect of toxic agents from cigarette smoke begins even in utero if mother smokes during pregnancy. Available medical evidence suggest that maternal smoking in pregnancy leads to lower birth weight and birth length, and predisposes newborns to increased respiratory morbidity after birth⁴,⁵. Children passively exposed to cigarette smoke are more susceptible to respiratory tract infections and other serious bacterial infections⁶,⁷. It has been demonstrated that exposure to parental smoking during child-

Received for publication July 8, 2013
hood is associated with significant decrease in lung function, especially peak expiratory flow rate (PEFR), forced expiratory volume in 1 second (FEV1) and forced expiratory flow8–13. Peak expiratory flow monitoring is widely used to assess airway caliber because it is highly sensitive and has an accurate index of airway obstruction, is easy to perform, inexpensive and well tolerated.

Exposure to second-hand smoke adversely affects physical growth in young children14. However, it seems that not all children are equally susceptible to the harmful effects of second-hand smoke, indicating that genetic factors may determine their susceptibility to damage caused by toxic ingredients from cigarette smoke15,16.

The objectives of the present study were to assess the impact of passive smoking on 1) anthropometric parameters; 2) PEFR; and 3) physical condition in school children.

Subjects and Methods

This cross-sectional study was conducted at Trilj Elementary School between September 2011 and November 2011. Trilj is a rural area of southern Croatia, with small socioeconomic differences. The target population included 177 children attending 5th to 8th grade. Forty-four children were excluded from the study: 9 for the history of asthma, 3 for the history of systemic disease with known repercussion on respiratory function (2 with neuromuscular disease and 1 with congenital cardiopathy), 17 for being diagnosed with acute respiratory tract infection during the course of the study, 7 for having refused to take part in the study, 4 children failed to complete the questionnaire, and 4 children for having admitted active smoking. Study children and their parents were asked about family smoking at home, defined as second-hand smoke exposure in this study17.

Children were divided into two groups according to the parental smoking habits: group 1 including children of smoking parents (N=88/133; 66%; 45 female) and group 2 including children of nonsmoking parents (n=45/133; 34%; 23 female) as control group. In addition, group 1 subjects were divided into two subgroups: 1A, one smoking parent (N=49/133; 37%) 1B, both smoking parents (N=39/133; 29%).

Body weight and height were determined using a digital electronic weighing scale (range 1–150 kg) and digital stadiometer (range 70–205 cm), respectively. These data were used to calculate body mass index (BMI) of each study subject. Body weight was expressed in kilograms (kg), body height in centimeters (cm) and BMI in kg/m². PEFR was measured between 8 AM and 10 AM using a Peak Flow Meter with a scale graduated high range of 60–800 L/min. Children were instructed how to use the instrument. They were asked to take deep breath, then to exhale it by forceful expiration as fast as possible after maintaining airtight seal between lips and mouthpiece of the instrument. All measurements were performed by the same pediatrician. Every measurement was repeated three times and the best matching results were used on analysis. The results were expressed as percentage of the predicted value for age, sex and height. On assessment of physical condition, 6-minute run test (F-6 test) was used, the results being evaluated on a scale from 1 (worst) to 5 (best) according to the national guidelines for interpreting the results of F-6 test for girls and boys aged 11 to 14 years (5th to 8th graders) (Table 1)18. On teacher’s request, the student takes standing position at the start line. On the start signal, the student begins to run persistently for six minutes, trying to achieve the best possible score. Testing was performed on an outdoor playground that measures 40x20 meters (one lap = 120 meters).

Data processing was performed using MedCalc software (Medisoftware, Mariakerke, Belgium). Continuous variables were described as mean and standard deviation (±SD) if they had normal distribution, or median and interquartile [M (IQR)] range if not. Comparisons between variables were made using Student’s t-test or Mann-Whitney test. Values of p<0.05 were considered statistically significant19.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Girls</td>
<td></td>
</tr>
<tr>
<td>5th</td>
<td><890 m</td>
</tr>
<tr>
<td>6th</td>
<td><929 m</td>
</tr>
<tr>
<td>7th</td>
<td><959 m</td>
</tr>
<tr>
<td>8th</td>
<td><989 m</td>
</tr>
<tr>
<td>Boys</td>
<td></td>
</tr>
<tr>
<td>5th</td>
<td><999 m</td>
</tr>
<tr>
<td>6th</td>
<td><1049 m</td>
</tr>
<tr>
<td>7th</td>
<td><1099 m</td>
</tr>
<tr>
<td>8th</td>
<td><1149 m</td>
</tr>
</tbody>
</table>

m – meters
The study was approved by the Hospital and School Ethics Committee. Diagnostic work-up was performed according to standardized procedure and in line with ethical principles and Declaration on Human Rights from Helsinki 1975 and Seoul amendments 2008. A signed informed consent was obtained from study children and their parents.

Results

Of 177 children included in the study population, 44 children failed to meet the testing criteria and were excluded from the study. Of the remaining 133 children included in the study, there were 66 (49.6%) males and 67 (50.4%) females. The children enrolled in the study were matched by age (p=0.617), i.e. the children in both groups were aged 12±1 years. Eighty-eight (66%) children were exposed to passive smoking, while 45 (34%) children came from nonsmoking families. One parent was smoking in 49/88 (56%), while both parents were smoking in 39/88 (44%) smoking families.

There was no statistically significant difference in either body height or body weight (Table 2). However, children of smoking parents (group 1) had higher BMI than group 2 children of nonsmoking parents (18.79 (17.50–21.13) kg/m²) than control group children (17.90 (16.00–20.00) kg/m²; p=0.036) (Table 2).

PEFR values were statistically lower in group 1 [M(IQR) = 84 (78–88)%] than in control group 2 [M(IQR) = 94 (89–101)%; p<0.0001].

The median F-6 test values were statistically lower in group 1 than in control group 2 [M(IQR) = 2 (1–3) and M(IQR) = 4 (3–5), respectively; p<0.0001].

Discussion

The results of the present study showed that exposure of school children to passive smoking by their parents resulted in an increase of BMI, impairment of lung function (i.e. decreased PEFR values), and impairment of physical condition (i.e. decreased F-6 test results), especially in children of both smoking parents. Children of smoking parents were divided into subgroups depending on whether one or both parents were smoking; these results are shown in Table 3. Children's weight in both subgroups was the same regardless of one or both parents were smoking. Children of both smoking parents had a statistically significant lower body height (±SD = 156±7 cm) than control group children (±SD = 158±9 cm). Children of both smoking parents had statistically higher BMI values [M(IQR) = 18.6 (17.5–21.0) kg/m²] than control group children [M(IQR) = 17.9 (16.0–20.0) kg/m²]. There was no difference (p>0.05) in PEFR values between the 1A and 1B subgroups [M(IQR) = 84 (80–90)% and M(IQR)=83 (77–86)%, respectively]. F-6 test values were statistically significantly lower (p=0.04) in 1B than in 1A subgroup [M(IQR) = 2 (2–4) and M(IQR) = 2 (1–2), respectively].
children whose parents smoked more than 10 cigarettes a day were on average by 0.6 cm shorter than those of nonsmoking parents. The mechanism by which passive smoking affects growth is unknown. It has not yet been established whether the effect is indirect or direct. The most suspected substances that could play an important role in this effect are nicotine and carbon monoxide (CO). Nicotine constricts blood vessels producing a state of tissue hypoperfusion. CO, by forming carboxyhemoglobin, further hinders oxygen delivery to body tissues, which leads to tissue hypoxia. It may be hypothesized that chronic decrease in oxygen tension caused by long term exposure of children to second-hand smoke is the main factor of growth retardation. Our results are consistent with the results of other authors demonstrating that the increase in BMI resulted from increased body weight and reduced height, suggesting that it may be related to basal metabolism due to oxidative stress. It was also indicated by Wilson et al., the existence of oxidative stress in children exposed to second-hand smoke is associated with a reduced intake of antioxidants and increased consumption of the existing antioxidants.

Some cigarette smoke components can cause abnormal tightening of airways, future tightening of airways, and maladaptive tightening of airways. It was also indicated by Flouris et al. that children of smoking parents had a lower grade of motor skills than children of nonsmoking parents. Moreover, Flouris et al. showed in adult healthy nonsmokers that 1 hour of passive smoking exposure adversely affected the response to physical activity. It seems reasonable to hypothesize that children are a more vulnerable population to the toxic effects of passive smoking because of their physiologically undeveloped systems and unique physiologic characteristics. Although the mechanistic aspects by which passive smoking exerts adverse effects on physical condition in children remain unclear, it can be assumed that many of the substances in cigarette smoke can cause alterations in cardiorespiratory function, leading to a decrease in physical activity. In our prior work, we showed that children who were exposed to second-hand smoke at home had worse physical condition as assessed by F-6 test than children who were not exposed. Since there are no available literature data on the value of F-6 test for the assessment of physical condition in school children, we could not compare our results with other authors. The 6-minute walk test and 12-minute walk/run test have been used to estimate exercise capacity in obese children and adolescents. While exercise testing using a treadmill or cycle ergometer has been widely used for the measurement of exercise performance in school children. However, this study showed that this simple test can be used in everyday work for the assessment of physical condition in school children.

Some potential limitations of the present study need to be considered. We did not use biomarkers of tobacco exposure. Instead, questionnaire data were used to measure exposure to cigarette smoke, which might cause misclassification because of underreporting. Results of a study by Forastiere et al. suggest that the subject’s perception of a smoky environment could be surrogate indicators of high passive smoking exposure in adolescents. These results indicate that nonsmokers can provide accurate description of second-hand smoke exposure. Because of organizational problems, we did not perform spirometry, but only PEFR instead. Although PEF monitoring has some methodological problems, it has been successfully used to assess the effects of airborne concentrations of several pollutants on airway calibers. In addition, we lacked information on some of the potential confounders such as maternal smoking during pregnancy, the level of community pollution or other potentially air pollutants that could affect pulmonary function and any other factors that could affect anthropometric parameters. Despite these limitations, we believe that the results of our study provide additional evidence for the harmful effects of passive smoking on children’s health. Hence, longitudinal larger studies could be useful to confirm our results.

In conclusion, our results show that exposure to second-hand smoke due to parental smoking has strong effects on children’s physical condition and pulmonary function. In line with our findings, it could be concluded that reducing exposure of children to passive smoking would improve children’s health. It might be an important argument when trying to persuade the smoking parents to quit smoking. Everyone responsible for the health of children should be aware of adverse effects of second-hand smoke exposure, emphasizing the role of educating parents on this issue.
REFERENCE

SAŽETAK

Pasivno pušenje u djece koja su najčešće izložena duhanskom dimu od strane njihovih roditelja je zabrinjavajući zdravstveni problem. Ciljevi našeg istraživanja bili su utvrđivanje utjecaja pasivnog pučenja na: 1) antropometrijske parametre (tjelesnu težinu, visinu i indeks tjelesne mase BMI), 2) vršni ekspiratori protok (PEFR), i 3) fizičku kondiciju školske djece. Ciljana populacija je uključivala 177 djece, polaznika 5. do 8. razreda osnovne škole. Ispitanike smo podijelili u dvije skupine, ovisno o izloženosti pasivnom pučenju. Tjelesna težina i visina utvrđene su pomoću digitalne vage i digitalnog visinomjera. Za mjerenje PEFR korišten je Peak-flow meter, a za procjenu fizičke kondicije 6-minutni test trčanja (F-6 test). Šestdesetak posto djece izloženo je pasivnom pučenju kod kuće. Statistički značajna razlika u tjelesnoj težini niti visini između dvije skupine ispitanika. Vrijednosti BMI izloženih djece puča (17,90 (16,00–20,00) kg/m²) od djece čiji roditelji nisu puča (17,90 (16,00–20,00) kg/m²); p = 0,036. Nije nađena statistički značajna razlika u tjelesnoj težini niti visini između dvije skupine ispitanika. Vrijednosti PEFR su statistički niže u djece izložene pasivnom pučenju [M[IQR]=94 (89–101%); p <0,0001. Dječija izložena pasivnom pučenju mnogo imaju statistički niže ocjene BMI-a.
nu F-6 testa \(M(IQR) = 2 \) (1–3) od djece koja nisu izložena pasivnom pušenju \(M(IQR) = 4 \) (3–5); \(p<0.0001 \). Izloženost djece pasivnom pušenju od strane njihovih roditelja povezano je s povećanjem BMI, nižim vrijednostima PEFR i slabljenjem fizičke kondicije, što je posebno izraženo kada su oba roditelja pušaći.