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Water mass oscillations in a generic surge chamber

Numerical models are currently most often used to simulate water mass oscillations 
inside the system formed of the reservoir, pressure tunnel, and surge chamber. At the 
same time, regardless of the method used for discretisation of governing equations, 
the numerical models are most often developed under assumption that the surge 
chamber is characterized by the constant and circular cross section. To omit this 
restrictive assumption, a numerical algorithm is proposed to enable analysis of water 
level oscillations in a generic surge chamber.
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Prethodno priopćenje
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Oscilacije vodnih masa u vodnoj komori generičkog oblika

Numerički modeli zasad se najčešće koriste u svrhu prognoziranja oscilacija vodnih 
masa u sustavu akumulacija – dovodni tunel – vodna komora. Pritom, neovisno o 
usvojenoj metodi diskretizacije vladajućih jednadžbi, najčešće se susreće da su ti modeli 
razvijeni pod pretpostavkom da je vodna komora okarakterizirana kružnim i konstantnim 
poprečnim presjekom. Da bi se zaobišla ta ograničavajuća pretpostavka, predložen je 
numerički algoritam kojim se mogu analizirati oscilacije razine vode u vodnoj komori 
općenitog oblika.
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Vorherige Mitteilung
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Schwingungen von Wassermassen in Wasserkammern generischer Form

Die Anwendung numerischer Modelle ist derzeit weit verbreitet zur Simulation 
der Schwingungen von Wassermassen innerhalb des Systems Akkumulation – 
Versorgungstunnel – Wasserkammer. Gleichzeitig werden die numerischen Modelle 
oft, unabhängig von der angewandten Methode zur Diskretisierung der entsprechenden 
Gleichungen, unter der Annahme entwickelt, dass die Wasserkammer durch einen 
konstanten, kreisförmigen Querschnitt charakterisiert werden kann. Um diese 
einschränkende Voraussetzung zu umgehen, ist ein numerischer Algorithmus 
vorgeschlagen, der die Analyse von Schwingungen des Wasserstandes in Wasserkammern 
generischer Form ermöglicht.
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1. Introduction

Surge chambers can be classified into the group of essential 
functional elements of high-head hydropower plants. In typical 
high-head hydropower plants (Figure 1), the role of surge 
chambers is manifested in the time of hydraulic transients i.e. 
in the time period within which the passage is operated from 
one stationary state into another stationary state defined by 
different flow within the system. The need to manipulate the 
flow rate in the system arises from the momentary electricity 
generation requirement and, in that respect, the action is 
taken via inlet wheel blades or rotor blades at the entrance 
to the power house. Taking the above into account, two basic 
flow manipulation types can be differentiated: (i) reduction of 
momentary flow to a value set in advance and (ii) increase of 
flow to a value set in advance. In these situations, two extreme 
cases may be distinguished: (i) turning on the hydropower plant 
by bringing it from an inactive state into the state of maximum 
operation at installed flow, and (ii) turning off the hydropower 
plant by disengaging it from the operation state defined with 
an installed flow rate.
The above two scenarios for turning on and turning off the 
hydropower plant cause the least favourable conditions of 
flow, in which the full significance of surge chambers can be 
recognised. At that, in addition to the obvious need for having 
adequate dimensions, the role of a surge chamber is fully fulfilled 
by an appropriate selection of its position with respect to other 
functional elements of hydropower plants. In fact, it has to be 
located at the end of the headrace tunnel, i.e. at the contact 
between the headrace tunnel and the penstock (Figure 1).

Figure 1.  Position of functional elements within a high-head 
hydropower plant

In relation to geometric, cinematic an dynamic flow properties 
defined in advance, one of the tasks of the hydraulic analysis 
is to anticipate the resulting time-dependent change of water 
level in the surge chamber. The result of this analysis is inter 
alia used in the surge chamber dimensioning process, during 
which the geometry of the chamber has to be defined in such 
a way to avoid water spilling (overflow) during maximum 
oscillations, and the suction of air into the headrace tunnel 
and penstock during minimum oscillations.

Over the past several decades, these analyses have most often 
been conducted using numerical methods through which the 
resulting system of governing differential equations has been 
solved approximately, for the specified initial and boundary 
conditions. The problem of finding approximate solutions for 
this system can be approached in several ways. In this respect, 
an emphasis may be placed on the recent use of the finite 
element method [1], but also on the frequently used finite 
difference method [2, 3]. At that, the point that can most often 
be registered as a common basis in these different approaches, 
both based on the above literature and according to other 
authors [4-8], is the assumption that water level oscillations 
take place in the surge chamber of a constant and circular cross 
section, i.e. in a cylindrical water chamber. In order to exclude 
this restrictive assumption and generalize computation for the 
prognosis of oscillations in surge chambers of general form, the 
author proposes a numerical technique that can be used, due to 
its simplicity, regardless of the methodology applied for finding 
numerical solutions to governing equation systems.

2. Theoretical oscillation model

All analyses considered in the following text are made under 
assumption that the water mass in the high-pressure system 
forms a continuous whole, i.e. that conditions justifying 
explanation of flow through the continuum hypothesis prism 
are valid [3]. In fact, although this assumption is most often 
accepted as valid in advance for the flow of liquids through 
pressure systems, and although it generally does not require 
any special emphasis, in the circumstances under study there 
are cases in which the continuum assumption is not justified. 
The circumstances in which the use of continuum hypothesis 
is not justified may occur in case of a sudden opening of the 
gate when, due to a relatively sudden increase in flow rate, 
the water pressure falls down to the water vapour pressure. 
If preconditions for the above mentioned are ensured, they will 
be manifested by the interruption of the water column [9] and, 
in order to model such occurrences, the basic equation system 
must be extended by adding appropriate constitutive relations 
that introduce the change of phase, i.e. the change of the 
aggregate state of water [10].

2.1. Dynamic equation

If we temporarily neglect the influence of viscosity, Euler’s 
equation (3) can be used in order to define Bernoulli equation 
for unsteady flow. With subsequent inclusion of the influence 
of friction, the obtained equation defines – via inclusion of the 
Darcy-Weisbach equation – the energy equivalence between 
the distant particles of water that are in unsteady flow at the 
same streamline within the hydropower plant. The following can 
be written for the water particle on the surface of the storage 
reservoir and for the water particle on the surface of water at the 
water chamber:
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where: hA is the water level in the storage reservoir (measured 
from a reference level defined in advance), hK is the water level 
in the surge chamber (measured from the same plane), ∆hT  is 
the pressure loss on the way from the storage reservoir to the 
surge chamber (Figure 2), g is the gravitational acceleration 
and T(x,t)  is the flow rate in the headrace tunnel.

Figure 2.  Relevant geometrical values for the storage reservoir – 
headrace tunnel – surge chamber system

The last termof equation (1) is the integral value of the energy 
height needed to change the speed vT(x,t) in the differential 
segment dx along the x axis of the headrace tunnel. Assuming that 
there are no delays in speed change in the headrace tunnel, the 
member ∂vT/∂t is not dependent on the chainage and the speed 
vT(x,t) becomes the function of the only one argument vT(t). In the 
light of the above, and by quantifying the member ∆hT via Darcy-
Weisbach equation [3, 4], equation (1) can be written as follows:

h h L
D
v
g

L
g
dv
dtA K

T

T

T T T= + +λ
2

2
,  (2)

where: LT is the headrace tunnel length, DT is the headrace 
tunnel diameter and λ is the Darcy’s friction factor. Assuming 
that the cross section of the headrace tunnel DT is constant, 
the speed vT(t)  in equation (1) can be expressed via the realized 
flow QT and we obtain
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where the absolute value on the RHSis introduced in order to 
preserve the correct orientation of the friction force. Considering 
the significant difference between the water volume in the 
storage reservoir and the water volume in the hydropower 
plant, it is quite logical to introduce the assumption that the 
water level hA can be considered constant during the oscillation 
time. In fact, this ratio can be used as an argument for 

neglecting the increase of level hA over time when oscillations 
cause some water to overflow from the headrace tunnel into 
the storage reservoir. In the light of the above, the difference 
(hA-hK(t)) in equation (4) can be substituted with the negative 
value K(t) that is introduced as a measure of deviation of water 
level in the surge chamber from the water level in the storage 
reservoir (Figure 2). At that, in order to define local losses at 
the entrance to the surge chamber, which are introduced on 
purpose in order to regulate the influence of dissipation forces 
and hence the oscillation time [3, 4], the piezometric level in the 
surge changer must be reduced for the local losses realized. In 
this way equation (4) can be written as follows:
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where: ξP is the coefficient of local losses at the entrance to 
the surge chamber, K(t) is the flow in the surge chamber, and 
AP is the flow area at the entrance to the water chamber. 
This purposeful induction of local losses can be conducted in 
various ways [11] and, at that, an appropriate attention should 
be paid that the defined local losses are not reflected on: (i) 
regulation of turbine operation due to a more difficult surge 
chamber emptying during the powering-on of the hydropower 
plant and (ii) transmission of hydraulic impact to the headrace 
tunnel due to a more difficult surge-chamber filling during the 
powering-off of the hydropower plant [4].

2.2. Continuity equation

From the numerical modelling perspective, the simplest case of 
water mass oscillation is the one in which the surge chamber 
is characterized by the constant cross section AK (e.g. cylindrical 
surge chamber). In such circumstances, the exchange of water 
mass between the headrace tunnel, surge chamber and 
penstock can be expressed by continuity equation as follows:

A dz
dt

Q QK
K

T S= −( ) ,  (6)

where QS is the penstock flow rate that is harmonized with the 
flow rate at turbines in the power houses, in accordance with 
the rigid column theory [12, 13]. In the time period in which the 
relation QS  > QT, is valid, the zK level falls proportionally with the 
difference in flow rate until the steady state of flow is achieved, 
and vice versa. At that, surge chambers of constant cross 
section AK are relatively seldom applied in practice and are 
most often used to prepare preliminary analyses i.e. in order 
to define geometry with which the dimensioning procedure 
will be initiated. In case of surge chambers of general form, the 
continuity equation assumes the following form:

A z dz
dt

Q QK K
K

T S( ) = −( ) ,  (7)

where the cross-sectional area of the surge chamber is now 
dependent on the water level in the chamber AK(zK). Although 
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the function AK(zK) is known in advance, the solution of equation 
(7) is not trivial as in the case of equation (6) because the raising 
or lowering of the level dzK over time dt will be dependent on 
the momentary level of water in the surge chamber. 

3. Integration of continuity equation

The numerical modelling of water level oscillation in surge 
chambers of generic form will require an adequate integration 
of continuity equation (7). The following two methods are 
proposed for this purpose: 
 - direct or exact and 
 - incremental or approximate. 

At that, in order to follow the time-dependent changeability 
of interesting variables, all relevant values dependent on past 
time will be associated below with the corresponding time 
situations by means of the discrete time coordinate n. The 
time period between two neighbouring coordinates n and  n+1 
is defined by the time increment ∆t.

3.1. Direct integration

To solve equation (7), the separation of variables is conducted

A z dz Q Q dtK K K T S( ) = −( ) .  (8)

The RHS of equation (8) is integrated over the time interval ∆t, 
defined with the starting time t(n) and the ending time t(n+1). The 
LHS of equation (8) is integrated between the limits defined by 
the initial water level zK

(n) at t(n) and the unknown water level 
zK

(n+1) at t(n+1). Accordingly, the following may be written:
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Assuming that the time increment ∆t is sufficiently small, so 
that the flows QT and QS can be considered constant within 
such increment, the right side of equation (9) will define the 
water volume ∆V that either fills or empties the surge chamber 
in a time increment ∆t (10).

∆ ∆V Q Q tT
n

S
n= −( )( ) ( )  (10)

For the flow difference known in advance (QT
(n)-QS

(n)) and the surge 
chamber geometry AK(zK), equations (9) and (10) define the equality:

∆V A z dzK K
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in which the top boundary of the integral on the RHS is the 
unknown water levelzK

(n+1). In order to quantify this value, the 
reference should be made to the Newton-Leibniz formula 
that defines the basic relationship between the differential 
and integral calculus as follows:

f x dx F x F b F a
a

b

a

b( ) = ( ) = ( ) − ( )∫ ,  (12)

in which F(x) is the primitive function of the function f(x) with 
the property dF/dx=f(x). As the function AK(zK) is known in 
advance, so that its derivation is also known, the relation (12) 
can be used to write equation (11) as follows

∆V A z A zpr K
n

pr K
n= ( ) − ( )+( ) ( ) ,1  (13)

where the function Apr(zK)  is the primitive function of the function 
AK(zK) defined with dApr/dzK=AK(zK). The terms on the RHS of 
equation (13) are in this way defined with integration of the 
function AK(zK). At that, the numerical value of the function Apr(zK) 
will be assumed only by the second term on the RHS, as the level 
of zK

(n) is known for this term, while the first term of the RHS will 
be expressed via an unknown value zK

(n+1). As the volume of water 
∆V is known (10), equation (13) can now be solved according for 
the unknown level zK

(n+1) and, in this way, the change in water level 
reflecting the change of water volume ∆V in the surge chamber 
of irregular shape would be determined.
Although this method can be used to establish a direct 
relationship between the change in water volume with the 
change in water volume in surge chamber, the computational 
implementation of this method is less attractive as it requires 
a symbolic integration of the function AK(zK). It should also 
be noted that surge chambers with local change in geometry 
are most often applied for practical purposes, and that 
this change of geometry occurs in places where expanded 
segments are realized and is aimed at regulating water level 
oscillations occurring during the powering on and off of the 
hydropower plant (e.g. gallery type surge chambers). For 
that reason, the function AK(zK) is most often characterized 
by a local interruption, which makes the computation of this 
method more difficult as it requires symbolic integration of 
the improper integral of the second order. All this justifies 
development of the numerical scheme that is described below.

3.2. Incremental integration

The incremental method, based on the idea of replacing the 
integral on the RHS of equation (11) with the final sum of 
all related terms, is introduced in order to avoid difficulties 
related to the direct computer integration of equation (7). In 
other words, in every time increment ∆t, the volume of water 
∆VK=(QT-QS)∆t,, that is filling or emptying the surge chamber 
is divided into an equal number of segments ∆VK. After that, 
each segment ∆VK is introduced into or discharged from the 
surge chamber through a series of computer steps, and the 
corresponding incremental changes in water level ±∆zK are 
defined under assumption that every volume ∆VK either 
fills or empties the space of the surge chamber of constant 
cross section AK. In this case, the incremental change ±∆zK 
can trivially be determined in form of ∆VK / AK. At that, in 
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order to take into account any change in the surge chamber 
geometry, the cross sectional area AK is updated in every 
computation step and is accepted as being equal to the cross 
section of the defined surge chamber AK(zK) at the attained 
water level zK. The computation accuracy increases with the 
number of incremental contributions ∆VK and, if the number 
of incremental contributions ∆VK strives toward infinity, the 
described is defined by the integral from equation (11).
The described procedure will be defined below in form of an 
algorithm. First of all, it should be observed that, in the mentioned 
interpretation, the progressive filling or emptying of the chamber 
should not be understood as a physical occurrence but rather as 
a computation principle. In fact, the successive superposition of 
incremental changes ±∆zK does not occur during the progress of 
oscillations, but rather in a single moment, i.e. at the beginning 
of the time increment ∆t. For that reason, these computation 
steps must be understood as increments of a pseudo time or 
fictitious time. The terminology is appropriate as, other than the 
above mentioned, the described procedure does not include the 
manifestation of inertia forces, and hence also the real time.
For a time increment ∆t, the number of fictitious time steps n∆tf, 
within which incremental contributions ±∆zK, will be superposed, 
will define the increment of volume that either fills or empties 
the surge chamber

∆
∆

∆
V

Q Q t
n tK
T S

f

=
−( ) .  (14)

If we take that k is the number of a fictitious time step, then 
the incremental change of level ±∆zK for the first step k = 1 will 
amount to
∆

∆z z V
A zK

k
K

K

k
k

K

( ) = ( )
,  (15)

where kzK stands for the known water level in the chamber, 
i.e. for the water level at the beginning of the time step ∆t 
denoting the start of computation. In the next computation 
step k+1, the water level k+1zK  will be defined with

k
K

k
K K

k
Kz z z z+ = + ( )1 ∆ .  (16)

This defines the cyclic computation principle in which every cycle 
ends with an update of the ordinal number of a calculation step

k = k +1 (17)

which is followed by the start of a new cycle in which equations 
(15) and (16) are solved. The procedure is repeated until the 
conditions k=n∆tf.is met via equation (17). In other words, at 
the end of the time interval ∆t, the water level in the surge 
chamber zK

(n+1) will be equal to the level  kzK when k = n∆tf.

4. Numerical algorithm

The incremental integration of the continuity equation will be 
complemented with the dynamic equation in order to form 

a computation algorithm for the computational simulation 
of oscillation of water level in the surge chamber of general 
form. The direct integration of continuity equation (13) will not 
be considered because of the earlier mentioned difficulties.

4.1. Definition of initial conditions

Initial conditions define values of variables zK
(n) and QT

(n)  at the 
beginning of the first time step ∆t at the moment n = 1. If a 
stationary state of flow in which QS > 0 is to be defined with 
initial conditions, then in such a case a preliminary computation 
must be made. In this computation, the losses of height 
pressure ∆hT (Figure 2) must be defined below the entrance to 
the surge chamber for a given flow geometry and flow rate QS. 
In fact, in stationary flow conditions, the surge chamber can 
be interpreted as a piezometer in which the water level zK

(n)

corresponds to the height pressure hA-∆hT at the end of the 
headrace tunnel. On the other hand, for the situation in which 
the hydropower plant does not operate, the initial conditions 
would be trivial as in such a case the flow rate QT

(n) = 0 and 
there is no deviation zK

(n) form the water level in the storage 
reservoir hA. Consequently, the computation of oscillations 
should start for the case of start-up of the hydropower plant 
(following the no-operation state of the plant) and, once the 
oscillations are fully damped, the calculated values zK and 
QT shoud be adopted as initial conditions for the analysis of 
oscillations occurring at the turn-off of the hydropower plant.

4.2. Definition of boundary condition

The boundary condition defines the rate of change of flow 
area AS

(n)  at turbines, and is specified as a function of the level 
of opening of the gate β as defined by the relationship:

β =
A
A
S

S
( ) ,0  (18)

where AS denotes the momentary flow area at the gate profile, 
while AS

(0) defines the flow area in case of an opened gate. The 
level of gate opening will influence the flow rate QS. In order 
to establish this functional dependence, we can assume that 
energy losses at the penstock section and in the power house 
can be neglected. In this case, the flow rate QS in the gate profile 
can be calculated from the Torricelli’s equation as follows

Q c A g h zS p S S K= +( )β ( ) ,0 2 ∆  (19)

where cp denotes the flow coefficient, and ∆hs is the height 
difference between the water level in the storage reservoir hA 
and the water level at the exit from the machine hall hS in case 
when the hydropower plant is out of operation. It should be 
noted that, regardless of the specified gate closing or opening 
rate, the flow rate QS will also change due to the time-related 
oscillation of water in the surge chamber. That is why the height 
pressure under the root (19) changes in accordance with the 
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realized change of water level in the chamber. Depending on 
the specified rate of change of β, the same boundary condition 
can be used to simulate events of turning on the plant, and also 
the event of turning off the plant. In addition, the boundary 
condition enables modelling of the transition process through 
which the change from the specified stationary state to the 
second stationary state is operated (e.g. by increasing the 
number of turbines in the plant).

4.3. Implementation of numerical algorithm

The above presented method for the integration of continuity 
equation will be used below to form a computation algorithm 
for the computer-aided simulation of the transient state of 
flow. The computation algorithm begins through definition 
of the time increment ∆t by dividing the predicted period of 
oscillations [2, 3, 4] into a greater number of increments. The 
number of time steps depends on the selection of time within 
which the oscillation process will be considered. Considering 
the nature of the analysis, appropriate initial conditions have 
to be defined by specifying variables zK

(n), QT
(n) and QK

(n) at the 
beginning of the first time step at the moment n. For the 
initial conditions specified, the numerical algorithm is used to 
define the transient state through which the flow rate in the 
power house is attained by the specified boundary condition. 
At that, the boundary condition is set as a function of change 
in time of the opening level of the gate (18). The function is 
set incrementally, i.e. the gate opening level is defined at the 
beginning of each time increment n in form of

β ( )
( )

( ) .
n S

n

S

A
A

= 0  (20)

As geometric characteristics of the pressure system, initial 
conditions, and boundary conditions are now defined, 
oscillations can be simulated by computer using the following 
set of equations. The order in which equations are presented 
follows the order in which equations are solved. First, the flow 
rate at turbines is defined for the current time step n:

Q c A g h zS
n

p
n

S S K
n( ) ( ) ( ) ( ) .= +( )β 0 2 ∆  (21)

The difference between the known flow rate in the headrace 
tunnel QT

(n) and the flow rate from equation (21) actually 
defines the flow rate QK

(n) at which the surge chamber is filled 
or emptied in the time step ∆t. To calculate the resulting 
change in water level, the water volume is defined as follows

∆
∆

∆
V

Q Q t
n tK

n T
n

S
n

fiktivno

( )
( ) ( )

,=
−( )  (22)

Here n∆tf stands for the number of fictitious time steps 
in which cyclic changes in water level will be operated. The 
selection of the value n∆tf can greatly influence the results 
of water level oscillation in the irregularly shaped surge 
chambers, which is why it has to be adequately defined. In 

this respect, it should be noted that n∆tf may vary between 
the time steps. This fact enables the increase or reduction of 
n∆tf as required, depending on the water volume ∆V=(QT-QS)∆t 
by which the surge chamber is either filled or emptied in the 
time step ∆t. Therefore, a greater number of steps n∆tf will be 
needed for greater values of the volume ∆V. The possibility of 
successive change of n∆tf is in favour of the idea of defining, 
instead of this non-intuitive value, the water volume ∆VK at 
which the surge chamber will progressively be either filled or 
emptied. In fact, the continuity equation (22) shows that the 
following can be deduced from the known water volume ∆V 
at the beginning of the time step n, and the specified volume 
∆VK: n∆tf =∆V/∆VK. In this way, the problem of specifying a 
non-physical value is avoided by specifying the value ∆VK 
which can geometrically be interpreted and put into a relative 
relationship with the volume of surge chamber.
The initialisation of computation is conducted by setting the 
counter of fictitious time steps k to 1, and by adopting the 
momentary water level zK

(n) as the starting water level in the 
chamber kzK

(n+1)). The incremental change in water level ± ∆zK is 
defined according to equation 

∆
∆z z V

A zK
k

K
n K

n

k
k

K
n

( )
( )

( )
,+

+( ) = ( )
1

1  (23)

and is used to correct the momentary water level by equation

k
K
n k

K
n

K
k

K
nz z z z+ + + += + ( )1 1 1 1( ) ( ) ( ) .∆  (24)

Before the procedure is repeated for the next fictitious time 
step, it must be updated

k = k +1 (25)

The procedure defined by equations (23), (24) and (25) is 
repeated in this order until the condition k=n∆tf is achieved. 
The result of this algorithm is the water level in surge 
chamber zK

(n+1) ) at the end of the time interval ∆t. The achieved 
level defines the pressure gradient in between the ends of 
the headrace tunnel, which is why it is used in the dynamic 
equation for defining the flow rate in the headrace tunnel 
QT

(n+1). At that, in addition to the pressure gradient formed, 
the flow rate in the headrace tunnel vT will also depend on 
resistance values occurring along the tunnel. In order to 
quantify the resistance values, the Reynolds number Re(n) at 
the beginning of the time step ∆t is calculated below, using 
the relationship 

Re ,( )
( )

n T
n

Tv D
=
ρ

µ
 (26)

in which μ is the dynamic coefficient of viscosity, ρ is the 
water density, andvT

(n)  is the flow rate defined with QT
(n)/AT.For 

turbulent flow, the Darcy’s coefficient λ can be defined with 
Colebrook equation [14] or with the explicit approximation of 
its results through equation [15]
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in which εT is the absolute operational roughness of the 
headrace tunnel walls. Due to the fact that the speed vT will 
change the direction of flow during oscillation of water masses 
in case the valve is closed, at some moment the flow in the 
headrace tunnel will shift from turbulent to laminar regime 
[16]. In such circumstances, the value λ(n) can be defined by 
the relationship 64/Re(n). In addition to linear losses, the 
coefficient of local losses ξP

(n) at the entrance to the surge 
chamber [17] is also defined below. At that, if the hydraulic 
diode [11] is used as the damper, the value of coefficient ξP

(n)  
must be differentiated depending on the direction of flow. 
That is why the calculation starts with the flow QK

(n) that either 
fills or empties the surge chamber:

Q Q QK
n

T
n

S
n( ) ( ) ( ) ,= −  (28)

which is followed by definition of the corresponding coefficient 
of local losses (29).
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The defined loss coefficients (27) and (29), and the realized 
water level zK

(n+1), are used to define the flow rate QT
(n+1) at 

the end of the time step ∆t. For that purpose, the left side 
of equation (5) can be approximated with the difference in 
advance [2], and thus the following explicit approximation of 
the flow rate QT

(n+1)  is obtained:

Q Q t gA
L

z z Q Q
g AT

n
T
n T

T

K
n

K
n

n K
n

K
n

P

( ) ( )
( ) ( )

( )
( ) ( )

+
+

= + −
+

−


1
1

22 2
∆ ξP










−















2
3

λ
π

( )
( ) ( ) .

n

T
T
n

T
n

D
Q Q  (30)

Each time stepn∆t ends by the counter update:

n = n +1 (31)

and the procedure defined in equations (21) through (31) is 
repeated until the stationary state of flow is achieved, i.e. 
until the difference between zK in two neighbouring time 
increments becomes smaller than the tolerance value defined 
in advance.

5. Numerical example

Gallery type surge chambers are nowadays most often used 
as a means to minimize undesirable effects of water level 
oscillation in surge tank on the operation of turbines, and to 
reduce the necessary tank height during oscillations caused by 
the powering-off of the plant. The manipulation of oscillations 
occurring in these states of operation is conducted in case 
of gallery type surge chambers by adequate dimensioning 

of two extensions. The role of the bottom extension, Dd(zK)
in diameter, is to regulate oscillations caused during the 
start-up of the plant, while the top extension Dg(zK) is aimed 
at reducing the maximum water level in surge chamber in 
case of powering-off of the plant. Changes in cross section 
of the surge chamber are defined with the function AK(zK), , 
which is specified with regard to the water level in the storage 
reservoir.
A gallery type surge chamber will be used in the preparation of 
numerical examples. At that, the water chamber dimensioning 
procedure will be presented by means of a numerical example 
for predefined geometrical and kinematic properties of flow. 
For this purpose, the parametric analysis of oscillations will 
be conducted for the case of start-up of the hydropower plant, 
and this analysis will be followed by dimensioning of the top 
extension of the surge chamber so as to minimise the height 
of the surge chamber. The oscillation analysis protocol is 
defined in Figure 3.

Figure 3.  Surge chamber dimensioning protocol: a) definition of initial 
geometry by cylindrical surge chamber DK=4 m in diameter, 
b) gradual widening of the bottom part (Dd in diameter) for 
the regulation of oscillations zK occurring after the plant 
start-up, and c) gradual widening of the top part (Dg in 
diameter) for the regulation of oscillations zK occurring after 
the plant shut-down

The hydropower plant geometry is defined by the following 
values: headrace tunnel length LT = 6000 m, headrace tunnel 
diameter DT = 3 m, absolute roughness of the headrace tunnel 
εT = 3 mm, diameter of flow area at turbines DS = 0.6 m, and 
static level between the water level in the storage reservoir and 
at the exit from the power house hs = 180 m. The initial surge 
chamber diameter is DK = 4 m and it has to be selected in such 
a way to meet the stable-oscillation requirement [18, 19]. Water 
level oscillations in surge chamber will be defined with regard to 
the reference plane set by water level in the storage reservoir. 
With regard to this plane, the connection between the surge 
chamber and the headrace tunnel is situated at -10m. For the 
case of sudden start-up of the plant the analysis of oscillations 
must be made in order to check the hazard of air suction into the 
headrace tunnel. 
It should be noted that computation results are influenced by 
the selection of time step, which is why the value of ∆t must 
be selected with due care [2]. In general, the accuracy of results 
increases with the reduction of time step ∆t. However, this 
trend also involves reduction in computation efficiency, and 
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so the problem of defining the time step ∆t is solved through 
compromise. Most frequently, the value of ∆t is defined as a 
percentage of the oscillation period T. In case of a cylindrical 
surge chamber, the oscillation period T can be defined in advance 
[7], and so for the same case the value of ∆t is most often defined 
by the T/m ratio, where m is the parameter greater than 20 [2]. 
At that, as the oscillation period can not be defined in advance for 
surge chambers of general form, the same concept can be applied 
but with a higher value of m. Therefore, first the surge chamber 
of general form is approximated with a cylindrical surge chamber, 
and the value T is defined, which is followed by definition of ∆t 
as the T/m ratio. In this respect, several numerical analyses 
conducted for surge chambers of various forms have shown that 
m > 200 provides results of appropriate accuracy. This principle 
was applied to define the value of ∆t, which amounts to 0,59 
s. Numerical examples presented below were prepared using 
the above presented numerical algorithm, which was for this 
purpose embedded in the computer package MathCAD 15 [20].

5.1. Analysis of oscillations for the case dQS/dt > 0

The start-up of the hydropower plant will be defined by linear 
increase of the gate opening β (20) from 0, at the moment of t = 0 
s, to the value of 1 at the moment of t = 120 s. The surge chamber 

will be dimensioned by reducing the amplitude of oscillations by 
gradual widening of the bottom extension of the surge chamber. 
From the initial chamber diameter DK = 4 m the bottom widening 
defined by the diameter Dd will progressively be increased by 
the increment of ∆Dd = 4 m. The widening is trapezoidal in cross 
section, with the height of 3 m at the chamber periphery, and 
the height of 2 m at the other end. Measuring from the chamber 
and headrace tunnel interface, the horizontal axis of symmetry 
of the widening is situated at the height of 5.5 m. The resulting 
time oscillations of water level in the surge chamber for the 
mentioned cases are presented in Figure 4.
It was established by the calculation that the bottom 
widening with the diameter Dd = 20 m (Figure 4.e) completely 
diminishes the oscillation amplitude, hence contributing to an 
undisturbed operation of turbines. On the contrary, in case 
the widening is assumed to be equal to the surge chamber 
diameter, Dd = DK, this would result in the suction of air into 
the headrace tunnel and the penstock, as evidenced by the 
reduction in water level below the entrance to the surge 
chamber (Figure 4.a). It should be noted that the widening 
of the bottom part of the surge chamber also influences 
the oscillation period, as shown in Figure 4 by red line that 
connects neighbouring oscillation maximums and minimums. 
To define the influence of progressive increase in diameter Dd 
on other flow parameters, the following is shown in Figure 5: 

Figure 4.  The dependence between oscillations zK(t) o and the diameter of the bottom widening of the surge chamber is presented for the case 
of start-up of the hydropower plant
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a) water level oscillation detail zK, b) flow oscillation detail QT in 
headrace tunnel, c) phase portrait of a dynamical system, and 
d) detail of flow oscillation QS at turbines. Results obtained 
for the diameter Dd = 20 m, which adequately reduces 
the oscillation amplitude, are marked with red line on all 
diagrams. The phase portrait, defined with coordinate axes 
zK and QT, points to the dynamics of transition to stationary 
state, which is equal for all cases, and is defined by the point 
in which the curves obtained for different diameters Dd meet 
(Figure 5.c). In fact, the red line emphasises the case for 
the maximum tested value of the widening Dd in which the 
stationarity point is achieved without greater deviations in 
the flow QT and at the level zK. Figure 5.d shows the change 

of flow QS at turbines. Although the flow area AS at turbines is 
set by the time of change of the opening width β (20), the flow 
rate at turbines will also be dependent on the change in water 
level at the surge chamber (21). This is why results of flow 
rate QS are manifested in form of oscillations around values 
of stationary flow defined with the final gate opening width. 
This information can be used for analysing operation of flow 
regulator at turbines.

5.2. Analysis of oscillations for the case dQS/dt < 0

The necessary width of the bottom widening of the surge 
chamber was established in the preceding example, and it 

Figure 5.  Parametric analysis results for the case of start-up of the hydropower plant. In diagrams, the red line points to results obtained for 
the maximum diameter Dd of the bottom widening of the surge chamber (Dd= 20 m). The diagrams show: a) oscillations through which 
the level zK approaches the stationary value, b) oscillations through which the flow in headrace tunnel QT approaches the stationary 
value, c) phase portrait of dissipative oscillations, and d) oscillations through which the flow QS approaches the flow defined by the 
gate opening width
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was determined that the water level in surge chamber is zK = 
-2.8 m, and that the flow rate is QT = 8.33 m3/s, which defines 
the stationary regime of operation of the hydropower plant 
(Figures 5.a and 5.b). The dimensioning of the top widening 
of the surge chamber, defined with the diameter Dg, will be 
conducted below for the case when the gate opening width 
β linearly reduces from 1 in t = 0 s to the value of 0 in t = 
160 s. Just like before, oscillations of water level in the surge 
chamber zK will be considered for the scenario of shut-down 
of the hydropower plant for different diameters of the top 
widening. Just like in the preceding case, the widening is 
trapezoidal in cross section, with one height amounting to 3 
m, and the other to 2 m. Measuring from the water level in 
the storage reservoir, the cross sectional axis of symmetry 
of the widening is situated at the height of 3.5 m. Starting 
from the value of Dg = DK, the diameter of trapezoidal widening 
Dgwill progressively be increased with an increment of ∆Dg = 
4 m. At that, the initial geometry of the surge chamber will 
be defined by the last tested alternative from the preceding 
example (Figure 4e). Level oscillation results zK are presented 
in Figure 6.
Oscillation results for the initial surge-chamber geometry 
clearly show that the defined closing rate will result in the 
spilling of water from the chamber (Figure 6.a). However, 
by increasing the diameter Dg, a certain reduction in the 
maximum amplitude was established, as well as the influence 
of the change of the surge-chamber geometry (Figure 6.b) on 
the diagram zK(t). The influence of the change in geometry 
on the oscillation is even more pronounced in the following 
example (Figure 6.c). The diameter Dg by which the water 

spilling was prevented is defined in the last example (Figure 
6.d). In this case, it can also be observed how the defined 
surge-chamber geometry influences gradual reduction in the 
oscillation period.
Figure 7 shows results for other relevant values, obtained for 
the same range of tested diameters Dg, but with the double 
number of incremental increases (∆Dg = 2 m). The detail 
showing the water level oscillation zK over the period of 20 min, 
in which the influence of the chamber geometry of the phasal 
displacement of oscillation can be observed, is given in Figure 
7a. The detail showing oscillation of flow QT in the headrace 
tunnel is presented in Figure 7b. Just like before (Figure 5c), the 
presented phase portrait of oscillations (Figure 7c) points to 
the time of approach to the no-operation state of the plant in 
which zK = 0 and QT = 0. At that, the red line shows the change 
of zK and QT values for the case of maximum diameter of Dg 
and, in this case, a significant fall in the dumping influence can 
be observed, as evidenced by the decreasing distance between 
the neighbouring loops of the red curve which approaches the 
origin of the coordinate system. The fall in the influence of 
dissipative forces of friction can also be observed in Figure 7d 
in which the envelopes of maximum oscillation in the period 
of 60 m are presented.

5. Conclusion

The modelling of secondary water level oscillations in surge 
chambers of general form is presented in the paper for a typical 
high-pressure hydropower plant and for the defined change 
of flow rate in the power house. A method of incremental 

Figure 6.  The dependence of oscillations zK(t) on the diameter of the top widening of the surge chamber is presented for the case of shut-down 
of the hydropower plant
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Figure 7.  Parametric analysis results for the case of shut-down of the hydropower plant. The red line in diagrams points to the results obtained 
for the maximum diameter Dd of the top widening of the surge chamber (Dg= 18 m). Diagrams show: a) oscillations through which the 
level zK approaches the water level in the storage reservoir hA, b) oscillations through which the flow rate in the headrace tunnel QT 
approaches the state defined by stationary state of water, c) phase portrait of dissipative oscillations, and d) envelope of maximum 
oscillations

integration of continuity equation has been developed for this 
purpose. The method is based on the idea of simulating the 
water entrance to or exit from the surge chamber with a series 
of fictitious time states. In this way, the volume of water ∆V 
that either fills or empties the surge chamber in one time 
increment is divided into a finite number of equal segments 
∆VK. Each volume segment ∆VK is then introduced in the surge 
chamber or discharged from it, and the corresponding change 
in water level ∆zK is calculated under assumption that the cross 
section of the surge chamber is constant. At that, the surge-
chamber cross section for the current volume segment ∆VK is 
adopted as being equal to the cross section of the specified 
surge chamber, and this at the height at which the water level 
is currently situated. The progressive adding or reducing the 
volume ∆VK is accompanied with progressive corrections of 

water level in the surge chamber. By defining water level in 
the surge chamber, the flow rate in the headrace tunnel is 
defined, with the presence of relevant local and linear losses, 
through dynamic equation discretisation using the finite 
difference method. In order to create numerical applications, 
the resulting numerical algorithm is implemented in the 
program package MathCAD 15. Numerical examples were 
realized in such a way to present the dimensioning procedure 
for the gallery-type surge chamber, and they include cases of 
water level oscillations occurring after start-up and turn-off 
of the hydropower plant. Other than the obvious simplicity 
evidenced through computer implementation of the method, 
and unlike the direct integration, this method offers the 
possibility of considering oscillations in surge chambers of 
general form, but also in surge chambers of high complexity.
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