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Abstract. Wilson frames {ψk
j : w0, w−1 ∈ L2(R)} j∈Z

k∈N0
in L2(R) have been defined and a

characterization of Wilson frames in terms of Gabor frames is given when w0 = w−1. Also,
under certain conditions a necessary condition for a Wilson system to be a Wilson Bessel
sequence is given. We have also obtained sufficient conditions for a Wilson system to be
a Wilson frame in terms of Gabor Bessel sequences. For w0 = w−1, stability of Wilson
frames is discussed. Also, under the same assumption a necessary and sufficient condition
is given for a Wilson system to be a Wilson Bessel sequence in terms of a Wilson frame.
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1. Introduction

Gabor [13] proposed a decomposition of a signal in terms of elementary signals, that
displays simultaneously the local time and frequency content of the signal, as opposed
to the classical Fourier transform which displays only the global frequency content
for the entire signal. On the basis of this development, Duffin and Schaeffer [9]
introduced frames for Hilbert spaces to study some deep problems in non-harmonic
Fourier series. In fact, they abstracted the fundamental notion of Gabor for studying
signal processing. Janssen [17] showed that while being complete in L2(R) the set
suggested by Gabor is not a Riesz basis. This apparent failure of Gabor system was
then rectified by resorting to the concept of frames. Since then the theory of Gabor
systems has been intimately related to the theory of frames and many problems in
frame theory find their origin in Gabor analysis. For example, the localized frames
were first considered in the realm of Gabor frames [1, 2, 5, 16]. For more literature
on Gabor frames one may refer to [6, 7, 11, 12, 19, 20, 22]. Gabor frames have
found wide applications in signal and image processing. Balian-Low Theorem for
Gabor frames on locally compact abelian groups is discussed in [14]. In view of
Balian-Low Theorem [15], Gabor frames for L2(R) (which is a Riesz basis) have
bad localization properties in either time or frequency. Thus, a system to replace
Gabor systems which do not have bad localization properties in time and frequency
was required. Wilson [21, 23] suggested a system of functions which are localized
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around the positive and negative frequency of the same order. The idea of Wilson
was used by Daubechies, Jaffard and Journe [8] to construct orthonormal ”Wilson
bases” which consist of functions given by

ψk
j (x) =

{
εk cos(2kπx)w(x− j

2 ), if j is even,

2 sin(2(k + 1)πx)w(x− j+1
2 ), if j is odd,

and

εk =

{√
2, if k = 0,

2, if k ∈ N,

with a smooth well localized window function w. For such bases the disadvantage
described in the Balian-Low Theorem is completely removed.

In [10], it has been proved that Wilson bases of exponential decay are not uncon-
ditional bases for all modulation spaces on R including the classical Bessel potential
space and the Schwartz spaces. Also, it is shown in [10] that Wilson bases are not
unconditional bases for the ordinary Lp spaces for p ̸= 2. Approximation properties
of Wilson bases are studied in [4]. Wilson bases for general time-frequency lattices
are studied in [18]. Generalizations of Wilson bases to non-rectangular lattices are
discussed in [21] with motivation from wireless communication and cosines modu-
lated filter banks. Wojdyllo studied modified Wilson bases in [25] and discussed
Wilson system for triple redundancy in [24]. Motivated by the fact that we have
different trigonometric functions for odd and even indices of j, Bittner [3] consid-
ered Wilson bases introduced by Daubechies et al. with non symmetrical window
functions for odd and even indices of j.

In the present, paper we consider the Wilson system defined by Bittner [3]. In
this paper, Wilson frames {ψk

j : w0, w−1 ∈ L2(R)} j∈Z
k∈N0

in L2(R) have been defined

and a characterization of Wilson frames in terms of Gabor frames is given when
w0 = w−1. Also, under certain conditions a necessary condition for a Wilson system
to be a Wilson Bessel sequence is given. We have also obtained sufficient conditions
for a Wilson system to be a Wilson frame in terms of Gabor Bessel sequences. For
w0 = w−1, stability of Wilson frames is discussed. Also, under the same assumption
a necessary and sufficient condition is given for a Wilson system to be a Wilson
Bessel sequence in terms of a Wilson frame.

2. Preliminaries

In this section, we give some standard definitions which will be used throughout the
paper.

Definition 1. Let H denote a Hilbert space and let I be a countable index set. A
family of vectors {fi}i∈I is called a frame for H if there exist constants A and B
with 0 < A ≤ B <∞ such that

A∥f∥2 ≤
∑
i∈I

|⟨f, fi⟩|2 ≤ B∥f∥2, for all f ∈ H. (1)
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Positive constants A and B are called lower frame bound and upper frame bound for
the frame {fi}i∈I , respectively. The inequality (1) is called the frame inequality. If
A = B, then the frame is called a tight frame with frame bound A. If in (1) only the
upper inequality holds, then {fi}i∈I is called a Bessel sequence.

If removal of even one fn leaves the remaining set {fi}i∈I,i ̸=n no longer a frame,
then the frame {fi}i∈I is called an exact frame or a Riesz basis.

If {fi}i∈I is a frame for H, then the bounded linear operator T : l2(N) → H,
given by T{αn}n∈I =

∑
n∈I

αnfn is called the preframe operator.

The adjoint operator of T or the analysis operator T ∗ : H → l2(N) is given
by T ∗{x} = {⟨x, fn⟩}n∈I . By composing T and T ∗, we obtain the frame operator
S : H → H defined as Sx =

∑
n∈I

⟨x, fn⟩fn, x ∈ H.

For a ∈ R and g ∈ L2(R), the translation operator Ta on L2(R) is defined as
Tag(x) = g(x − a), x ∈ R, and the modulation operator Ea on L2(R) is defined as
Eag(x) = e2πiaxg(x), x ∈ R.

Definition 2 (see [7]). Let g ∈ L2(R) and a, b be positive constants. The sequence
{EmbTnag}m,n∈Z is called a Gabor system for L2(R). Further,

• If {EmbTnag}m,n∈Z is a frame for L2(R), it is called a Gabor frame.

• If {EmbTnag}m,n∈Z is a Bessel sequence for L2(R), it is called a Gabor Bessel
sequence.

Definition 3 (see [3]). The Wilson system associated with w0, w−1 ∈ L2(R) is
defined as a sequence of functions {ψk

j : w0, w−1 ∈ L2(R)} j∈Z
k∈N0

in L2(R) given by

ψk
j (x) =


εk cos(2kπx)w0

(
x− j

2

)
, if j is even,

2 sin(2(k + 1)πx)w−1

(
x− j + 1

2

)
, if j is odd,

where N0 = N ∪ {0} and

εk =

{√
2, if k = 0,

2, if k ∈ N .

Definition 4 (see [7]). The Zak transform of f ∈ L2(R) is defined as a function of
two variables given by (Zf)(t, v) =

∑
k∈Z

f(t− k) exp(2πikv), t, v ∈ R.

Definition 5 (see [7]). Given a positive number a, the Wiener space is defined by
W = {g : R → C : g is measurable and

∑
k∈Z

∥gχ[ka,(k+1)a)∥ <∞}.

3. Main results

We begin this section with the definition of a Wilson frame.
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Definition 6. The Wilson system {ψk
j : w0, w−1 ∈ L2(R)} j∈Z

k∈N0
for L2(R) associated

with w0, w−1 ∈ L2(R) is called a Wilson frame if there exist constants A,B with
0 < A ≤ B <∞ such that

A∥f∥2 ≤
∑
j∈Z
k∈N0

|⟨f, ψk
j ⟩|2 ≤ B∥f∥2, for all f ∈ L2(R). (2)

The constants A,B are called lower frame bound and upper frame bound, respectively,
for the Wilson frame {ψk

j : w0, w−1 ∈ L2(R)} j∈Z
k∈N0

.

If w0 = w−1, then the Wilson system associated with w0 ∈ L2(R) is denoted as
{ψk

j : w0 ∈ L2(R)} j∈Z
k∈N0

.

If in (2) only the upper inequality holds for all f ∈ L2(R), then the Wilson
system {ψk

j : w0, w−1 ∈ L2(R)} j∈Z
k∈N0

is called a Wilson Bessel sequence with Bessel

bound B.

Example 1. Let w0, w−1 ∈ L2(R) be bounded and compactly supported. Then,
{ψk

j : w0, w−1 ∈ L2(R)} j∈Z
k∈N0

is a Wilson Bessel sequence for L2(R).

Example 2. LetW denote the Wiener space. If w0, w−1 ∈W , then {ψk
j : w0, w−1 ∈

L2(R)} j∈Z
k∈N0

is a Wilson Bessel sequence for L2(R).

Example 3. Let w0 = χ[0,1). Then {ψk
j : w0 ∈ L2(R)} j∈Z

k∈N0
is a tight Wilson frame

for L2(R) with frame bound 2.

Example 4. Let w0 ̸= w−1 be such that |w−1(x)| ≤ C(1 + |x|)−1−ϵ,|w0(x)| ≤
C(1 + |x|)−1−ϵ for some constant C and ϵ > 0. Let Q+ = (0, 12 )× [−1

2 ,
1
2 ]. Consider

the matrix

M(x, ξ) =

 Zw0(x, ξ) Zw0(−x, ξ)

−Zw−1(x, ξ) Zw−1(−x, ξ)

 .

Let A0 = ess inf
(x,ξ)∈Q+

∥M−1(x, ξ)∥−2
2 and B0 = ess sup

(x,ξ)∈Q+

∥M(x, ξ)∥22. If 0 <

A0 ≤ B0 < ∞, then the Wilson system {ψk
j : w0, w−1 ∈ L2(R)} j∈Z

k∈N0
is a Wilson

frame for L2(R) with bounds A0 and B0.

Example 5. Let w0 = χ[0, 12 )
. Then, {ψk

j : w0 ∈ L2(R)} j∈Z
k∈N0

is not a Wilson frame

for L2(R).

Example 6. Let

w0(x) =


sinπx

πx
, if x ̸= 0 ,

1, otherwise.

Then {ψk
j : w0 ∈ L2(R)} j∈Z

k∈N0
is a tight Wilson frame for L2(R) with frame bound 2.
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Example 7. Let w0(x) = 2
1
2 e−xχ[0,∞)(x). Then {ψk

j : w0 ∈ L2(R)} j∈Z
k∈N0

is a Wilson

frame for L2(R).

Example 8. Let w0(x) =
2

1
2

1 + 2πix
. Then, {ψk

j : w0 ∈ L2(R)} j∈Z
k∈N0

is a Wilson

frame for L2(R) .

Example 9. If w0(x) = e−ξ(x− 1
4 )

2

and w−1(x) = e−ξ(x+ 1
4 )

2

, where ξ > 0 and
w0 ̸= w−1, then {ψk

j : w0, w−1 ∈ L2(R)} j∈Z
k∈N0

is a Wilson frame for L2(R).

Example 10. Let

w0(x) =


1 + x, if x ∈ [0, 1) ,

x

2
, if x ∈ [1, 2) ,

0, otherwise.

Then {ψk
j : w0 ∈ L2(R)} j∈Z

k∈N0
is a Wilson frame for L2(R).

Example 11. Let

w0(x) =


0, if x ∈ (−∞,−1] ,

sin(π2 (x+ 1)), if x ∈ (−1, 0] ,

(−1)n cos2(π2 (x− n)) sinn(π2 (x− n)), if x ∈ (n, n+ 1], n = 0, 1, 2, . . . .

Then {ψk
j : w0 ∈ L2(R)} j∈Z

k∈N0
is a tight Wilson frame for L2(R) with frame bound 2.

Next, we give Lemmas which will be used in the subsequent results.

Lemma 1. If f, g, h are in L2(R), then

|⟨f, g⟩|2 + |⟨f, h⟩|2 = |⟨f, g + ih⟩|2 + 2 Im(⟨f, g⟩⟨h, f⟩).

Proof. Straightforward.

Lemma 2. Let f, g ∈ L2(R). Let Tj denote the translation operator on L2(R)
defined by (Tjf)(x) = f(x− j), f ∈ L2(R), x ∈ R. Then∑

j,k∈Z

Im{⟨f, cos(2kπ·)Tjg(·)⟩⟨f̄ , sin(2kπ·)Tjg(·)⟩} = 0

where

(cos(2kπ·)Tjg(·))(x) = cos(2kπx)g(x− j), x ∈ R,

(sin(2kπ·)Tjg(·))(x) = sin(2kπx)g(x− j), x ∈ R.
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Proof. Straightforward.

Lemma 3. Let {ψk
j : w0, w−1 ∈ L2(R)} j∈Z

k∈N0
be the Wilson system associated with

w0, w−1 ∈ L2(R). Then for f ∈ L2(R),∑
j∈Z
k∈N0

|⟨f, ψk
j ⟩|2 = 2

∑
j,k∈Z

(|⟨f, cos(2kπ·)Tjw0(·)⟩|2 + |⟨f, sin(2kπ·)Tjw−1(·)⟩|2).

Proof. Let f ∈ L2(R). Then

∑
j∈Z
k∈N0

|⟨f, ψk
j ⟩|2 =

∑
j:even
k∈N0

∣∣∣∣ ∫ f(x)εk cos(2kπx)w0

(
x− j

2

)
dx

∣∣∣∣2

+
∑
j:odd
k∈N0

∣∣∣∣ ∫ 2f(x) sin(2(k + 1)πx)w−1

(
x− j + 1

2

)
dx

∣∣∣∣2.
This gives

∑
j∈Z
k∈N0

|⟨f, ψk
j ⟩|2 =2

∑
j∈Z

∣∣∣∣ ∫ f(x)w0(x− j)dx

∣∣∣∣2

+ 4
∑
j∈Z
k∈N

∣∣∣∣ ∫ f(x) cos(2kπx)w0(x− j)dx

∣∣∣∣2

+ 4
∑
j∈Z
k∈N

∣∣∣∣ ∫ f(x) sin(2kπx)w−1(x− j)dx

∣∣∣∣2.
Thus

∑
j∈Z
k∈N0

|⟨f, ψk
j ⟩|2 =2

∑
j∈Z

∣∣∣∣ ∫ f(x)Tjw0(x)dx

∣∣∣∣2 + 4
∑
j∈Z
k∈N

|⟨f, cos(2kπ·)Tjw0(·)⟩|2

+ 4
∑
j∈Z
k∈N

|⟨f, sin(2kπ·)Tjw−1(·)⟩|2.

Using that cos(−θ) = cos θ, sin(−θ) = − sin θ and ⟨f,−g⟩ = −⟨f, g⟩, f, g ∈ L2(R),
we have∑

j∈Z
k∈N0

|⟨f, ψk
j ⟩|2 = 2

∑
j,k∈Z

(|⟨f, cos(2kπ·)Tjw0(·)⟩|2 + |⟨f, sin(2kπ·)Tjw−1(·)⟩|2).
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Lemma 4. Let {ψk
j : w0, w−1 ∈ L2(R)} j∈Z

k∈N0
be the Wilson system associated with

w0, w−1 ∈ L2(R). Then for f ∈ L2(R),∑
j∈Z
k∈N0

|⟨f, ψk
j ⟩|2 =2

∑
j,k∈Z

|⟨f,EkTjw0⟩|2 + 2
∑
j,k∈Z

|⟨f,EkTjw−1⟩|2

− 2
∑
j,k∈Z

(|⟨f, cos(2kπ·)Tjw−1(·)⟩|2 + |⟨f, sin(2kπ·)Tjw0(·)⟩|2).

Proof. Let f ∈ L2(R). Then∑
j∈Z
k∈N0

|⟨f, ψk
j ⟩|2 =

∑
j:even
k∈N0

∣∣∣∣ ∫ f(x)εk cos(2kπx)w0

(
x− j

2

)
dx

∣∣∣∣2

+
∑
j:odd
k∈N0

∣∣∣∣ ∫ f(x) sin(2(k + 1)πx)w−1

(
x− j + 1

2

)
dx

∣∣∣∣2.
This gives ∑

j∈Z
k∈N0

|⟨f, ψk
j ⟩|2 =2

∑
j∈Z

∣∣∣∣ ∫ f(x)w0(x− j)dx

∣∣∣∣2

+ 4
∑
j∈Z
k∈N

∣∣∣∣ ∫ f(x) cos(2kπx)w0(x− j)dx

∣∣∣∣2

+ 4
∑
j∈Z
k∈N

∣∣∣∣ ∫ f(x) sin(2kπx)w−1(x− j)dx

∣∣∣∣2.
Thus∑

j∈Z
k∈N0

|⟨f, ψk
j ⟩|2 =2

∑
j∈Z

∣∣∣∣ ∫ f(x)Tjw0(x)dx

∣∣∣∣2 + 4
∑
j∈Z
k∈N

|⟨f, cos(2kπ·)Tjw0(·)⟩|2

+ 4
∑
j∈Z
k∈N

|⟨f, sin(2kπ·)Tjw−1(·)⟩|2.

Using that cos(−θ) = cos θ, sin(−θ) = − sin θ and ⟨f,−g⟩ = −⟨f, g⟩, f, g ∈ L2(R),
we have∑

j∈Z
k∈N0

|⟨f, ψk
j ⟩|2 =2

∑
j∈Z

∣∣∣∣ ∫ f(x)Tjw0(x)dx

∣∣∣∣2 + 2
∑
j∈Z
k∈N

|⟨f cos(2kπ·)Tjw0(·)⟩|2

+ 2
∑
j∈Z

−k∈N

|⟨f, cos(2kπ·)Tjw0(·)⟩|2 + 2
∑
j∈Z
k∈N

|⟨f sin(2kπ·)Tjw−1(·)⟩|2

+ 2
∑
j∈Z

−k∈N

|⟨f, sin(2kπ·)Tjw−1(·)⟩|2.
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Therefore, using Lemma 1, we obtain

∑
j∈Z
k∈N0

|⟨f, ψk
j ⟩|2 = 2

∑
j∈Z

∣∣∣∣ ∫ f(x)Tjw0(x)dx

∣∣∣∣2

+ 2
∑
j∈Z
k∈N

{
|⟨f, (cos(2kπ·) + i sin(2kπ·))Tjw0(·)⟩|2 − |⟨f, sin(2kπ·)Tjw0(·)⟩|2

+ 2 Im(⟨f, cos(2kπ·)Tjw0(·)⟩⟨f̄ , sin(2kπ·)Tjw0(·)⟩)
}

+ 2
∑
j∈Z

−k∈N

{
|⟨f, (cos(2kπ·) + i sin(2kπ·))Tjw0(·)⟩|2 − |⟨f, sin(2kπ·)Tjw0(·)⟩|2.

+ 2 Im(⟨f, cos(2kπ·)Tjw0(·)⟩⟨f̄ , sin(2kπ·)Tjw0(·)⟩)
}

+ 2
∑
j∈Z
k∈N

{
|⟨f, (cos(2kπ·) + i sin(2kπ·))Tjw−1(·)⟩|2 − |⟨f, cos(2kπ·)Tjw−1(·)⟩|2

+ 2 Im(⟨f, cos(2kπ·)Tjw−1(·)⟩⟨f̄ , sin(2kπ·)Tjw−1(·)⟩)
}

+ 2
∑
j∈Z

−k∈N

{
|⟨f, (cos(2kπ·) + i sin(2kπ·))Tjw−1(·)⟩|2 − |⟨f, cos(2kπ·)Tjw−1(·)⟩|2

+ 2 Im(⟨f, cos(2kπ·)Tjw−1(·)⟩⟨f̄ , sin(2kπ·)Tjw−1(·)⟩)
}
.

Using Lemma 2, we get∑
j∈Z
k∈N0

|⟨f, ψk
j ⟩|2 =2

∑
j,k∈Z

|⟨f, (cos(2kπ·) + i sin(2kπ·))Tjw0(·)⟩|2

− 2
∑
j,k∈Z

|⟨f, sin(2kπ·)Tjw0(·)⟩|2

+ 2
∑
j,k∈Z
k ̸=0

|⟨f, (cos(2kπ·) + i sin(2kπ·))Tjw−1(·)⟩|2

− 2
∑
j,k∈Z
k ̸=0

|⟨f, cos(2kπ·)Tjw−1(·)⟩|2. (3)

Since Ek = e2πik(·) = cos(2kπ·) + i sin(2kπ·), equation (3) gives∑
j∈Z
k∈N0

|⟨f, ψk
j ⟩|2 =2

∑
j,k∈Z

|⟨f,EkTjw0⟩|2 + 2
∑
j,k∈Z

|⟨f,EkTjw−1⟩|2

− 2
∑
j,k∈Z

(|⟨f, cos(2kπ·)Tjw−1(·)⟩|2 + |⟨f, sin(2kπ·)Tjw0(·)⟩|2).
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Remark 1. Combining Lemma 3 and Lemma 4, we obtain∑
j,k∈Z

|⟨f,EkTjw0⟩|2+
∑
j,k∈Z

|⟨f,EkTjw−1⟩|2

=
∑
j,k∈Z

(|⟨f, cos(2kπ·)Tjw−1(·)⟩|2 + |⟨f, sin(2kπ·)Tjw0(·)⟩|2)

+
∑
j,k∈Z

(|⟨f, cos(2kπ·)Tjw0(·)⟩|2 + |⟨f, sin(2kπ·)Tjw−1(·)⟩|2)

Remark 2. If we choose w0 = w−1 in Lemma 4, then∑
j∈Z
k∈N0

|⟨f, ψk
j ⟩|2 = 2

∑
j,k∈Z

|⟨f,EkTjw0⟩|2, for all f ∈ L2(R).

Proof. In view of Lemmas 3 and 4, we have∑
j∈Z
k∈N0

|⟨f, ψk
j ⟩|2 =4

∑
j,k∈Z

|⟨f,EkTjw0⟩|2 − 2
∑
j,k∈Z

|⟨f,EkTjw0⟩|2

− 4
∑
j,k∈Z

Im{⟨f, cos(2kπ·)Tjw0(·)⟩⟨f̄ , sin(2kπ·)Tjw0(·)⟩}.

Using Lemma 2, we obtain∑
j∈Z
k∈N0

|⟨f, ψk
j ⟩|2 = 2

∑
j,k∈Z

|⟨f,EkTjw0⟩|2, for all f ∈ L2(R).

In the following result, we give a characterization of Wilson frames for w0 = w−1

in terms of Gabor frames.

Theorem 1. Let w0, w−1 ∈ L2(R) be such that w0 = w−1. Then {ψk
j : w0 ∈

L2(R)} j∈Z
k∈N0

is a Wilson frame for L2(R) with frame bounds A and B if and only if

the Gabor system {EkTjw0}k,j∈Z is a Gabor frame for L2(R) with frame bounds A
2

and B
2 . Also, if {ψk

j : w0 ∈ L2(R)} j∈Z
K∈N0

is a Wilson frame with frame bounds A and

B, then

A

2
≤

∑
j∈Z

|w0(x− j)|2 ≤ B

2
, a.e. x ∈ R.
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Proof. By Remark 2, we have∑
j∈Z
k∈N0

|⟨f, ψk
j ⟩|2 = 2

∑
j,k∈Z

|⟨f,EkTjw0⟩|2, for all f ∈ L2(R).

Also, we have that {ψk
j : w0 ∈ L2(R)} j∈Z

K∈N0
is a Wilson frame with frame bounds A

and B

⇔ A

2
∥f∥2 ≤

∑
j,k∈Z

|⟨f,EkTjw0⟩|2 ≤ B

2
∥f∥2, for all f ∈ L2(R)

⇔ The Gabor system {EkTjw0}j,k∈Z is a Gabor frame for L2(R)

with frame bounds
A

2
,
B

2
.

Further, if {ψk
j } j∈Z

k∈N0
is a Wilson frame with frame bounds A and B, then {EkTj

w0}j,k∈Z is a Gabor frame with frame bounds A
2 and B

2 . Hence, by Proposition 9.1.2

in [7], we have

1 · A
2

≤
∑
j∈Z

|w0(x− j)|2 ≤ 1 · B
2

a.e x ∈ R.

Next, we give a necessary condition for a Wilson system to be a Wilson Bessel

sequence in terms of a Gabor Bessel sequence under certain conditions.

Theorem 2. Let {ψk
j : w0, w−1 ∈ L2(R)} j∈Z

k∈N0
be a Wilson Bessel sequence for L2(R)

associated with the functions w0, w−1 ∈ L2(R) with Wilson Bessel bound B. Also,

let the Wilson system obtained by interchanging w0 and w−1 in the given Wilson

system be a Wilson Bessel sequence with Bessel bound B′. Then {EkTjw0}j,k∈Z and

{EkTjw−1}j,k∈Z are Gabor Bessel sequences with Bessel bound B+B′

2 .

Proof. Let f ∈ L2(R). Using Lemma 3, we have

2
∑
j,k∈Z

(|⟨f, cos(2kπ·)Tjw0(·)⟩|2 + |⟨f, sin(2kπ·)Tjw−1(·)⟩|2) ≤ B∥f∥2,

2
∑
j,k∈Z

(|⟨f, cos(2kπ·)Tjw−1(·)⟩|2 + |⟨f, sin(2kπ·)Tjw0(·)⟩|2) ≤ B′∥f∥2.

Using Remark 1, we obtain∑
j,k∈Z

|⟨f,EkTjw0⟩|2 ≤ (
B +B′

2
)∥f∥2,

∑
j,k∈Z

|⟨f,EkTjw−1⟩|2 ≤ (
B +B′

2
)∥f∥2, for all f ∈ L2(R).
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Finally, we give sufficient conditions for a Wilson system to be a Wilson Bessel

sequence in terms of Gabor Bessel sequences.

Theorem 3. Let {ψk
j : w0, w−1 ∈ L2(R)} j∈Z

k∈N0
be a Wilson system. Let {EkTjw0}j,k∈Z

and {EkTjw−1}j,k∈Z be Gabor Besel sequences with Bessel bounds B1 and B2, re-

spectively. Then {ψk
j : w0, w−1 ∈ L2(R)} j∈Z

k∈N0
is a Wilson Besel sequence with Wilson

Bessel bound 2(B1 +B2).

Proof. Let f ∈ L2(R). Then, by Lemma 4∑
j∈Z
k∈N0

|⟨f, ψk
j ⟩|2 = 2

∑
j,k∈Z

|⟨f,EkTjw0⟩|2 + 2
∑
j,k∈Z

|⟨f,EkTjw−1⟩|2

− 2
∑
j,k∈Z

(|⟨f, cos(2kπ·)Tjw−1(·)⟩|2 + |⟨f, sin(2kπ·)Tjw0(·)⟩|2)

≤ 2
∑
j,k∈Z

|⟨f,EkTjw0⟩|2 + 2
∑
j,k∈Z

|⟨f,EkTjw−1⟩|2

≤ 2(B1 +B2)∥f∥2, for all f ∈ L2(R) .

Hence {ψk
j : w0, w−1 ∈ L2(R)} j∈Z

k∈N0
is a Wilson Bessel sequence for L2(R) with

Wilson Bessel bound 2(B1 +B2).

4. Stability of Wilson frames with w0 = w−1

Let {ψk
j : w0 ∈ L2(R)} j∈Z

k∈N0
be a Wilson frame associated with w0 ∈ L2(R). Let

h ∈ L2(R) be such that {ψ′k
j : w0 + h ∈ L2(R)} j∈Z

k∈N0
is a Wilson Bessel sequence.

Then, the Wilson system associated with h ∈ L2(R) may or may not be a Wilson

frame for L2(R).

Example 12. Let w0 = w−1 = h = χ[0,1). Then {ψk
j : w0 ∈ L2(R)} j∈Z

k∈N0
is a Wilson

frame for L2(R) and {ψ′k
j : w0 + h ∈ L2(R)} j∈Z

k∈N0
is a Wilson Bessel sequence for

L2(R). Also, {ψ′′k
j : h ∈ L2(R)} j∈Z

k∈N0
is a Wilson frame for L2(R).

Example 13. Let w0 = w−1 = χ[0,1) and h = χ[0, 12 )
. Then {ψk

j : w0, w−1 ∈
L2(R)} j∈Z

k∈N0
is a Wilson frame for L2(R) and {ψ′k

j : w0 + h ∈ L2(R)} j∈Z
k∈N0

is a

Wilson Bessel sequence for L2(R). But {ψ′′k
j : h ∈ L2(R)} j∈Z

k∈N0
is not a Wilson

frame for L2(R).

In the following result, we give sufficient conditions for the stability of Wilson

frames with w0 = w−1.
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Theorem 4. Let {ψk
j : w0 ∈ L2(R)} j∈Z

k∈N0
be a Wilson frame for L2(R) having

A and B as its lower and upper frame bound, respectively. Let S be its frame

operator and let h ∈ L2(R) be any function such that the Wilson system {ψ′k
j :

w0+h ∈ L2(R)} j∈Z
k∈N0

is a Wilson Bessel sequence with Wilson Bessel boundM . Then

{ψ′′k
j ;h ∈ L2(R)} j∈Z

k∈N0
is a Wilson Bessel sequence for L2(R). Also, if (A2∥S∥−1 −

2M) > 0, then {ψ′′k
j : h ∈ L2(R)} j∈Z

k∈N0
is a Wilson frame for L2(R).

Proof. Let f ∈ L2(R). Consider the Wilson system {ψ′′k
j : h ∈ L2(R)} j∈Z

k∈N0
. Then,

by Remark 2, we have∑
j∈Z
k∈N0

|⟨f, ψ
′′k
j ⟩|2 = 2

∑
j,k∈Z

|⟨f,EkTjh⟩|2

≤ 4
∑
j,k∈Z

|⟨f,EkTj(w0 + h)⟩|2 + 4
∑
j,k∈Z

|⟨f,EkTjw0⟩|2.

Since {ψ′k
j : w0+h ∈ L2(R)} j∈Z

k∈N0
is a Wilson Bessel sequence with Bessel bound M ,

we have ∑
j,k∈Z

|⟨f,EkTj(w0 + h)⟩|2 ≤
(
M

2

)
∥f∥2.

Since {ψk
j : w0 ∈ L2(R)} j∈Z

k∈N0
is a Wilson frame for L2(R) with upper frame bound

B, we have ∑
j,k∈Z

|⟨f,EkTjw0⟩|2 ≤
(
B

2

)
∥f∥2.

Hence, we obtain∑
j∈Z
k∈N0

|⟨f, ψ
′′k
j ⟩|2 ≤ 2{M +B}∥f∥2, for all f ∈ L2(R)

Also, for f ∈ L2(R)

(A2∥S∥−1 − 2M)∥f∥2 ≤ (A2 1

A
∥f∥2 − 2M∥f∥2)

= A∥f∥2 − 2M∥f∥2

≤
∑
j∈Z
k∈N0

|⟨f, ψk
j ⟩|2 − 2

∑
j∈Z
k∈N0

|⟨f, ψ
′k
j ⟩|2

= 2
∑
j,k∈Z

|⟨f,EkTjw0⟩|2 − 4
∑
j,k∈Z

|⟨f,EkTj(w0 + h)⟩|2.
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Therefore, we get

(A2∥S∥−1 − 2M)∥f∥2 ≤ 2(
∑
j,k∈Z

|⟨f,EkTjw0⟩|2 − 2
∑

j,w∈Z
|⟨f,EkTj(w0 + h)⟩|2)

Thus

(A2∥S∥−1 − 2M)∥f∥2 ≤ 4
∑
j,k∈Z

|⟨f,EkTjh⟩|2.

Hence {ψ′′k
j : h ∈ L2(R)} j∈Z

k∈N0
is a Wilson frame with frame bounds 1

4 (A
2∥S∥−1 −

2M) and 2(M +B).

Remark 3. The condition that (A2∥S∥−1 − 2M) > 0 is not necessary as seen in

Example 12.

Finally, we give a necessary and sufficient condition for the Wilson system {ψk
j :

h ∈ L2(R)} j∈Z
k∈N0

to be a Wilson Bessel sequence in terms of a Wilson frame.

Theorem 5. Let {ψk
j : w0 ∈ L2(R)} j∈Z

k∈N0
be a Wilson frame for L2(R) having A and

B as its lower and upper frame bound respectively. Let h ∈ L2(R) be any function.

Then, the Wilson system {ψ′′k
j : h ∈ L2(R)} j∈Z

k∈N0
is a Wilson Bessel sequence in

L2(R) if and only if there exist C > 0 such that∑
j,k∈Z

|⟨f,EkTj(w0 − h)⟩|2 ≤ C
∑
j,k∈Z

|⟨f, ψk
j ⟩|2, for all f ∈ L2(R).

Proof. Let f ∈ L2(R). Suppose {ψ′′k
j : h ∈ L2(R)} j∈Z

k∈N0
is a Bessel sequence with

Bessel bound M . Then∑
j,k∈Z

|⟨f,EkTj(w0 − h)⟩|2 ≤ 2
∑
j,k∈Z

|⟨f,EkTjw0⟩|2 + 2
∑
j,k∈Z

|⟨f,EkTjh⟩|2.

Using a hypothesis, we have

1

M

∑
j,k∈Z

|⟨f,EkTjh⟩|2 ≤ 1

A

∑
j,k∈Z

|⟨f,EkTjw0⟩|2.

Hence ∑
j,k∈Z

|⟨f,EkTj(w0 − h)⟩|2 ≤ 2(
M

A
+ 1)

∑
j,k∈Z

|⟨f,EkTjw0⟩|2

≤ (
M

A
+ 1)

∑
j,k∈Z

|⟨f, ψk
j ⟩|2,

where C = M
A + 1.
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Conversely, for f ∈ L2(R), we have∑
j,k∈Z

|⟨f,EkTjh⟩|2 ≤ 2
∑
j,k∈Z

|⟨f,EkTj(h− w0)⟩|2 + 2
∑
j,k∈Z

|⟨f,EkTjw0⟩|2.

Hence ∑
j,k∈Z

(|⟨f,EkTjh⟩|2 ≤ 2(C + 1)
∑
j,k∈Z

|⟨f,EkTjw0⟩|2

≤ (C + 1)B∥f∥2.
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