
Engineering Review, Vol. 34, Issue 2, 151-160, 2014. 151

HARDWARE/SOFTWARE PARTITIONING ALGORITHM BASED
ON THE COMBINATION OF GENETIC ALGORITHM AND TABU

SEARCH

G. Li1* – J. Feng1 – C. Wang1 – J. Wang2

1Aeronautics and Astronautics Engineering College, Air Force Engineering University, Xi’an 710038; China
2Aviation University of Air Force, Changchun 130022, China

ARTICLE INFO Abstract:

Article history:
Received: 18.12.2013.
Received in revised form: 8.2.2014.
Accepted: 18.2.2014.

 To solve the hardware/software (HW/SW)
partitioning problem of a single Central
Processing Unit (CPU) system, a hybrid algorithm
of Genetic Algorithm (GA) and Tabu Search(TS) is
studied. Firstly, the concept hardware orientation
is proposed and then used in creating the initial
colony of GA and the mutation, which reduces the
randomicity of initial colony and the blindness of
search. Secondly, GA is run, the crossover and
mutation probability become smaller in the process
of GA, thus they not only ensure a big search space
in the early stages, but also save the good solution
for later browsing. Finally, the result of GA is used
as initial solution of TS, and tabu length adaptive
method is put forward in the process of TS, which
can improve the convergence speed. From
experimental statistics, the efficiency of proposed
algorithm outperforms comparison algorithm by up
to 25% in a large-scale problem, what is more, it
can obtain a better solution. In conclusion, under
specific conditions, the proposed algorithm has
higher efficiency and can get better solutions.

Keywords:
Hardware/software partitioning
Hardware orientation
Genetic algorithm
Tabu search

* Corresponding author. Tel.: +86 029 8478 7514; fax: + 86 029 8478 7514

1 Introduction

HW/SW partitioning technology is a crucial step in
System on Chip (SoC) HW/SW codesign and
embedded system realization, that is, deciding
which components of the system should be realized
in hardware and which ones in software, finally
providing the best compromise for the system while
satisfying the design constrains. Clearly, this step
has a dramatic impact on the cost and performance
of the whole system.
Most formulations of the HW/SW partitioning
problem have proven to be NP-hard [1], so exact

algorithms tend to be quite slow for bigger inputs,
hence for larger partitioning problem, heuristic
algorithms comprise the majority of the research and
much significant research has been done such as
Genetic Algorithm(GA) [2], Particle Swarm
Optimization(PSO)[3],[4], Tabu Search(TS) [5],[6],
Ant Algorithm(AA) [7],[8], Simulated
Annealing(SA) [9] as well as some improved
schemes.
Researchers have combined two of these algorithms
and designed hybrid algorithms for optimal solution
of a partitioning problem, for instance, paper [10]
proposed a hybrid algorithm of GA and AA which

152 G. Li, J. Feng et al: Hardware/software partitioning …

utilized the advantages of the two algorithms to
overcome their disadvantages; it achieved good
results in a HW/SW partitioning problem; paper
[11] proposed an idea of combining GA and PSO,
which took advantage of their respective merits;
PSO has fast convergence speed and GA is easy to
express in solving a combinatorial optimization
problem. Obviously, both the partitioning result and
execution time of the algorithm have all been
improved.
In particular, the combination of GA and TS can
take advantage of the global search capability of GA
and local search capability of TS while avoiding
their defects [12][13],[14]. Up to now, there have
been two kinds of hybrids of GA and TS [15][16].
The former, GA calls TS for local searching for
every current solution every time after crossover
and mutation; in this case, the frequent call of TS
greatly prolongs computation time. The latter, GA is
firstly run to produce a hypo-optimal solution that is
used as initial solution of TS. On this basis, TS is
run to find an optimal solution, and this condition
brings some advantages to GA and TS that can be
fully used, moreover, they can yield algorithms with
smaller complexity.
To improve the partitioning quality and algorithm
efficiency, we propose a partitioning algorithm
based on GA and TS. In this paper, the concept of
hardware orientation is put forward and used in the
process of producing initial colony and mutation,
avoiding thus not just the blindness of creating
initial colony through a random method but also
controlling the mutation direction. Furthermore, we
design an adaptive change method for
crossover/mutation probability and tabu length.
Experimental results demonstrate the superiority of
the proposed approach over the existing algorithm
in terms of efficiency and solution quality.
This paper is organized as follows. In section 2 we
introduce the HW/SW partitioning problem and
provide the objective function of this paper. In
section 3, we propose the concept of hardware
orientation and its calculation. In section 4, we
describe the details of the proposed hybrid
algorithm. In section 5, we show the experimental
results and analyses, and then compare the proposed
algorithm with existing algorithms. Finally, section
6 draws the conclusions about our work and makes
some prediction for our future work.

2 Problem description

HW/SW partitioning is one of the most crucial steps
in the design of embedded systems. Before
partitioning, it is important to identify the
construction of the implementation platform. This
paper discusses platforms with single CPU, that is,
the system consists of one CPU and FPGA or other
reconfigurable logic modules. The assignment of
HW/SW partitioning is to distribute the tasks among
CPU and hardware under certain constraints.

2v

1v 3v

4v

9v

8v

7v
5v

6v

10v

11v

12v

iv
ist iht

Figure 1. DAG model-based system.

We now formalize the problem as follows. The
system to be partitioned is given in the form of a
directed acyclic graph (DAG) just as it is shown in
Fig. 1, an undirected graph G=(V,E), V={v1, v2,
...,vn} denotes the node aggregate, while vi denotes
the i-th task node, E is the edge aggregate, cij is the
communication cost between nodes i and j, tis and tih
are execution time of task through software and
hardware respectively, sis and sih denote the area cost
of vi through software and hardware, Ss represents
software area constraint, Sh hardware area
constraint, C is communication constraint, Tcost is
execution time that is defined to be the sum of
processing time of all tasks. Assume that the
communication cost between two adjacent nodes
carried out through hardware or software can be
overlooked, the objective function can be
formulated as the following minimization problem
using the method in paper [11]: n denotes the
number of node, xi denotes how the node vi is
realized, sis and sih are area cost of iv realized

through software and hardware, Ss and Sh are
constraints of software area and hardware area,
respectively.

Engineering Review, Vol. 34, Issue 2, 151-160, 2014. 153

   
  

 

 

cos 1

1

1

1

min 1

. . 1

1
s h

n

t ih i is i

n

is i s

n

ih i h

n

ik i ik i
k V k V

T t x t x

s t s x S

s x S

c x c x C
 

   



 
 
  
    
  





  

 (1)

3 Calculation of hardware orientation

In this paper, hardware orientation is defined as
superiority of task implementation through
hardware over software, characterized by three
metrics: Area, Time and Communication.

3.1 Area-hardware orientation

 1 ,

1 ,
cons sum

iorien
cons sum

A B B S S
S

S S

   
 


 (2)

Because of the requirements for typesetting, in
Equation (2), we use A instead of (Smax-Si)/(Smax-Smin),
B instead of 1-Scons/Ssum Accordingly, Si denotes the
additional area of sih being greater than sis, while
Smax and Smin are respectively the maximum and
minimum values of Si, and Ssum is the total area cost
when the whole of the nodes are realized through
hardware, in addition to this, Scons denotes area
constraint.

3.2 Time-hardware orientation

 

 

1min

1max 1min

2min

2max 2min

,

1 ,

is ih is
is ih

iorien

ih is ih
is ih

t t t T
t t

T T
T

t t t T
t t

T T

 
  

    

 (3)

Here tis and tih denote the time cost of node i realized
through software and hardware respectively, while
(tis - tih)/tih and (tih - tis)/tih are performance ratios,
T1max, T1min, T2max and T2min are the maximum and
minimum values of the performance ratio.

3.3 Communication-hardware orientation

  1isrorien sr hr ijj
C D t cD t      (4)

  1isworien sw hw ijj
DC Dt t c      (5)

  1ihrorien hr sr ijj
DC Dt t c      (6)

  1ihworien hw sw ijj
DC Dt t c      (7)

 isrorien isworien
orien

ihrorien ihworie
i

n

C C

C C
C





 (8)

tsr, tsw , thr and thw are read and write delay of
hardware and software, D = Siorien × Tiorien.
Consequently, the composite factor of hardware

orientation can be described as：

 iorien iorien iorien
iorien

iorien iorien iorien

S T C
Z

S T C

   


 
 (9)

α + β + η = 1, α > 0, β > 0, η > 0.

4 Algorithm

The necessity and feasibility of hybrid mechanism
of GA and TS have been analysed comprehensively
[2]. Researchers have proposed and applied some
hybrid methods [14][17],[18]. Here we mainly
consider the following aspects: the creation of initial
colony, the operation of selection, the operation of
crossover and mutation, neighborhood structure,
dynamic tabu length and tabu selection strategy.

4.1 Proposed GA process

(1) Coding. In a number of related articles, there are
two familiar coding methods for GA, the binary and
the decimal ones. By contrast, the binary-biased
genetic algorithms have higher searching efficiency,
less time-consuming for convergence, wider
selecting domain of crossover and mutation
probability and stronger robustness of optimized
value than decimal-biased genetic algorithms [19].
Moreover, considering that the state of node here
includes hardware and software realization, we
choose binary as a coding mechanism. X=(x1, x2, …,
xn) denotes a partitioning plan, xi=1(xi=0) means
node, and vi is carried out through hardware
(software), 1 ≤ i ≤ n.
(2) We make the reciprocal of objective function
F(X)=1/Tcost as fitness function in this paper.

154 G. Li, J. Feng et al: Hardware/software partitioning …

(3) Creation of initial colony. In this paper, we
create initial colony on the base of hardware
orientation. Therefore, the bigger the hardware
orientation is, the higher the probability of node is
from initialization to hardware realization, and vice
versa. Specifically, we first generate a random
number ri  (0,1), if ri < Ziorien, the node vi is
initialized through hardware or software. In

addition, Hamming distance ),(ji XXH





n

k

j
k

i
k XX

1
 is adopted for the difference among

individuals and  , 4i jH X X  , repeat the above

operation until we have NX individuals.
(4) Operation of selection. In order to prevent the
precociousness phenomenon, the proposed
algorithm selects individuals adaptively according
to the change of fitness, and consequently, the
selection probability of ix can be defined using the

method mentioned in [20]:

    ' '

1

n

i i ii
p f x f x


  (10)

   
  max

max

/
max min'

/

g g

i i g g

f f e e
f x af x

e e

 
 


 (11)

f(xi) expresses the fitness value of xi, while fmax
denotes the maximal value of f(xi) in current colony
and fmin the minimal one, g is the number of iteration
and fmin is its maximal value, a is a constant that is
greater than zero and a = 0.75 in this paper.
According to this selection strategy, selection
probability of individuals with big fitness values can
be greatly reduced at the beginning of algorithm,
which is beneficial for global searching; as regards
the running of the algorithm, selection probability of
individuals with big fitness values gradually grows
bigger, which is beneficial for the convergence of
algorithm.
(5) Crossover and mutation. In this process, some
individuals (Nx/2) are selected for crossover using
the two-point crossover method [11]. The selection
of crossover probability Pc and mutation probability
Pm, will influence the whole process of genetic
algorithm. In other words, provided that there is the
bigger difference between colony and fitness of
individuals, the smaller Pc and Pm can help to

protect individuals with bigger fitness; meanwhile,
the convergence speed can also be improved. In case
the difference between colony and fitness of
individual is smaller, the bigger Pc and Pm can help
to produce excellent individuals and prevent the
algorithm from entering local optimum.
Experiments have shown that an adaptive change of
Pc and Pm can improve algorithm performance better
than fixed value [21]. On the other hand, since the
purpose of GA is to provide TS with global optimal
solution, the value of Pc and Pm can be a little bit
bigger. Thus, we put forward an adaptive method
for crossover and mutation probability.

max

1
max

2

max(,)
, min(,)

, min(,)

i j
c i j avg

avgc

c i j avg

f f f
p f f f

f fP

p f f f


  

 

 (12)

max

1
max

2

,

,

m avg
avgm

m avg

f f
p f f

f fP

p f f

   
 

 (13)

favg is average fitness of all the current individuals,
while f is fitness of individual waiting for mutation,
fi and fj represent fitness of individuals that are to be
crossed, pc1, pc2, pm1 and pm1 are constants. If the
individual fitness is smaller than favg, bigger cP and

mP should be selected for promoting melioration of

its fitness, whereas, smaller Pc and Pm should be
selected for preserving the individual with bigger
fitness. Considering that the individuals with bigger
fitness should have smaller crossover probability, Pc
uses min(fi, fj) as boundary.
(6) Termination criterion. For the sake of ending
GA and running TS at the right time, the proposed
algorithm uses dynamic termination criterion.
Actually, we define the largest number of iteration
Genemax and the minimum evolution rate
GeneImproRatmin= 4%; if the evolution rate in three
successive colonies is not larger than
GeneImproRatmin or g = gmax, GA would terminate.
The pseudo code of GA is denoted as shown in
Table1.

Engineering Review, Vol. 34, Issue 2, 151-160, 2014. 155

Table 1. GA process

Input:
Task graph G and constrains Ss, Sh, C.

Output:
The HW/SW partitioning result X = (x1, x2, …, xn) and runtime.

1: begin
2: Calculate the comprehensive factor of hardware orientation Ziorien and set termination criterion;
3: Create initial colony on basis of Ziorien, make g = 0, NGeneImproRat,min = 0; // NGeneImproRat,min denotes the

successive generations that the evolution rate is smaller than GeneImproRatmin.
4: Calculate fitness of individuals in P(0) and the average fitness;
5: Perform the operation between 6 and 21 again and again before meeting the termination criterion;
6: Calculate the selection probability pi for every individual in P(g);
7: for(k = 0; k < Nx; k = k + 2)
8: {
9: Select two individuals on basis of pi;
10: Create a random number 0 < u < 1;
11: if(u < Pm)
12: Perform mutation operation for selected individuals, if Ziorien > 0.9, no matter what state of the node

is, the state is set to 1, otherwise, perform the routine mutation operation, the result is put into
next colony;

13: elseif(u < Pm + Pc)
14: Perform crossover operation and put the result into next colony;
15: else
16: put the individuals into next colony without change;
17: }//end for
18: g = g + 1, calculate the fitness of individuals in P(g) and the average fitness;
19: if(GeneImproRatcur ≤ GeneImproRatmin)
20: NGeneImproRat,min = NGeneImproRat,min + 1;
21: end if
22: Output XGA which has the biggest fitness value in P(g) and runtime;
23:end

4.2 Proposed TS process

(1) The initialization of TS. We use XGA as initial
input.
(2) Neighborhood structure. It is evident that the
neighborhood structure has a significant impact on
the quality of solution, a different rule may result in
a different solution with different qualities [22]. In
this work, the solution consists of a sequence of 0s
and 1s; therefore, we can get the neighborhood
solution by flipping two randomly selected nodes,
that is to say, the state 0 is flipped into state 1, and
vice versa. Obviously, every solution has C2

n

neighborhood solutions, n > 3， hence C2
n > n.

Finally, the n neighborhood solutions with bigger
fitness values are selected to compose the
neighborhood.

Figure 2. Neighbourhood structure method.

(3) Tabu table and tabu length. At the beginning,

tabu length TabuLen is initialized through n ,
meanwhile, a n  2 matrix TabuFreq(n  2) is
defined for recording tabu frequency of each
neighborhood solution and g value when the

solution has entered tabu table recently; every time a
neighborhood solution enters tabu table, the
corresponding value TabuFreq(i,1) plus 1, and

156 G. Li, J. Feng et al: Hardware/software partitioning …

TabuFreq(i,2) records simultaneously the g

value..In addition, every time after iteration, we
calculate the difference TabuFreqDiff for every
element in TabuFreq(i,1) before and after iteration,
then change the tabu length into TabuLen =
TabuLen + TabuFreqDiff(TabuLen < n). In this
article, a concept of tabu degree of Xneig(i), denoted
as TabuDegree(i), is defined as formula (14),
because of the requirement for typesetting, we use B
instead of TabuDegree, L instead of TabuInteCur,
and U instead of TabuFreq:

       
   

1 2, 2 ,1

, 2 ,1

L U i U i
B i

L U i iU

  


 
 (14)

In the equation, TabuIterCur denotes a current
iteration number, and tabu degree is proportional to
tabu frequency and the tabu interval TabuIterCur –
TabuFreq(i,2). η1 and η2 are weighting factors, in
this paper, η1 = 01.5 and η2 = 0.85.
(4) Selection strategy of TS. Assume that Xcur is a
current solution whose neighborhood solution is
Xneib(i), we define FObj(Xneib(i)) = F(Xneib(i)) -
F(Xcur), F(Xneib(i)) denotes fitness of Xneib(i), while
F(Xcur) denotes fitness of Xcur, the bigger
FObj(Xneib(i)) is, the higher the quality of Xneib(i) is.
(5) Aspiration criterion. If the neighborhood
solution Xneib(j) outperforms Xbest_so_far while
Xneib(j) is in tabu table, the tabu status of Xneib(j)
should be ignored and make X b e s t _ s o _ f a r =
Xneib(j).
(6) Termination criterion of TS. The computation
process will terminate either when the maximum
number of iteration has been reached or when the
evolution probability TabuImproRatcur is smaller
than TabuImproRatmin in three successive colonies,
TabuImproRatcur = 0.3% in this paper.
The pseudo code of TS is as shown in Table 2.
It is worthwhile pointing out that the solution
refined by TS is definitely better than XGA, because
Xbest_so_far is updated only under condition that the
better solution is found according to line 13 of Table
2.

5 Experiment and analysis

Creation of test set: For testing, firstly, create
randomly several DAGs that have a specified node
number and an average branch number, then allow

every node to be associated with one function whose
cost (hardware area, software area, communication
cost and runtime etc.) is used to simulate task cost.
Eventually we get 6 DAGs with 30, 60, 90, 120,
200, 400 nodes, respectively.
Experimental environment: (1) Pentium(R) Dual-
Core 2.5GHz CPU, 2G internal storage; (2)
Windows XP operating system; (3) Programming
environment is Matlab R2007a.
TS has been proven to be better than GA in HW/SW
partitioning [23]. To verify the effectiveness of a
proposed algorithm, we choose TS [23] and GATS
as comparison algorithms where TS is taken as the
mutation operator [2]. Also, in order to make a fair
comparison, all related parameters in our experiment
are set on the same benchmark so that initial
crossover probability is set to 0.8 and initial
mutation probability to 0.13, what is more, TS has
the same maximum number of iteration as the

proposed algorithm but a constant tabu length n .
Table 3 shows partitioning results of three
algorithms. It can be observed that: (1) The
proposed algorithm has higher convergence speed,
because hardware orientation reduces randomicity
of initial colony and affects the direction of search.
To sum up, these two aspects reduce the number of
iteration. Moreover, the strategies of tabu selection
and adaptive tabu length also help to improve the
search speed. (2) On small-scale problems when the
number of node is less than 60, the proposed
algorithm has lower efficiency than GATS, because
the calculation of hardware orientation takes a long
time. However, with an increase in the scale, when
the number of nodes exceeds 90, the proposed
algorithm can not only obtain a better solution but
also improve operating efficiency by nearly 25%.
Besides, the larger the scale is the better
improvement is. The reason is that GATS must call
TS in every iteration process and this will take much
time, but the hardware orientation needs calculating
only once.
(3) Compared with the other two algorithms, TS has
the shortest runtime, whereas it only obtains
solution with lowest quality, because TS has great
dependence on initial solution; a good initial
solution in turn could result in a good final solution,
while a bad one will affect the quality of a final
solution.

Engineering Review, Vol. 34, Issue 2, 151-160, 2014. 157

Table 2. TS process

Input:
Task graph G , constrains Ss, Sh, C and XGA;

Output:
The HW/SW partitioning result Xbest so far and runtime.
1: begin

2: Initialize the number of iteration gTabu = 0, set tabu table empty, TabuLen = n , TabuFreq(n,2) = 0,
NTabuImproRat,min = 0; // gTabu indicates the number of iteration, NTabuImproRat,min indicates the number of
successive colonies whose evolution probability are all smaller than TabuImproRatmin.
3: Xcur = XGA, Xbest_so_far = XGA;
4: Perform operation between 5 and 20 again and again before meeting the termination criterion;
5: Create the neighborhood of Xcur;
6: Calculate FObj(Xneib(i)) of every neighborhood solution;
7: (If Xneib(i) is in tabu table and outperforms Xbest_so_far, ignore its tabu status;)
8: If the whole neighborhood is in tabu table, then
9: Xcur = the neighborhood solution corresponding to the smallest TabuDegree(i);
10: else
11: Xcur = the neighborhood solution corresponding to the biggest FObj(Xneib(i));
12: end if
13: if F(Xcur) > F(Xbest_so_far) then
14: Xbest_so_far = Xcur
15: end if
16: Update tabu table, TabuDegree(i), TabuFreq(n 2) and TabuLen;
17: if(TabuImproRatcur ≤ TabuImproRatmin)
18: NTabuImproRat,min = NTabuImproRat,min + 1;
19: end if
20: gTabu = gTabu + 1;
21: Output Xbest_so_far and runtime of TS
22: end

To intuitively show experimental results, we run the
three algorithms 30 times for the 6 DAGs
respectively, then we calculate an average value of
the results for each DAG, and finally we draw the
comparison between proposed algorithm and the
other two algorithms on partitioning results and
runtime, as is shown in Fig.3 and Fig.4.
Assuming that there are 400 task nodes, we obtain
initial solution using a random method and
hardware orientation, respectively. The running
results of GATS are shown in Fig. 5. As can be
seen, an initial solution from hardware orientation
can converge faster and yield better solutions. Fig. 6
shows the running results of GATS and our
algorithm, intuitively illustrating the advantage of
proposed algorithm on large-scale problems.

Figure 3. Optimization rate of partitioning result.

158 G. Li, J. Feng et al: Hardware/software partitioning …

Table 3. Experimental results

Number of
nodes

Sh Ss C Algorithm Tcost Cost of time

30 2850 1409 591
TS

GATS
Our algorithm

7318
7086
7084

92
988

1035

60 5909 2943 1356
TS

GATS
Our algorithm

14786
13492
13463

271
9743
9862

90 8684 4308 2014
TS

GATS
Our algorithm

22036
20795
20143

1361
67894
58268

120 11611 5770 2637
TS

GATS
Our algorithm

27903
26104
24672

1593
135102
112298

200 17192 9416 3783
TS

GATS
Our algorithm

46589
43136
41065

2175
330872
264687

400 28154 15681 6539
TS

GATS
Our algorithm

93961
87145
82873

3416
795691
602338

Figure 4. Optimization rate of runtime.

6 Conclusions

Based on GA and TS, this article presents a simple
but very efficient hybrid algorithm for solving a
HW/SW partitioning problem. Compared with the
other two algorithms, time complexity of the
proposed algorithm includes additional time for
calculating hardware orientation, tabu length and
tabu degree except for calculating genetic operation
and fitness.

Figure 5. Running results of GATS with diffident

initial solutions.

However, the application of hardware orientation
and adaptive tabu length reduces an iterative number
of algorithms and hardware orientation only needs
to be calculated once. As a result, the proposed
algorithm can improve algorithm efficiency
especially on large-scale problems.
As the value of crossover and mutation probability
in this paper is larger than classical GA, this may
induce the blindness of search. However, the use of
hardware orientation and adaptive technique prevent

Engineering Review, Vol. 34, Issue 2, 151-160, 2014. 159

its occurrence. Furthermore, they increase the
probability of introducing a new chromosome,
which, to some extent, increases GA ability of local
search.
In order to simplify problem, the proposed objective
function does not take into account the power cost,
which may impact partitioning accuracy. Ultimately,
our on-going work will improve the objective
function.

Figure 6. Running results of proposed algorithm

and GATS.

References

[1] Arato P, Mann ZA, Orban A.: Algorithmic

aspects of hardware/software partitioning,
ACM Trans Des Autom Electron Syst,
10(2005), 1, 136–156

[2] Glover F, Kelly J.P., Laguna M.: Genetic
algorithms and tabu search: hybrids for
optimization, Computers and Operations

Rsearch, 22(1995), 1, 111-134．

[3] Wu, J., Srikanthan, T., Chen, G.: Algorithmic
aspects of hardware/software partitioning: 1D
search algorithms, IEEE Trans Comput,
59(2010), 4, 532–544.

[4] Li, S., Hsu, C., Wong, C., Yu, C.:
Hardware/software co-design for particle
swarm optimization algorithm, Information
Sciences, (2011),181, 4582-4596.

[5] Wu, J., Thambipillai, S., Lei, T.: Efficient
heuristic algorithms for path-based
hardware/software partitioning, Mathematical
and Computer Modelling. (2010), 51, 974-984.

[6] Wu, J., Wang, P., Lam, S., Srikanthan, T.:

Efficient heuristic and tabu search for
hardware/software partitioning, The Journal of
Supercomputing. 66(2013), 1, 118-134.

[7] Zhang, Y., Wu, L., Wei, G., Wu, H., Guo, Y.:
Hardware/software partition using adaptive ant
colony algorithm, Control and Decision,
24(2009), 9, 1385-1389.

[8] He, T., Guo, Y.: Power consumption
optimization and delay based on ant colony
algorithm in network-on-chip, Engineering
Review, 33(2013), 3, 219-225.

[9] Henkel J., Ernst R.: An approach to automated
hardware/software partitioning using a flexible
granularity that is driven by high-level
estimation techniques, IEEE Transactions on
VLSI Systems, 9(2001), 2, 273–289.

[10] Xiong, Z., Li, S., Chen, J.: Hardware/Software
Partitioning Based on dynamic combination of
genetic algorithm and ant algorithm, Journal of
Software, 16(2005), 4, 50-512.

[11] Liu, A., Feng, J., Liang, X., Yang, X.:
Algorithm of hardware/Software partitioning
based on genetic particle swarm optimization,
Journal of Computer-Aided Design& Computer
Graphic, 22(2010), 6, 927-933, 942.

[12] Li, Y.G., Abdul Ghafir, M. F., Wang, L., Singh,
R.: Improved multiple point nonlinear genetic
algorithm based performance adaptation using
least square method, Journal of Engineering for
Gas Turbines and Power, (2012), 134, 1-10.

[13] Fred G.，LuZH P., Hao J. K.: Diversification-

driven tabu search for unconstrained binary
quadratic problems, 4OR-A Quarterly J of
Operations Research, 8(2010), 3, 239-253.

[14] Zhao, J., Zhou, H., Liang, C.: Hybrid
optimization algorithm based on genetic-tabu
search for JLSP, Systems Engineering and
Electronics. 34(2012), 4, 833-838.

[15] Li, Z., Cheng, Y.: A hybrid strategy based on
genetic algorithm and tabu search importing
niche, Journal of Hunan University(Natural
Sciences), 37(2010), 4, 81-84.

[16] Wang, W., Zhao, J., Wang, H.: Design of
orthogonal polyphase code for MIMO radar
based on hybrid algorithm, Systems
Engineering and Electronics, 35(2013), 2, 294-
298.

[17] Ji, Y., Li, L., Shi, M., Zhang, L.:
Hardware/software partitioning algorithm
using hybrid genetic and tabu search,
Computer Engineering and Applications,
45(2009), 20, 81-83.

160 G. Li, J. Feng et al: Hardware/software partitioning …

[18] Xiao, H., Lou, P., Wu, X., Qian, X.:
Unidirectional guided-path network design
method based on hybrid genetic algorithm,
Computer Integrated Manufacturing Systems,
18(2012), 5, 1031-1037.

[19] Zhang, J., Li, D., Li, P. : Comparative study of
genetic algorithms encoding mechanism,
Journal of China University of Mining
&Technology, 31(2002), 6, 637-640.

[20] Peng, Y., Luo, X., Wei, W.: New fuzzy adaptive
simulated annealing genetic algorithm, Control
and Decision, 24(2009), 6, 843-848.

[21] Zu, Y., Zhou, J.: Cognitive radio resource
allocation based on combined chaotic genetic

algorithm, Acta Phys.Sin, 60(2011), 7, 1-8.
[22] Wolf, W.H.: An architectural co-synthesis

algorithm for distributed embedded computing
systems, IEEE Transactions on VLSI Systems,
5(1997), 2, 218-229.

[23] Theerayod, W., Peter, Y. K.C., Wayne, L.:
Comparing three heuristic search methods for
functional partitioning in hardware software
codesign, Design Automation for Embedded
Systems, (2002), 6, 425-449.

