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Combinatorial optimization problems on graphs arise in many practical applications. One of the most studied
practical combinatorial optimization problem is the Vehicle Routing Problem (VRP). When coupled with modern
in-car navigation and fleet management software, real world applications of VRP optimization result in significant
cost savings. In this paper novel multiple improvements pivoting rule for Capacitated VRP (CVRP) is proposed.
Its application significantly reduces computational time needed for CVRP optimization. A novel pivoting rule is
implemented as part of the search step selection mechanism in the Iterated Local Search algorithm. Augmented
iterated local search algorithm is tested on 4 large scale real-world problems in Croatia with up to 7, 065 customers
and 236 vehicles, and on standard CVRP benchmark sets. Real-world problem data was obtained from a large
Croatian logistics company. Comparison of well known first and best pivoting rules with proposed novel multiple
improvements pivoting rule regarding travel distance, number of search moves and computational time is given.
Achieved computational speed-ups are up to 29 times compared to the first improvement pivoting rule and 9 times
compared to the best improvement pivoting rule, without any substantial degradation in quality of the obtained
solution.

Key words: VRP, CVRP, iterated local search, multiple improvements

Optimizacija usmjeravanja vozila primjenom višestrukih poboljšanja u lokalnom pretraživanju. Kom-
binatoričke optimizacije na grafu pojavljuju se u mnogim aplikacijama u praksi. Jedan od najviše proučavanih
kombinatoričkih optimizacijskih problema je problem usmjeravanja vozila. Ukoliko se optimizacija usmjeravanja
vozila poveže sa suvremenim u vozila ugra�enim sustavima navigacije i nadgledanja voznog parka moguće je
postići značajne uštede u troškovima dostave. U ovom radu je predložen novi mehanizam odabira smjera lokalnog
pretraživanja zasnovan na višestrukim poboljšanjima za rješavanje kapacitivnog problema usmjeravanja vozila. Pre-
dloženi novi mehanizam je implementiran kao dio mehanizma odabira smjera lokalnog pretraživanja u algoritmu
iterativnog lokalnog pretraživanja. Prošireni algoritam iterativnog lokalnog pretraživanja je provjeren na 4 vrlo
velika optimizacijska problema sa stvarnim podacima iz Hrvatske (skup od 7.065 kupaca i 236 dostavnih vozila)
i na standardnim testnim skupovima. Stvarni testni podaci dobiveni su od jedne velike hrvatske logističke tvrtke.
U radu je napravljena usporedba izme�u mehanizama odabira smjera lokalnog pretraživanja zasnovanih na prvom
i najboljem poboljšanju te predloženog mehanizma poboljšanja lokalne pretrage. Usporedba je napravljena prema
prije�enom putu, broju pomaka lokalnog pretraživanja i vremenu izračuna. Dobiveni rezultati pokazuju ubrzanje u
vremenu izračuna za 29 puta u usporedbi sa prvim smjerom poboljšanja lokalne pretrage te 9 puta u usporedbi sa
najboljim smjerom poboljšanja lokalne pretrage bez značajnijih degradacija u kvaliteti dobivenog rješenja.

Ključne riječi: VRP, CVRP, iterativno lokalno pretraživanje, višestruka poboljšanja

1 INTRODUCTION

Graphs are common way of presentation when some
kind of network or connections among elements in a sys-
tem have to be described mathematically. Very different
mathematical or practical problems can then be solved
using the same graph related algorithms. Range of prob-
lems that can be solved covers problems like drilling a

given set of holes in a printed circuit board, route planning
in computer or road networks, etc.

Regarding route planning in road networks a very com-
mon problem is the Traveling Salesman Problem (TSP).
The goal is to find the tour between n cities with mini-
mal travel cost. The salesman has to visit each city exactly
once and then return to its home (starting) city. The TSP
is solved by searching for a Hamiltonian tour of minimal
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length on a graph. The choice of the best tour becomes a
combinatorial optimization problem.

Another practical problem is the delivery of goods to
shops around a city or region. This problem can be seen
as m−TSP where route optimization for each of the m
available delivery vehicles is done separately. If a depot
is added, the m−TSP problem becomes a Vehicle Rou-
ting Problem (VRP). Both mentioned problems (TSP and
VRP) including their extensions, like Capacitated Vehicle
Routing Problem (CVRP) where capacity of vehicle is an
additional constraint, are NP−hard problems. Such prob-
lems can be solved by an exact algorithm only for cases
with relatively small number of locations. Because the
number of solutions grows with factorial complexity, an
exhaustive search algorithm is impractical for real world
TSP and VRP solving. The methods that are often used
in practice for those NP−hard combinatorial problems on
graphs are heuristic methods which are used to speed up
the process of finding a satisfactory good solution.

The novel multiple improvements pivoting rule for sol-
ving CVRP is proposed in this paper. Proposed rule is im-
plemented as part of the search step selection mechanism
in the Iterated Local Search (ILS) algorithm. The used lo-
cal search operators and ILS algorithm are presented in
detail. Comparison of new pivoting rule with first and
best pivoting rule is conducted. The testbed for compari-
son consist of standard Christofides CVRP, Taillard CVRP
problem benchmarks [1,2], and four large scale real-world
problems. The real-world benchmark set was generated
from real distribution demand data in order to test proposed
search step selection mechanism in conditions identical to
its most probable application area. Obtained results show
significant speed up regarding computation time and re-
duction of needed algorithm iterations.

The rest of the paper is organized as follows. In Sec-
tion 2, mathematical definition of the CVRP problem is
given. In Section 3, state of the art approaches are de-
scribed. In Section 4, novel search step selection mecha-
nism is proposed. In Section 5, implementation of the pro-
posed search step selection as part of the ILS algorithm is
described. Section 6 contains description of experimental
data and obtained results discussion. Last Section 7 ends
the paper with conclusion.

2 CAPACITATED VEHICLE ROUTING
PROBLEM
VRP was introduced by Dantzig and Ramser [3] and

is one of the most significant problems in distribution ma-
nagement. CVRP is considered to be a classical version
of the VRP. Often, when VRP is mentioned, capacitated
variant is assumed. Additional constraint in CVRP is that
every customer has a certain demand, and delivery vehicles
have limited capacity in serving those demands.

Fig. 1. Capacitated vehicle routing problem

More formally speaking, let G = (V,E) (Fig. 1) be a
connected digraph where V = {0, ..., n} is set of nodes,
and E = {(i, j) : i, j ∈ V, i < j} is set of edges with
non-negative weights that are connecting nodes. Digraph
is a directed graph which has no loops and no multiple
oriented edges (with the same starting and ending nodes).
Every node i ∈ V \{0} represents a customer with non-
negative demand qi, and node 0 represents a depot. Node
0 presents an exception in the digraph used for CVRP pre-
sentations and denotes starting and ending point of every
delivery route. Therefore it has multiple connections to its
neighboring nodes. Every edge has a cost cij . In Fig. 1
solved CVRP is presented. Rectangle denotes a depot, cir-
cles represent customers with radius proportional to cus-
tomer demand, dashed lines are oriented edges which have
connection with depot and solid lines represent edges be-
tween customers. Homogeneous fleet of m vehicles with
equal capacities Q is located at depot (in Fig. 1 m = 3).

The objective in CVRP is to minimize total distance,
such that every customer is served only once by one vehi-
cle, routes must start and end in depot, and total demand
of customers in route does not exceeds vehicle capacity Q.
Distance Constrained VRP (DCVRP) is variant in which
overall route distance Di should not exceed upper limit L.
The implemented ILS algorithm presented in this paper is
applied only to the problems without the overall route di-
stance constraint.

As mentioned before, the CVRP is a NP−hard pro-
blem [4], so exact algorithms are suitable only for solving
smaller sized problems with up to 50 customers in rea-
sonable computing time [5]. Problems with larger number
of customers are most commonly solved with metaheuris-
tic algorithms. Most metaheuristics consists of some con-
struction and improvement heuristics (i.e. local search) [6].
Various metaheuristics for vehicle routing problem can be
found in Bräysy and Gendreau survey [7].
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3 STATE OF THE ART APPROACHES IN
SOLVING CVRP

Local search algorithms are often applied to hard com-
binatorial problems. They iteratively generate candidate
solutions and evaluate them. Local search algorithms are
essential elements for vast majority metaheuristic algo-
rithms for VRP. Some of metaheuristics algorithms for sol-
ving VRP that use local search are simulated annealing,
tabu search and ILS. In many cases, the performance of the
evolutionary algorithms for combinatorial problems can be
significantly improved by adding a local search phase after
applying mutation and recombination or by incorporating a
local search process into the recombination operator. Local
search algorithms start at some location of the search space
and move from one solution to a neighboring solution [8].
This approach is often more appropriate for real-world ap-
plications, because available time to find a solution is of-
ten limited. Although exact methods can guarantee that
eventually optimal solution will be found or prove that a
solution does not exists.

Over the years researchers have shown that
(meta)heuristic algorithms can produce high quality
solutions in reasonable time. Today, virtually every state
of the art algorithm for VRP uses some sort of local search
mechanism [9]. Often high performance algorithms use
randomized choices in generating or selecting candidate
solutions [8].

3.1 Local search operators

As stated previously, local search is based on moves
from one solution to a neighbor one. To perform those
moves, neighboring solutions need to be evaluated. Neigh-
boring moves are evaluated with neighborhood operators.
For detailed description of operators see [10]. Most com-
mon operators for CVRP are relocate, exchange, 2−opt

Fig. 2. Relocate move

Fig. 3. Exchange move

Fig. 4. 2-opt move

and 2−opt*. In CVRP local search operators are divided
into two groups, first group that changes position of one
or more customers in a single route and second group of
operators that are relocating or exchanging one or more
customers between two routes. Local search operators are
routes modifiers which improve objective function when
possible improvements are found. Every operator works
on some pattern and modifies one route or more of them.
Objective function for our example of operators is route
length. The pattern of route modification for each operator
is presented in Figs. 2- 4. In mentioned figures rectangle
presents depot, black circles customers and lines delivery
routes.

Figure 2 illustrates relocate operator for one route,
where customer i is relocated to the new position between
customers j and j+1. Figure 3 illustrates exchange opera-
tor for one route, where customers i and j are exchanged.
Figure 4 illustrates 2−opt operator for a single route. The
edges (i, i + 1) and (j, j + 1) are replaced by edges (i, j)
and (i+1, j+1), causing reversal in the direction of edges

AUTOMATIKA 55(2014) 2, 124–132 126



Vehicle Routing Optimization Using Multiple Local Search Improvements J. Fosin, T. Carić, E. Ivanjko

between i+ 1 and j.

3.2 Search step selection mechanism
Important part of local search is how to select new im-

proving step. The search step selection mechanism de-
cides which improving moves will be performed. Moves
are determining the new solution neighborhood and further
course of the local search.

The search step selection mechanism is also called ac-
ceptance strategy. Commonly used pivoting rules in this
selection mechanism are best improvement and first im-
provement. Best improvement selects in each search step
the one that achieves maximal reduction of total distance.
Best improvement is also called greedy hill-climbing or
discrete gradient descent. First improvement tries to avoid
the time complexity of evaluating all possible neighbors
by performing first improving step found during neighbor-
hood search [8].

Other pivoting rules that are used also are d−best im-
provement [11], random improvement and least improve-
ment [8]. The d−best improvement terminates the search
when d improving neighbor solutions are found. The best
solution from this set is then taken as the next solution.
Random improvement selects the next step by choosing
one of the improving move randomly. Least improving
strategy chooses the improvement that reduces total dista-
nce of the solution by a smallest amount. Those strategies
are rarely used and are not examined in scope of this paper.

4 NOVEL SEARCH STEP SELECTION
MECHANISMS

First improvement search step can be calculated more
efficiently because smaller subset of the neighborhood is
evaluated. But, there is one negative effect. Evaluated im-
provements are smaller or equal to the best possible im-
provement, therefore more search steps have to be calcu-
lated. More detailed analysis is given in Section 6. Best
improvement evaluates whole neighborhood, but only one,
the most improving step, is performed while all other less
improving steps are discarded in that iteration.

It is quite possible that one or more of those less impro-
ving steps will be best improvement later as local search
iterates. It is beneficial not just to make one best step, but
also less improving ones as well. Since every improvement
changes neighborhood, making more than one improving
move at one iteration can lead to an infeasible solution. For
example, vehicle capacity Q is not enough to accept more
then one new customer in a particular route. Thus, it is
necessary to check that new solution will be feasible after
performing all improving moves.

Example of this idea is illustrated in Fig. 5 showing re-
locate moves between two routes. Let say that only three

improving moves can be made, best improving move be-
tween routes v1 and v2 from solution s to solution s′. Next
move is the one between routes v3 and v4 that generates
new solution s′′. Last one is moving customer from route
v5 to v6, giving a solution s′′′. Using best improvement
pivoting rule three iterations of relocate operator would be
needed to iterate from solution s to solution s′′′. It is obvi-
ous that all moves can be performed in just one iteration
since all those moves are independent from each other and
there is no need to evaluate the neighborhood three times.

Multiple improvements can also be applied for single
route operators as long as they do not interfere with each
other. Virtually all standard operators can be modified to
benefit from new described strategy. Proposed multiple
improvement search step strategy is used for operators that
change two routes. In our case the best improvement stra-
tegy is used for single route operators, since CVRP routes
are often built from small number of customers, and thus,
performance gain is relatively small.

In order to speed up a local search process the novel
multiple improvement pivoting rule is proposed, which
uses the fact that in one algorithm iteration several inde-
pendent moves can be done. This mechanism can be ap-
plied whenever moves done by this pivoting rule do not
make solution infeasible.

5 ILS ALGORITHM

To test performance of multiple improvement strategy,
simple ILS algorithm is selected (Algorithm 1). It is good
example of algorithm that uses local search because of its
simplicity and it does not need excessive parameters tuning
like simulated annealing or memetic algorithms. Same lo-
cal search speed up approach can be applied for improving
other commonly used metaheuristics algorithms for VRP
mentioned in Section 3.

Algorithm 1 ILS

init := Sweep()
s := LocalSearch(init)
best := s
while not Terminate() do

s′ := Escape(s)
s′′ := LocalSearch(s′)
if f(s′′) < f(best) then

best := s′′

end if
s := s′′

end while

Initial solution is obtained by Sweep algorithm pro-
posed by Gillett and Miller [12]. Local optimum is then
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Fig. 5. Multiple relocate moves

obtained by applying LocalSearch procedure. It con-
sists of relocate and 2−opt operators that are applied on
a single route. Relocate, exchange and 2−opt* opera-
tors are changing customers from two routes. When lo-
cal search gets stuck into local optima Escape procedure
tries to escape from it by modifying current solution. Es-
cape procedure uses idea from Large Neighborhood Search
(LNS) [13], and Ruin and Recreate framework proposed
by Schrimpf et al. [14]. First, removal of r customers from
solution is done randomly, and then removed customers
are inserted with Regret insertion heuristics [15]. Local
search is applied on modified solution s′ until local op-
timum is reached. New solution s′′ is accepted if its di-
stance is smaller then distance of currently best solution.
Algorithm iterates until termination condition is met. Usu-
ally maximal number of iterations is used as termination
criteria.

6 EXPERIMENTAL RESULTS

Proposed algorithm was implemented in C++ and com-
piled with MS Visual C++ 10.0 compiler. All tests were
performed on a PC with Intel i5 − 2410M 2.3 GHz (with
turbo boost up to 2.9 GHz) processor running Microsoft
Windows 7 64−bit operating system. Termination criteria
for ILS algorithm was set to 100, 000 iterations.

Tests were conducted on 4 real-world problems in
Croatia and on standard Christofides et al. [1], and Rochat
and Taillard [2, 16] CVRP benchmarks. Christofides et
al. problems with distance constrains were not tested
since DCVRP is not considered in this research. The
4 real-world problems were used for comparison regar-
ding solution quality and computational time. Used CVRP
benchmarks were used for comparison of solution quality.
Known computational time for CVRP benchmarks is re-
lated to the case were algorithms are run until best possible
solution has been found and in this paper applications with
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Fig. 6. GUI of developed application presenting CVRP
problem (Christofides 1) solved optimally

limited available computational time are considered.

Figure 6 shows graphical user interface developed for
easier testing of the algorithm. Selected pivoting rules
for implemented ILS algorithm comparison were first im-
provement, best improvement and proposed multiple im-
provement in real-world benchmarks. In standard bench-
marks only proposed multiple improvement was used and
compared to best known benchmarks results.

6.1 Real-world benchmarks

As mentioned, performance of the proposed pivoting
rule is tested on four real-world very large instances in
Croatia (Fig. 7). This four benchmark problems were ge-
nerated from data obtained from a large Croatian logistics
company. Originally, problem was defined as location-
allocation problem to obtain locations of four distribution
centers. Total of 16, 515 customers were clustered and pro-
posed depot locations were found [17]. Number of cus-
tomers, depots names and number of vehicles per cluster
can be found in Table 1. For this benchmark the demand
weights for all customers were set to 1.0 and vehicles ca-
pacities were set to 30.0.

Described four benchmarks were used to compare
proposed multiple improvement pivoting rule with well
known first and best improvement because very large
CVRP instances are needed. Comparison of first, best and
multiple improvement pivoting rules can be found in Ta-
ble 2. Total number of improving moves for local search is

Table 1. Croatia benchmark problems

Region Depot No
¯

of cust. No
¯

of veh.
SW Rijeka 3, 805 127
SE Split 3, 154 106
NE Ðakovo 2, 492 84
Central Zagreb 7, 065 236

given, from initial solution until local search is stuck in lo-
cal optima. First and best improvement pivoting rules have
the same number of iterations as the number of moves. For
multiple improvement pivoting rule the number of itera-
tions is considerably smaller than number of moves. The
average moves/iterations ratio is about 16 moves per iter-
ation and is the main reason for substantial speed-up of
multiple improvement pivoting rule.

Distance wise, it is hard to distinguish best approach
among compared three pivoting rules. Best improvement
has smallest total distance for two problems. First and
multiple improvements had smallest total distance in one
benchmark, respectively. Since first improvement has
smallest distance in largest problem, it has smallest ave-
rage distance for all four problems. It is interesting to no-
tice that local search with first improvement pivoting rule
makes approximately 2.5 times more moves than best and
multiple improvement. Since changing customers inside
or among routes takes some amount of CPU time, first im-
provement is slower than best improvement approximately
3 times.

Major difference in performance comparison arises in
execution time. As mentioned earlier, best improvement is
3 times faster than first improvement. Proposed pivoting
rule, multiple improvement, outperforms them both, and

Fig. 7. CRO benchmark
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Table 2. Pivoting rules comparison

First improvement Best improvement Multiple improvement
Problem Size Dist. Moves Time [s] Dist. Moves Time [s] Dist. Moves Iterations Time [s]
SW 3806 186.92 6331 93.60 186.79 3049 50.97 186.99 3108 169 7.30
SE 3155 184.92 7313 197.12 185.06 3103 55.07 184.67 3268 271 11.41
NE 2493 114.64 4467 25.37 114.33 2148 20.94 114.86 2131 196 3.92
Central 7065 288.63 23791 2998.89 295.10 7534 985.52 293.55 8158 384 91.47

avg 193.78 10476 828.75 195.32 3959 278.13 195.02 4167 255 28.52

this by a quite significant margin. It is 9.75 times faster
than best improvement, and 29.05 time faster than first im-
provement. This difference emerges from the fact that al-
though number of moves is roughly the same as for best
improvement more than one move is made per iteration,
so local search gets stuck in local optimum substantially
faster. For smaller sized problems speed-up is less pro-
nounced, as a smaller number of moves per particular local
search iteration are performed.

Currently, routes are implemented in std::vector con-
tainer, and it could be wise for future work to test some
faster route representations, i.e. linked list. For problem
located in central Croatia (contains 7, 065 customers and
236 vehicles) one complete neighborhood evaluation and
performing move itself for best improvement is executed
in 0.13 seconds, on average, which is very fast. Also, sub-
stantial speed-ups without significant loss in solution qua-
lity can be achieved with neighborhoods reduction using
neighbors lists.

6.2 Standard CVRP benchmarks
CVRP benchmarks of Christofides et al. [1] are divided

into random problems (1 − 10) and clustered problems
(11− 14). As mentioned earlier, we are using benchmarks
that are not distance constraint (problems 1−5 and 11, 12).
Termination criteria for ILS algorithm was set to 100, 000
iterations. Best known results (distances) are taken from
Nagata and Bräysy [18]. Table 3 shows comparison of
best known results and obtained results for ILS algorithm
with proposed multiple improvements local search selec-
tion mechanism.

Table 3. Christofides et al. benchmark problems

Problem Best distance ILS distance ∆ [%] Time [s]
1(50) 524.61 524.61 0.00% 21.72
2(75) 835.26 835.32 0.01% 45.47
3(100) 826.14 826.14 0.00% 136.70
4(150) 1028.42 1034.97 0.63% 355.73
5(199) 1291.29 1336.02 3.35% 373.93
11(120) 1042.11 1042.11 0.00% 183.21
12(100) 819.56 819.56 0.00% 129.59

avg 0.57% 178.05

ILS algorithm found 4 out of 7 best known solutions.
Problem 5 with distance 3.35% above best known solu-
tion shows poor performance of used escape mechanism.
Biggest issue is in random removal of 10% customers
from the local optima solution. Random removal is not
good enough to overcome local optima and future work
should include other removal techniques [15] or another
more powerful escape procedure. With just random re-
moval strategy this algorithm can be considered as a brute-
force algorithm and thus enormous number of iterations
(100, 000) is needed to achieve average deviation of 0.57%
above best known solution. With such large number of ite-
rations in mind, algorithm can be considered as rather fast
with slightly less than 3 minutes of average CPU time.

Another standard CVRP benchmark set contains 13 in-
stances introduced by Rochat and Taillard [2]. All parame-
ters of ILS algorithm are the same as for previous bench-
mark set. Results are given in Table 4. Already mentioned
poor performance of escape mechanism has even greater
impact on this benchmark set. Just 2 instances are solved
equally to best known solution, and average deviation from
best known solutions is 0.80%. Again largest T385 in-
stance stands out with 4.98%, while T150c instance is
slightly above 1% margin. For remaining 11 instances di-
stance is under 1% above best known solutions.

Future work should include further speed ups of lo-

Table 4. Taillard benchmark problems

Problem Best distance ILS distance ∆ [%] Time [s]
T75a 1618.36 1618.36 0.00% 70.72
T75b 1344.62 1356.58 0.88% 58.62
T75c 1291.01 1291.01 0.00% 70.61
T75d 1365.42 1365.91 0.04% 64.47
T100a 2041.34 2047.90 0.32% 109.72
T100b 1939.90 1941.08 0.06% 132.86
T100c 1406.20 1415.28 0.64% 162.42
T100d 1580.46 1596.31 0.99% 152.05
T150a 3055.23 3068.67 0.44% 320.58
T150b 2727.89 2732.52 0.17% 384.68
T150c 2341.84 2365.89 1.02% 277.85
T150d 2645.39 2669.39 0.90% 432.14
T385 24431.44 25712.70 4.98% 3205.73

avg 0.80% 418.65
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cal search procedure utilizing heterogeneous computing,
by exploiting graphical processing unit [19].

7 CONCLUSIONS

In this paper novel local search step selection mecha-
nism is proposed. The proposed search step mechanism
uses the fact that in one algorithm iteration, several in-
dependent improvement moves can be done. This mech-
anism can be applied whenever capacity constraints for
CVRP are fulfilled. In this way optimization procedure re-
quires less iteration of local search procedure. Although
number of search moves remains the same, significant
speedup is achieved since search moves are less time de-
manding than algorithm iterations.

The proposed pivoting rule reduces, in order of ma-
gnitude, running time needed for performing local search
while solution quality remains approximately the same.
This novelty can be used in many approaches in solving
CVRP because most of the state of the art algorithm use
some kind of local search. As size of the problem grows,
the contributions of archived speed-ups become more rele-
vant as is shown on large real-word instances.

Multiple improvement pivoting rule is most suitable
for very large CVRP problems, and it was tested on real-
world instances with up to 7, 065 customers and 236 vehi-
cles. Experimental results confirm that substantial speed-
ups can be achieved, up to 29 times compared to first im-
provement for largest tested instance without noticeable
degradation in solution quality.

For vast majority of standard CVRP benchmarks ILS
algorithm has obtained high-quality solutions. Although
algorithm can not be considered as slow regarding CPU
time, with better focused escape strategy algorithm would
need less iterations, and as a consequence, less CPU time.
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Lončar”) and with scholarships from the Pharmaceutics Company Pliva
d.d. and the Croatian Ministry of Science, Education and Sports. He
published one book chapter, 3 papers in international journals and 23
papers in proceedings of international conferences. He is a member of
KoREMA, IEEE and Croatian Society for Robotics.

AUTHORS’ ADDRESSES
Juraj Fosin, B.Sc.
Assoc. Prof. Tonči Carić, Ph.D.
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