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This paper presents a new variable step-size normalized subbartivadiétpr (VSS-NSAF) algorithm. In the
proposed VSS-NSAF, the step-size changes in order to have laegestade in the mean square deviation (MSD) for
sequential iterations. To reduce the computational complexity of VSSHN®A variable step-size selective partial
update normalized subband adaptive filter (VSS-SPU-NSAF) is peopds this algorithm the filter coefficients
are partially updated in each subband at every iteration. Simulation rebolistee good performance of the
proposed algorithms in convergence speed and steady-state MSD.

Key words: Adaptive filter, Variable step-size (VSS), Selective partial update jSBubband adaptive filter
(SAF)

Novi normirani pojasni adaptivni filtar s promjenjivom duljinom koraka. U ovom radu prikazan je novi
algoritam za normirani adaptivni filtar s promjenjivim korakom. KoddboZenog filtra, velina koraka mijenja
se kako bi se dobilo najee smanjenje srednje vrijednosti odstupanja za uzastopne iteracije.bKa&smanijila
racunska slozenost filtra, predloZen je normirani pojasni adaptivni Sltaromjenjivim korakom i selektivnim
parcijalnim osvjeZzavanjem. Kod tog algortima koeficijenti filtra parcijalno ®geZavaju u svakom pojasu i pri
svakoj iteraciji. Simulacijski rezultati pokazuju dobru brzinu konveugijen malu srednju vrijednost odstupanja u
stacionarnom stanju za predloZeni filtar.

Klju €ne rijeci: adaptivni filtar, promjenjiva duljina koraka, selektivno parcijalno o&ajenje, pojasni adaptivni
filtar

Adaptive filtering has been, and still is, an area of acMSE decreases when the step-size decreases, while the
tive research that plays an active role in an ever increasingonvergence speed increases when the step-size increases.
number of applications, such as noise cancellation, channBy optimally selecting the step-size during the adaptation
estimation, channel equalization and acoustic echo cancele can obtain both fast convergence rates and low steady-
lation [1], [2], [3], [4], [5]- The least mean squares (LMS) state MSE. In [9], a new variable step-size NLMS (VSS-
and its normalized version (NLMS) are the workhorsesNLMS) algorithm was proposed. In this algorithm, the
of adaptive filtering. In the presence of colored inputstep-size changes to obtain the largest decrease in MSD
signals, the LMS and NLMS algorithms have extremelyduring the iterations [9]. In this paper, we extend the ap-
slow convergence rates. Adaptive filtering in subbands hagroach in [9] to NSAF, and SPU-NSAF algorithms and
been proposed to improve the convergence behavior of théSS version of these algorithms are proposed. We demon-
LMS algorithm [6]. The normalized subband adaptive fil- strate the good performance of the presented algorithms
ter (NSAF) was proposed in [7]. In [8], the selective par-through several simulation results in a system identifica-
tial update NSAF (SPU-NSAF) was proposed to reducdion scenario. We have organized our paper as follows. In
the computational complexity. In this algorithm, the filter Section 2, we briefly review NSAF, and SPU-NSAF al-
coefficient are partially updated in each subband at evergorithms. In Section 3, the proposed VSS adaptive algo-
iteration. This feature leads to the reduction in computarithms is established. Finally, before concluding the pape
tional complexity. we demonstrate the usefulness of these algorithms by pre-

In above mentioned algorithms, the selected fixed stepsenting several experimental results.
size can change the convergence and the steady-state meanThroughout the paper, the following notations are used:
square error (MSE). It is well known that the steady-state
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|- | Norm of a scalar. wheree; p(k) = d; p(k) — w’ (k)x;(k) is the deci-
[I-1I? Squared Euclidean norm of a vector. mated subband error signal, ands the step size which is
[t]3; X Weighted Euclidean norm of a column vectoghosen in the range < p < 2 [7]. We also assumed a
defined ag”xt. linear data model for the desired signal as
vec(T) Creates ad/? x 1 column vectott through stack-
ing the columns of thé/ x M matrix T. _ _ T o )
vec(t) Creates am/ x M matrix T from the M? x 1 di,p(k) =x; (k)" +vi,p (k) ®)
column vectott. wherew® is the true unknown filter vector, ang p (k)
A ®B Kronecker product of matrice& andB. is partitioned and decimated additive noise with zero mean
Tr(.)  Trace of a matrix. and varianceg? . We also assume tha(n) is identi-
()T Transpose of a vector or a matrix. cally and independently distributed (i.i.d.) and statisily
Amax The largest eigenvalue of a matrix. independent of the input datdn).
R The set of positive real numbers.
E{} Expectation operator. S —mm—-oo-om--o :
diag(.) Has the same meaning as the MATLAB opere 1 4y d;(n) di.p(k) '
with the same name: If its argument is a vecto i || + N|' X
diagonal matrix with the diagonal elements giv ! X
by the vector argument results. If the argumer i=01,.., N -1 '
a matrix, its diagonal is extracted into a resulti : o) / ®) :
1 xi(n Yi,D\F 1
vector. : ﬂ T V%k) TV 9 :
1 / :
1 BACKGROUND ON NSAF, AND SPU-NSAF AL- : i=0.1,.., N -1 -
GORITHMS : I
In this sectin we briefly review NSAF, and SPU-NSAF 1 @(")@ — " S I
y review . an = TN
algorithms. : — :
] : i=0,1,....N -1 :
1.1 NSAF Algorithm L e e e e e e e e e e e e e e e - ]

Fig. 1 shows the structure of NSAF [7]. In this fig-

ure, fo, f1, -
sponses of aiv channel orthogonal perfect reconstruction

-, fv—1, are analysis filter unit impulse re- Fig. 1. Structure of NSAF algorithm.

critically sampled filter bank system;(n) andd;(n) are
nondecimated subband signals. It is important to note that.2 SPU-NSAF Algorithm

n refers to the index of the original sequences &nde-
notes the index of the decimated sequences. Similar to HEP
NLMS algorithm, NSAF can be established by the solution
of the following optimization problem

To reduce the computational complexity of NSAF,
U-NSAF algorithm was proposed in [8]. Partitios{x)

for 0 <i < N — 1 andw(k) into B blocks each of length
L which are defined as

min [|w(k + 1) — w(k)| @) xi(k) =[x (k), x5 (k). ... x; g (R)]" (6)

subject to the set oV constraints imposed on the deci- w(k) = [wi (k),wa (k),...,w5(k)]T. 7)

mated filter output

Suppose we want to update blocks out of B blocks

di7D(k):xf(k)w(k+1) for i=0,---,N—1 (2) in each subband at every adaptation. LBt =

where

{j1,Jo,...,js} denote the indexes of the blocks out of
B blocks. In this case, the optimization problem is defined

Xi(k‘) = [l‘l(k'N),.%‘l(kN — 1), s ,xl(k‘N — M + 1)}T as

©) Jmin et ) - weBE @)

By solving this optimization problem based on the method ) o
of Lagrange multipliers, the filter update equation forSubjectto(2). By using the Lagrange multipliers approach,

NSAF can be stated as [7] the filter vector update equation is given by
N—-1 N-1
_ Xi(k)SLD(k’) o Xi,F(k)ei,D(k)
w(k+1)_w(k)+u; Tt (4 wr(k+1) _WF(k)+u; T r (B2 + < 9)

189
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wherex; p(k) = [x!. (k),x, (k),...,x". (k)]T. To  The optimum step size will be found with derivationaf.

1,71 )2 L I

reduce the computational complexity associated with thevith respect tqu, f’A(“) =0,

selection of the blocks to update, two alternative simpli-
fied criteria were proposed: 1) In the first approach, we N=1 T 5T (ko (k
8A(u) E Z 627D( )Xz( )2W( ) . (16)
)]

compute the following values =
N—-1 2
2 ei,D(k)
x; b (k for 1<b<B. (10) 2uF ———| =0
Z ()] 2 T ®l?

o
The indexes of the sdf correspond to the indexes of Therefore
the S largest values of (10). 2) In the second approach,

we identify a set of indexes, correspond to fiemallest E [Z(\i—ol W}
values of (11) [8]. pl(k) = ; 0 a7
N-—1 €i,.D
lan E {Zizo ||ka>|\2}
j =arg min { - (11
1<b<B Z N1 (k)12 H2 From (5),e;, p (k) is obtained by
T ~
2 DERIVATION OF VSS-NSAF AND VSS-SPU- ei,p(k) = x; (k)W(k) +vip(k) (18)

NSAF ALGORITHMS
Using again the approximation fofk), and neglecting the

In this section, we establish the family of VSS-NSAF dependency o (k) on past noises, the optimum step-size

algorithms based on [9]. is given by
. g 2
2.1 VSS-NSAF Algorithm 20(k) = Ellw(k)[5 1 (19)
By defining the weight error vector a&;(k) = w° — E|[w (k)3 + Ez 0 02 [W}
w(k), the weight error vector update equation for NSAF
algorithm is given by where
N-1 W (k)x; (k)xT (k)W (k)
~ o~ Xi(k‘)ei’D(k) Ellw(k 2 _ E w ( )XZ( )Xz ( )W( (20)

By taking the squared Euclidean norm and expectation foBY defining the vectop(k) as
both sides of (12), we obtain

_ N xilk)x{ (k) w (k)
: s o [N Ep(b) P = 2 TP @D
Elw(k+ D" = E[w(E)|" +p E ZW - =0
N1 1 P we obtain
2 {E 2 ei7D(k)X<ik(>T)2W(k)H N W (k) ()T () (k)
i X; 2 _ w X; X, W
’ a3 IP®I* =2 —— 1w @2
Equation (13) can be written as Therefore the optimum step-size becomes
Bk + DI = BIW®IF - A a9 Ellp(h)|? (23)
where Ellp(®0)|? + 15" 02, B | et |

N-l ZT (k)xT (k)w(k) By taking the expection from both sides of (21), and using
Ap) =2p {E P EABIE (15)  (18), the following relation is obtained
=0 v
N—-1 62 (k) N—-1 X(k) ] k
2 i,D i € D( )
u*E : E[p(k)]=E AT (24)
2 (R PRI=E | ) S P
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Motivated by these facts, we propose to estimate) by  The optimum step size for SPU-NSAF will be found with

time averaging as follows: derivation ofAz with respect tqi, 23\ = 0
N-1
X R xi(k)ei,p (k) A (1) Nl el (k)xT (k)W (k)
p]{ = ap kE—1 + 1—« —_— (25) 7’“22 E v, D 1, F _ 1
“ bmysli=e ; i (F)|I? BN ; i, F(k‘)H2 (31)

with a smoothing factod < o < 1. Using||p(k)||? in- WE
stead ofE||p(k)||? in (23), the proposed variable step-size
for NSAF algorithm becomes

-0l
M) = b [ i -G

Z 2 H -

Therefore, the optimum step-size is given by
(26)

N-1 eZD(k)xZF(k)WF(k)
{E [Zio Toce £ (01 ]}
. . . °(k) = (32)
where C' is a positive constant and is related to
SN te? E {m} This parameter can be esti-

1 (k) 2
N-1 e} p(k)
E {Zi:O m}
Vi, D

mated byC' ~ 121 AlSO, i, IS introduced in (26) Using the approximation fore; p(k) as e;p(k) =
to guarantee the stability bound of VSS-NSAF algorithm X; (k)Wr(k) + v; p(k), the optimum step-size can be
Table | summarizes the VSS-NSAF algorithm. stated as
E‘|V~VF( )13
2.2 VSS-SPU-NSAF Algorithm po(k) = —— = — (33)
Blsr®E + L' 0% B | e

By defmmng( ) = w% — wp(k), wherew$, =

[le ,wjz yoe s WY }T equation (9) can be stated as where
N—-1~T T ~
N-1 - 2 WF(k)Xi,F(k)Xi,F(k)WF(k)
R x; r(k)e; plk Elwr(k =F
(k1) = we() 3 SERBE - ary EIVRE {Z o ()P
i=0 TR (34)
Taking the squared Euclidean norm and expectation from \Now by definingp(#) as
both sides of (27) leads to _ -
(27) o) = Nzl i, p (k)X o (k)W (k) (35)
Elwp(k+1)|? = E|lWwp(k)|?—  (28) = Ixr®)®
N-1_T T =~
el n(k)x; n(k)wr(k .
o {E > Z,D(|)X;F((k))”2 (k) } N we obtain
i=0 i N—1 ~T T -
Wi (k)X r (k)X p (k)W (k)
LN ez k) Ip(k)|* =Y =~ . (k’)]2 (36)
H Z 7 2 =0 r
= lxi.r(F)
Therefore, the optimum step-size becomes
Equation (28) can be represented as )
Ho(k) — EHp(k)” (37)
where Taking the expectation from both sides of (35), the follow-
N1k ing relation is obtained
i,D
Al =2 {E [Z T ] } = . mrBenn(®
i=0 ¢ Epk)]=F LD (38)
szl 2 (k) ] k) ; [[xi,p (K)[?
1%, (F)|? The vectomp(k) is estimated by time averaging as follows:
IAppendix A presents an approximation 16t N-1 X F(k)e D( )

2The stability bounds of NSAF, and SPU-NSAF have been predent pk)=aplk—1)+(1—a) Z

— 7 (39
in Appendix B. —~  |lxir(k)]? (39)
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Using||p(k)||? instead ofE||p(k)||? in (37), the proposed 4 SIMULATION RESULTS

variable step-size for SPU-NSAF algorithm becomes We demonstrate the performance of the proposed algo-
A ) rithm by several computer simulations in a system identifi-
(k) = pmaz —AHp(k)” (40) ~ cation scenario. In first simulation, we use the real acous-
Ip(R)[I? +C

tic impulse response with lengthf = 256 as shown in

Fig. 2 (a) [11]. The same length is used for the adap-
where C' is a positive constant and is related tOtjye filter. The colored Gaussian signal is used for the
Zf\;laﬁwE {m} This parameter can be ap- input signal. The input signal is obtained by filtering a
proximated as’ ~ SL.];NR_ Table Il summarizes the White, zero-mean and unit variance Gaussian random se-
VSS-SPU-NSAF algorithm. guence through a second-order auto regresswe (AR(2))

system with transfer functiof(z) = ————5s—=-

The filter bank used in NSAF was the four subband ex-
tended lapped transform (ELT) [12]. The white zero-mean
Gaussian noise was added to the filter output such that the

Table 1. Summary of VSS-NSAF algorithm

Fork =0,1,2,... o SNR = 30dB. In all simulations, we show the normal-
¢i,p(k) = di,p (k) = w (k)i (k) ized MSD, E||w® — w(k)||2/||w°||? which is evaluated by
k) = E_1 1 N—1 xi(k)ei, p (k) ) . ;
(k) = ap(k = 1)+ (1 =) Yoo’ Tl ensemble averaging over 20 independent trials. Also, we
(k) = LB assume that the noise varianeg, is known a priori [13].
w(k +1) = w(k) + p(k) SV % For all simulations we consider = 0.99, andC' = 10~°.
end The parametef,,, ., was set to 1. Table IV shows the val-

ues of the parameters in simulations. In the case of VSS-
SPU-NSAF withS = 2, the parametefi,, ., was set to
0.8. Fig. 3 compares the convergence of NSAF algorithm

Table 2. Summary of VSS-SPU-NSAF algorithm ~ With the proposed VSS-NSAF when the real unknown im-
pulse response should be identified. In NSAF, different

Fork—0.1,2,... step sizes](, 0.2 and0.05) were chosen. As we can see, the
es. (k) = di.p (k) — wT (k)x (k) proposed VSS-NSAF has both fast convergence and low
(k) = ap(k — 1) + (1 — a) VoL x7”i<k>f(;)zu>2<k> steady-state MSD features compared with ordinary NSAF.

PN r Fig. 2 (b) shows the filter coefficients values after adap-
k) = iz e Nt % (e (8) tation based on VSS-NSAF algorithm. This figure proves
wr(k+1) =wrk) + uk) Xico” w1z that the filter coefficients have been optimally converged to

end the impulse response of the car echo path.

Fig. 5 shows the normalized MSD curves for the pro-
posed VSS-NSAF fow? = ¢=77r(j), j=0,--- ,M—1
wherer(j) is a white Gaussian random sequence with
3 COMPUTATIONAL COMPLEXITY zero-mean and varianeg’ of 0.09. In this case, the im-
pulse response lengthAd = 200, and the envelope decay
Table 11l shows the number of multiplications, divi- rater is set to 0.04. The exponential unknown impulse re-
sions, and comparisons of different adaptive algorithmssponse has been presented in Fig. 4 (a). The simulation
The computational complexity of NSAF for each input results show that for low and large values for the step-size,
sampling period is exactlgM + 3NK + 1 multiplica- the performance of NSAF is deviated. But the VSS-NSAF
tions and 1 division, wher& is the length of the channel has both fast convergence speed and low steady-state MSD
filters of the analysis filter bank)/ is the number of fil- due to the strategy of variable step-size. Again, Fig. 4 (b)
ter coefficients, andV is the number of subbands. SPU- shows good estimation for the filter coefficients after adap-
NSAF needf2M + SL+3N K + 1 multiplications, 1 divi- ~ tation.
sion, andO(B) + Blogs(S) comparisons when using the In Fig. 7, we presented the results for random unknown
heapsort algorithm [10]. The proposed VSS-NSAF needsmpulse response in Fig. 6 (a). The paraméteis set to
3M multiplications and 1 division more than conventional 50. The simulation results show that in the case of ran-
NSAF. Using SPU approach in VSS-NSAF leads to the redom unknown system, the performance of VSS-NSAF is
duction in number of multiplications. The number of mul- again better than NSAF algorithm with different step-sizes
tiplications is2M + 4SL + 3NK + 1 in this algorithm.  Fig. 6 (b) shows the filter coefficients after adaptation in
The VSS-SPU-NSAF algorithm needs also 2 divisions andhis case. As we can see, the VSS-NSAF has good ability
O(B) + Blog»(S) comparisons. to predict the coefficients of unknown impulse response.
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Table 3. Computational complexity of the Family of VSS-N&KyBrithms

Algorithm Multiplications ‘ Divisions ‘ Additional Multiplications ‘ Comparisons
NSAF [7] 3M +3NK +1 1
SPU-NSAF [8] 2M + SL+3NK +1 1 - O(B) + Bloga(S)
Proposed VSS-NSAF 3M +3NK +1 2 3M —
Proposed VSS-SPU-NSAF 2M + SL + 3NK + 1 2 3SL O(B) + Blogs(S)

Fig. 8 compares the MSD curves of VSS-NSAF, and
VSS-SPU-NSAF algorithms when the real unknown im-
pulse response should be identified. The number of block 10
(B) was set to 4 and various values fSrwere selected.
By increasing the parametér, the performance of VSS-
SPU-NSAF will be closed to the VSS-NSAF algorithm.
Furthermore, the computational complexity of VSS-SPU-
NSAF is lower than VSS-NSAF due to partial updates of
filter coefficients.

a) NSAF, p=1
b) NSAF, p= 0.2 I
¢) NSAF, 1= 0.05

(
(
(
(

——— (d) VSS-NSAF

(a)
)

Table 4. The Values of the Parameters in Simulations

’ Input signal ‘ M ‘ SNR ‘ Hmaz ‘ a ‘ C ‘ T M\ J ]
| Gaussian AR(2)] 256,200,50 | 3048 | 1 | 0.99 [ 107 -50f ({) v

-60 . . . . .
0 0.5 1 15 2 25 3 35 4

Iteration Number x 10*

(a)

08 r

1 Fig. 3. The MSD curves of VSS-NSAF and conventional NSAF
for real unknown impulse response.

06~ Impulse response of the car echo path

Amplitude

. , . .
] 50 100 150 200 250
Tap Index
(b)
08 : ! ! ! T (a)
. . .

06~ Adaptive filter coefficients after adaptation
Impulse response of the exponential unknown system

Amplitude
.

Amplitude
-

, . , ,

0 50 100 150 200 250 ) ) ) ) )
Tap Index (] 20 20 60 80 100 120 140 160 180 200
Tap Index

(b)

Adaptive filter coefficients after adaptation

Fig. 2. (a) The impulse response of the car echo path (b) The
filter coefficients after adaptation.

Amplitude

4.1 Simulation results for mean-square stability ‘ L ‘ ‘

Table V shows the stability bounds of SPU-NSAF algo- Tap ndes
rithm for colored Gaussian input signal. These values have
been obtained from Equations (61) and (63) (Appendix B)Fig. 4. (a) The impulse response of exponential unknown system
We justified these values by presenting some simulation rgb) The filter coefficients after adaptation.
sults. Fig. 9 shows the simulated steady-state MSE curves
of SPU-NSAF algorithm as a function of the step-size for
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10 T
10 ‘ (a) NSAF, ;1 =
(a) NSAF, =1 o — (b) NSAF, =02 ||
-~ —— (¢) NSAF, o =0.05
ot — (b) NSAF, p =02 | —— (d) VSS-NSAF
(c) NSAF, ;1 = 0.05 10 1
-10 (c) ——(d) VSS-NSAF g 20 i

(a) ) |

/] /
o~ | N\

'\“ e It

MSD (dB)
8

|
N
o

|
a
o
T

(@) |

?

70 . . . . . . .
—500 : ' ; 0 1000 2000 3000 4000 5000 6000 7000 8000

Iteration Number « 10° Tteration Number

Fig. 5. The MSD curves of VSS-NSAF and conventional NSAE'9: 7- The MSD curves of VSS-NSAF and conventional NSAF
for exponential unknown impulse response. for random unknown impulse response.

10 T T T
. (a) (a) VSS-NSAF
Impulse response of the r: L svste —— (b) VSS-SPU-NSAF (B=4, S=3)
ik mpulse response of the random unknown system
0 = (c) VSS-SPU-NSAF (B=4, S=2)|
-10 |
2 20 1
o 5 10 15 20 25 30 35 20 s 50 =
Tap Index A
®) < st .
4 - B Z o
b Adaptive filter coefficients after adaptation B (b)
© 2 _40 F 4
_:_f 1
=
E° Y
N 50} 7
-2 :
o s 10 I 2 2 30 35 20 S 50 -60 : - - - - (a), :
Tap Index 0 0.5 1 15 2 25 3 3.5 4
Iteration Number x 10°

Fig. 6. (a) The impulse response of the random unknown SysteBig. 8. The MSD curves of VSS-SPU-NSAF with4 and S=2
(b) The filter coefficients after adaptation. 3, and 4 for real unknown impulse response.

AUTOMATIKA 55(2014) 2, 188-198 194



The New Normalized Subband Adaptive Filter Algorithms withistale Step-Size Mohammad Shams Esfand Abadi, Mohammad SaefeeSha

We know that|x;(k)||*> = x! (k)x; (k) andx] (k)x; (k) ~
Mo?2 for M >> 1. Therefore

10

CwNJg""D B N

Mo2 ~ M.SNR (43)

Following the same approach for the paraméten VSS-

MSE (dB)

SPU-NSAF algorithm leads 10 ~ < 5~—.
APPENDIX B MEAN-SQUARE STABILITY
—6— (a) SPU-NSAF (B=1, S=1) ANALYSIS OF THE FAMILY
= &=+ (b) SPU-NSAF (B=4, S=3) 1 OF SPU—NSAF
(c) SPU-NSAF (B=4, $=2)
02 04 06 o8 1 12 14 16 18 2 Now, we introduce the general filter vector update

Step-Size (1)

equation to analyze the mean-square stability of the family
of SPU-NSAF. The general filter vector update equation to
Fig. 9. Simulated steady-state MSE of SPU-NSAF algorithmestablish the family of SPU-NSAF is introduced as:

with B = 4 and S = 2,3,4 as a function of the step-size for

colored Gaussian input signal (AR(2)). w(k+1) = w(k) + pC(k)X(k)Z(k)e(k). (44)

whereC(k), andZ(k) matrices are obtained from Table VI
ande(k) = d(k) — XT(k)w(k). In (44),F istheK x N
matrix whose columns are the unit responses of the chan-
nel filters of the analysis filter bank, whehé is the num-
ber of subbands and is the length of the channel filters.
The matrixd(k) is defained asl(k) = [d(kN),d(kN —
1),...,d(kN — (P —1))]T. Also, the matrixX (k) is ob-
tained byX (k) = [x(kN),x(kN —1), ..., x(kN — (P —
1))] wherex(kN) = [2(kN),z(kN — 1),...,2(kN —
5 CONCLUSION M + 1)]T. In Table V, the matrixA (k) is the M x M

In this paper we presented the new variable step-sizéiagonal matrix with thel and0 blocks each of lengttt
NSAF algorithm. This algorithm had fast convergence0n the diagonal and the positions of 1's on the diagonal de-
Speed and low Steady_state MSD Compared with OrdinarEBrmine which coefficients should be updated in each sub-
NSAF algorithm. To reduce the computational complex-Pand at every adaptation. These positions are obtained by
ity of VSS-NSAF, the VSS-SPU-NSAF was proposed. Weindexes of (10) or (11). To find the theoretical stability
demonstrated the good performance of the presented v9®und, we first study the transient behavior of the adap-

adaptive algorithms in System identification scenario byive algorithms. The transient behavior of an adaptiverf”te
several simulation results. algorithm is determined by the evolution of the expected

squaredh priori error in timen, i.e. E{e2(k)}, which is:

colored Gaussian input. The parametewas set to 4 and
different values foiS (2, 3 and 4) were selected. The step-
size changes from 0.04 1g,,,,. for each parameter adjust-
ment. By increasing the parametgrthe stability bounds
of SPU-NSAF will be increased. As we can see the theo
retical values from Table V are good estimation for stabil-
ity bounds of NSAF, and SPU-NSAF algorithms.

APPENDIX A FINDING AN APPROXIMATION
FORC

In proposed VSS-NSAF, positive constais related wherew(k) = w°® — w(k) is the weight-error vector.

to ZZ1.\/:_01 02 B {W} . For a high-order adaptive fil- Employing the commomdependence assumptifftj, we
’ By ave:

E{eg(k)} = B{&" (k)x(k)x" (k)W (k)}.  (45)

ter, the fluctuations ofjx;(k)||? from one iteration to the

next can be assumed to be small, so the following approx- pr.2 1.1\ — EfT (B\Rw (k)Y = EL (k) |12 46
ation tan b acoeptable {e2(k)} = B{&T ())RW (k)} = E{[%(k)[3}. (46)

where the autocorrelation matrix B = E{x(k)x” (k)}.

E { L 2} ~ L 5 (41) Thus, to obtain the learning curve, we need to find
i (R Ells (k)11 E{||%(k)|%} as a function of. We can recursively ob-
and tain E{||Ww(k)||%}, whereX is a positive definite symmet-
ric matrix whose dimension is commensurate with that of
Ellx:(K)?] =~ [xi(k)|* (42)  w(k). If we substitute (5) inte(k) = d(k)—XT (k)w(k),
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Table 5. Stability bounds of SPU-NSAF algorithm with défgmparameters for colored Gaussian input

Algorithm o (DT XT D | S TN | maxGGment) ‘ Hrmax
SPU-NSAFB =4,5S =1) 3.6393 0.2443 1.3811 0.2443
SPU-NSAF B = 4, 5 = 2) 3.5167 0.8374 2.4469 0.8374
SPU-NSAF B = 4,5 = 3) 3.1530 1.4823 2.4278 1.4823
SPU-NSAF B = 4, 5 = 4) 3.0538 1.9109 2.4833 1.9109

Table 6. NSAF, and SPU-NSAF Algorithms

Algorithm [ C(k) | Z(k) \

NSAF I
SPU-NSAF | A(k)

F[el 4 diag{diag{FTX" (k)X (k)F}}] 'FT
Flel 4 diag{diag{FTX" (k)A(k)X(k)F}}]'FT

the relation between output estimation error vector, aprio 2. w(k) is independent aD” (k)X ™ (k).
error vector and the noise vector is:

e(k) = e, (k) +v(k) (47)

Using these assumptions, the final result is

E{w(k+ D%} = BE{I% ()%}
wheree, (k) = XT(k)w(k) is the a priori error vector. > =

The generic weight error vector update equation can be TP EVE (R)XZ(k)v ()} (53)
stated as: where
W(k+1) = W(k)—uC(k)X(k)Z(k) (X" (F)W(k)+v(k). ¥ = - SE{DT (k)X (k)} — uB{X(k)D(k)}=

(48)
By definingD (k) = Z7 (k)X™ (k)C” (k), theX weighted
norm of both sides of (48) is:
W (k+ D5 = [W(k) I3 + p?vT (k) XZ (k)v(k)

+{Cross terms involving one instance of v(k)}(49)

12 E{X (k) XZ (k)X (k)}. (54)

Looking only at the second term of the right hand side of
(53) we write

E{vT (B)XZ(k)v(k)} = E{Te(v(k)v" (k)X (k))}

where = Te(E{v(k)v" (k) } E{X>(K)}). (55)
S — 8 uSDT()XT (k) — X (k)D(k) SinceE{v(k)vT(k)} = o1, equation (53) can be stated
+uX (k)X (k)X (k) (50)
and E{w(k+ 1[5} = E{I%(#*)[I3}
X=(k) = D(k)ED (k). (51) +ptoy Te(E{X>(k)}), (56)

Taking the expectation from both sides of (49) yields:

B{[[w(k+ 13} = E{|W(k)[3}
2BV (k) XE (k)v(k)}. (52)

Applying the vec(.) operator [15] on both sides of (54)
yields:

vec(X') = vec(XZ) — puvec(ZTE{DT (k)X (k)})
~pvee( B{X (KD (K)}S)

We now obtain the time evolution of the weight-error vari-
+uvec( B{X(k)X®(k)XT(k)}). (57)

ance. The expectation §fv(k)||%, is difficult to calculate
because of the dependency®f on C(k) , Z(k), X(k), - : vec(PR0O) — (0T @ P ) 11
and ofw (k) on prior regressors. To solve this problem, weSlnce in generalyec(PXQ) = (Q7 @ P)vec(X) [15],

2 . uation (57) can be written as:
need to use the following independence assumptions [14]§q 7

o' =0— uE{X(k)Dk)}21).c
—p(I® E{X(k)D(k)}).0
+1?(E{(X(k)D(k)) @ (X(k)D(k))}).0,  (58)

1. X(k) is independent and identically distributed se-
guence matrix. This assumption guaranteeswa)
is independent of botE’ andX (k).
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wheres’ = vec(X’) ando = vec(X).
M? x M? matrix G as:

By defining the  [4] B. Farhang-BoroujenyAdaptive Filters: Theory and Appli-

cations Wiley, 1998.

G=1-puE{X(k)D(k)}I-ul® EB{X(k)D(k)} [5] A.H. SayedAdaptive Filters Wiley, 2008.

+u* E{(X(k)D(k)) @ (X (k)D(k))}, (59) [6] M. de Courville and P. Duhamel, “Adaptive filtering in sub-
. bands using a weighted criteriod2EE Trans. Signal Pro-
equation (58) becomes: cessingvol. 46, pp. 23592371, 1998.
o' =G.o. (60) [7] K. A. Lee and W. S. Gan, “Improving convergence of
. . ) the NLMS algorithm using constrained subband updates,”
The second term of the right hand side of (56) is IEEE Signal Processing Lettersol. 11, pp. 736-739,
2004.
Tr(E{X*(k)}) = Tr(E{DT(k)D(k)}.X).  (61)
o [8] M. S. E. Abadi and J. H. Husgy, “Selective partial update
Defining~y as and set-membership subband adaptive filte8gghal Pro-
cessingvol. 88, pp. 2463-2471, 2008.
v = vec(E{D" (k)D(k)}), (62)
[9] H. C. Shin, A. H. Sayed, and W. J. Song, “Variable step-
we have: size NLMS and affine projection algorithm$EEE Signal
Processing Lettersol. 11, pp. 132-135, Feb. 2004.
Tr(E{DT(k)D(k)}.2) =~ 0. (63)

[10]
From the above, the recursion of (56) is

E{|[%(k + 1)} = E{|[W(k)l[&.} + p?oiy" 0. (64) 11
Equation (64) is stable if the matri& is stable [14].
From (59), we know thaG = I — uM + p2N, where
M E{X(k)Dk)} ®1+1® E{X(k)D(k)}, and
N = E{(X(k)D(k)) ® (X(k)D(k))}. The condition on 12]
1 to guarantee the convergence in the mean-square ser{se
of the adaptive algorithms is:

[13]
. 1 1
0 <p<min{ TNy max(rva) e 7y (69
1 1
whereH = 5?/[ _%N Taking the expectation [14]
from both sides of (48) yields:
E{%(k+1)} = I — pE{D" (k)X" (k)}]E{W(K)}. (66) [15]

From (66), the convergence to the mean of the adaptive
algorithm in (44) is guaranteed for apythat satisfies:

2
Amax(E{DT (k)XT (k)})

o< (67)
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