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This paper presents a new variable step-size normalized subband adaptive filter (VSS-NSAF) algorithm. In the
proposed VSS-NSAF, the step-size changes in order to have largest decrease in the mean square deviation (MSD) for
sequential iterations. To reduce the computational complexity of VSS-NSAF, the variable step-size selective partial
update normalized subband adaptive filter (VSS-SPU-NSAF) is proposed. In this algorithm the filter coefficients
are partially updated in each subband at every iteration. Simulation results show the good performance of the
proposed algorithms in convergence speed and steady-state MSD.

Key words: Adaptive filter, Variable step-size (VSS), Selective partial update (SPU), Subband adaptive filter
(SAF)

Novi normirani pojasni adaptivni filtar s promjenjivom duljinom koraka. U ovom radu prikazan je novi
algoritam za normirani adaptivni filtar s promjenjivim korakom. Kod predloženog filtra, velǐcina koraka mijenja
se kako bi se dobilo najveće smanjenje srednje vrijednosti odstupanja za uzastopne iteracije. Kakobi se smanjila
računska složenost filtra, predložen je normirani pojasni adaptivni filtar s promjenjivim korakom i selektivnim
parcijalnim osvježavanjem. Kod tog algortima koeficijenti filtra parcijalno se osvježavaju u svakom pojasu i pri
svakoj iteraciji. Simulacijski rezultati pokazuju dobru brzinu konvergencije i malu srednju vrijednost odstupanja u
stacionarnom stanju za predloženi filtar.

Klju čne riječi: adaptivni filtar, promjenjiva duljina koraka, selektivno parcijalno osvježavanje, pojasni adaptivni
filtar

Adaptive filtering has been, and still is, an area of ac-
tive research that plays an active role in an ever increasing
number of applications, such as noise cancellation, channel
estimation, channel equalization and acoustic echo cancel-
lation [1], [2], [3], [4], [5]. The least mean squares (LMS)
and its normalized version (NLMS) are the workhorses
of adaptive filtering. In the presence of colored input
signals, the LMS and NLMS algorithms have extremely
slow convergence rates. Adaptive filtering in subbands has
been proposed to improve the convergence behavior of the
LMS algorithm [6]. The normalized subband adaptive fil-
ter (NSAF) was proposed in [7]. In [8], the selective par-
tial update NSAF (SPU-NSAF) was proposed to reduce
the computational complexity. In this algorithm, the filter
coefficient are partially updated in each subband at every
iteration. This feature leads to the reduction in computa-
tional complexity.

In above mentioned algorithms, the selected fixed step-
size can change the convergence and the steady-state mean
square error (MSE). It is well known that the steady-state

MSE decreases when the step-size decreases, while the
convergence speed increases when the step-size increases.
By optimally selecting the step-size during the adaptation,
we can obtain both fast convergence rates and low steady-
state MSE. In [9], a new variable step-size NLMS (VSS-
NLMS) algorithm was proposed. In this algorithm, the
step-size changes to obtain the largest decrease in MSD
during the iterations [9]. In this paper, we extend the ap-
proach in [9] to NSAF, and SPU-NSAF algorithms and
VSS version of these algorithms are proposed. We demon-
strate the good performance of the presented algorithms
through several simulation results in a system identifica-
tion scenario. We have organized our paper as follows. In
Section 2, we briefly review NSAF, and SPU-NSAF al-
gorithms. In Section 3, the proposed VSS adaptive algo-
rithms is established. Finally, before concluding the paper,
we demonstrate the usefulness of these algorithms by pre-
senting several experimental results.

Throughout the paper, the following notations are used:
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| . | Norm of a scalar.
‖.‖2 Squared Euclidean norm of a vector.
‖t‖2Σ Σ Weighted Euclidean norm of a column vectort

defined astTΣt.
vec(T) Creates anM2×1 column vectort through stack-

ing the columns of theM ×M matrixT.
vec(t) Creates anM × M matrix T from theM2 × 1

column vectort.
A⊗B Kronecker product of matricesA andB.
Tr(.) Trace of a matrix.
(.)T Transpose of a vector or a matrix.
λmax The largest eigenvalue of a matrix.
ℜ+ The set of positive real numbers.
E{·} Expectation operator.
diag(.) Has the same meaning as the MATLAB operator

with the same name: If its argument is a vector, a
diagonal matrix with the diagonal elements given
by the vector argument results. If the argument is
a matrix, its diagonal is extracted into a resulting
vector.

1 BACKGROUND ON NSAF, AND SPU-NSAF AL-
GORITHMS

In this sectin we briefly review NSAF, and SPU-NSAF
algorithms.

1.1 NSAF Algorithm

Fig. 1 shows the structure of NSAF [7]. In this fig-
ure, f0, f1, · · · , fN−1, are analysis filter unit impulse re-
sponses of anN channel orthogonal perfect reconstruction
critically sampled filter bank system.xi(n) anddi(n) are
nondecimated subband signals. It is important to note that
n refers to the index of the original sequences andk de-
notes the index of the decimated sequences. Similar to the
NLMS algorithm, NSAF can be established by the solution
of the following optimization problem

min ‖w(k + 1)−w(k)‖2 (1)

subject to the set ofN constraints imposed on the deci-
mated filter output

di,D(k) = xT
i (k)w(k + 1) for i = 0, · · · , N − 1 (2)

where

xi(k) = [xi(kN), xi(kN − 1), · · · , xi(kN −M + 1)]T

(3)
By solving this optimization problem based on the method
of Lagrange multipliers, the filter update equation for
NSAF can be stated as [7]

w(k + 1) = w(k) + µ

N−1∑

i=0

xi(k)ei,D(k)

||xi(k)||2
(4)

whereei,D(k) = di,D(k) − wT (k)xi(k) is the deci-
mated subband error signal, andµ is the step size which is
chosen in the range0 < µ < 2 [7]. We also assumed a
linear data model for the desired signal as

di,D(k) = xT
i (k)w

o + vi,D(k) (5)

wherewo is the true unknown filter vector, andvi,D(k)
is partitioned and decimated additive noise with zero mean
and variance,σ2

vi,D
. We also assume thatv(n) is identi-

cally and independently distributed (i.i.d.) and statistically
independent of the input datax(n).

fi
d(n)

i = 0 , 1 , . . . , N − 1

di(n)
↓ N

fi ↓ Nw(k)
x(n)

↑ Ngi

i = 0 , 1 , . . . , N − 1

i = 0 , 1 , . . . , N − 1

+

di,D(k)

xi(n) yi,D(k)

ei,D(k)ei(n)∑e(n)

Fig. 1. Structure of NSAF algorithm.

1.2 SPU-NSAF Algorithm

To reduce the computational complexity of NSAF,
SPU-NSAF algorithm was proposed in [8]. Partitionxi(k)
for 0 ≤ i ≤ N − 1 andw(k) intoB blocks each of length
L which are defined as

xi(k) = [xT
i,1(k),x

T
i,2(k), . . . ,x

T
i,B(k)]

T (6)

w(k) = [wT
1 (k),w

T
2 (k), . . . ,w

T
B(k)]

T . (7)

Suppose we want to updateS blocks out ofB blocks
in each subband at every adaptation. LetF =
{j1, j2, . . . , jS} denote the indexes of theS blocks out of
B blocks. In this case, the optimization problem is defined
as

min
wF (k+1)

‖wF (k + 1)−wF (k)‖2, (8)

subject to (2). By using the Lagrange multipliers approach,
the filter vector update equation is given by

wF (k + 1) = wF (k) + µ

N−1∑

i=0

xi,F (k)ei,D(k)

‖xi,F (k)‖2 + ǫ
(9)
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wherexi,F (k) = [xT
i,j1

(k),xT
i,j2

(k), . . . ,xT
i,jS

(k)]T . To
reduce the computational complexity associated with the
selection of the blocks to update, two alternative simpli-
fied criteria were proposed: 1) In the first approach, we
compute the following values

N−1∑

i=0

‖xi,b(k)‖2 for 1 ≤ b ≤ B. (10)

The indexes of the setF correspond to the indexes of
the S largest values of (10). 2) In the second approach,
we identify a set of indexes, correspond to theS smallest
values of (11) [8].

j = arg min
1≤b≤B

{
N−1∑

i=0

|ei,D(k)|2
‖xi,b(k)‖2

}. (11)

2 DERIVATION OF VSS-NSAF AND VSS-SPU-
NSAF ALGORITHMS

In this section, we establish the family of VSS-NSAF
algorithms based on [9].

2.1 VSS-NSAF Algorithm

By defining the weight error vector as,̃w(k) = wo −
w(k), the weight error vector update equation for NSAF
algorithm is given by

w̃(k + 1) = w̃(k)− µ

N−1∑

i=0

xi(k)ei,D(k)

||xi(k)||2
(12)

By taking the squared Euclidean norm and expectation for
both sides of (12), we obtain

E‖w̃(k + 1)‖2 = E‖w̃(k)‖2 + µ2E

[
N−1∑

i=0

e2i,D(k)

‖xi(k)‖2

]
−

2µ

{
E

[
N−1∑

i=0

eTi,D(k)xT
i (k)w̃(k)

‖xi(k)‖2

]}

(13)

Equation (13) can be written as

E‖w̃(k + 1)‖2 = E‖w̃(k)‖2 −∆(µ) (14)

where

∆(µ) = 2µ

{
E

[
N−1∑

i=0

eTi,D(k)xT
i (k)w̃(k)

‖xi(k)‖2

]}
− (15)

µ2E

[
N−1∑

i=0

e2i,D(k)

‖xi(k)‖2

]

The optimum step size will be found with derivation of∆µ

with respect toµ, ∂∆(µ)
∂µ = 0,

∂∆(µ)

∂µ
= 2

{
E

[
N−1∑

i=0

eTi,D(k)xT
i (k)w̃(k)

‖xi(k)‖2

]}
− (16)

2µE

[
N−1∑

i=0

e2i,D(k)

‖xi(k)‖2

]
= 0

Therefore

µo(k) =

E

[∑N−1
i=0

eTi,D(k)xT
i (k)w̃(k)

‖xi(k)‖2

]

E
[∑N−1

i=0

e2i,D(k)

‖xi(k)‖2

] (17)

From (5),ei,D(k) is obtained by

ei,D(k) = xT
i (k)w̃(k) + vi,D(k) (18)

Using again the approximation forv(k), and neglecting the
dependency of̃w(k) on past noises, the optimum step-size
is given by

µo(k) =
E‖w̃(k)‖2Σ

E‖w̃(k)‖2Σ +
∑N−1

i=0 σ2
v2
i,D

E
[

1
‖xi(k)‖2

] (19)

where

E‖w̃(k)‖2Σ = E

{
N−1∑

i=0

w̃T (k)xi(k)x
T
i (k)w̃(k)

‖xi(k)‖2

}
(20)

By defining the vectorp(k) as

p(k) =

N−1∑

i=0

xi(k)x
T
i (k)w̃(k)

‖xi(k)‖2
(21)

we obtain

‖p(k)‖2 =
N−1∑

i=0

w̃T (k)xi(k)x
T
i (k)w̃(k)

‖xi(k)‖2
(22)

Therefore the optimum step-size becomes

µo(k) =
E‖p(k)‖2

E‖p(k)‖2 +∑N−1
i=0 σ2

vi,D
E
[

1
‖xi(k)‖2

] (23)

By taking the expection from both sides of (21), and using
(18), the following relation is obtained

E [p(k)] = E

[
N−1∑

i=0

xi(k)ei,D(k)

‖xi(k)‖2

]
(24)
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Motivated by these facts, we propose to estimatep(k) by
time averaging as follows:

p̂(k) = αp̂(k − 1) + (1− α)

N−1∑

i=0

xi(k)ei,D(k)

‖xi(k)‖2
(25)

with a smoothing factor0 < α < 1. Using‖p̂(k)‖2 in-
stead ofE‖p(k)‖2 in (23), the proposed variable step-size
for NSAF algorithm becomes

µ(k) = µmax
‖p̂(k)‖2

‖p̂(k)‖2 + C
(26)

where C is a positive constant and is related to∑N−1
i=0 σ2

vi,D
E
[

1
‖xi(k)‖2

]
. This parameter can be esti-

mated byC ≈ N
M.SNR

1. Also,µmax is introduced in (26)
to guarantee the stability bound of VSS-NSAF algorithm2.
Table I summarizes the VSS-NSAF algorithm.

2.2 VSS-SPU-NSAF Algorithm

By defining w̃F (k) = wo
F − wF (k), wherewo

F =

[woT

j1
,woT

j2
, . . . ,woT

jS
]T , equation (9) can be stated as

w̃F (k + 1) = w̃F (k)− µ
N−1∑

i=0

xi,F (k)ei,D(k)

||xi,F (k)||2
(27)

Taking the squared Euclidean norm and expectation from
both sides of (27) leads to

E‖w̃F (k + 1)‖2 = E‖w̃F (k)‖2 − (28)

2µ

{
E

[
N−1∑

i=0

eTi,D(k)xT
i,F (k)w̃F (k)

‖xi,F (k)‖2

]}
+

µ2E

[
N−1∑

i=0

e2i,D(k)

‖xi,F (k)‖2

]

Equation (28) can be represented as

E‖w̃F (k + 1)‖2 = E‖w̃F (k)‖2 −∆(µ) (29)

where

∆(µ) = 2µ

{
E

[
N−1∑

i=0

eTi,D(k)xT
i,F (k)w̃F (k)

‖xi,F (k)‖2

]}
− (30)

µ2E

[
N−1∑

i=0

e2i,D(k)

‖xi,F (k)‖2

]

1Appendix A presents an approximation forC.
2The stability bounds of NSAF, and SPU-NSAF have been presented

in Appendix B.

The optimum step size for SPU-NSAF will be found with
derivation of∆µ with respect toµ, ∂∆(µ)

∂µ = 0

∂∆(µ)

∂µ
= 2

{
E

[
N−1∑

i=0

eTi,D(k)xT
i,F (k)w̃F (k)

‖xi,F (k)‖2

]}
− (31)

2µE

[
N−1∑

i=0

e2i,D(k)

‖xi,F (k)‖2

]
= 0

Therefore, the optimum step-size is given by

µo(k) =

{
E

[∑N−1
i=0

eTi,D(k)xT
i,F (k)w̃F (k)

‖xi,F (k)‖2

]}

E
[∑N−1

i=0

e2i,D(k)

‖xi,F (k)‖2

] (32)

Using the approximation forei,D(k) as ei,D(k) =
xT
i,F (k)w̃F (k) + vi,D(k), the optimum step-size can be

stated as

µo(k) =
E‖w̃F (k)‖2Σ

E‖w̃F (k)‖2Σ +
∑N−1

i=0 σ2
v2
i,D

E
[

1
‖xi,F (k)‖2

] (33)

where

E‖w̃F (k)‖2Σ = E

{
N−1∑

i=0

w̃T
F (k)xi,F (k)x

T
i,F (k)w̃F (k)

‖xi,F (k)‖2

}

(34)
Now by definingp(k) as

p(k) =

N−1∑

i=0

xi,F (k)x
T
i,F (k)w̃F (k)

‖xi,F (k)‖2
(35)

we obtain

‖p(k)‖2 =

N−1∑

i=0

w̃T
F (k)xi,F (k)x

T
i,F (k)w̃F (k)

‖xi,F (k)‖2
(36)

Therefore, the optimum step-size becomes

µo(k) =
E‖p(k)‖2

E‖p(k)‖2 +∑N−1
i=0 σ2

vi,D
E
[

1
‖xi,F (k)‖2

] (37)

Taking the expectation from both sides of (35), the follow-
ing relation is obtained

E [p(k)] = E

[
N−1∑

i=0

xi,F (k)ei,D(k)

‖xi,F (k)‖2

]
(38)

The vectorp(k) is estimated by time averaging as follows:

p̂(k) = αp̂(k − 1) + (1− α)

N−1∑

i=0

xi,F (k)ei,D(k)

‖xi,F (k)‖2
(39)
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Using‖p̂(k)‖2 instead ofE‖p(k)‖2 in (37), the proposed
variable step-size for SPU-NSAF algorithm becomes

µ(k) = µmax
‖p̂(k)‖2

‖p̂(k)‖2 + C
(40)

where C is a positive constant and is related to∑N−1
i=0 σ2

vi,D
E
[

1
‖xi,F (k)‖2

]
. This parameter can be ap-

proximated asC ≈ N
SL.SNR . Table II summarizes the

VSS-SPU-NSAF algorithm.

Table 1. Summary of VSS-NSAF algorithm

Fork = 0, 1, 2, . . .

ei,D(k) = di,D(k) − wT (k)xi(k)

p̂(k) = αp̂(k − 1) + (1 − α)
∑N−1

i=0

xi(k)ei,D(k)

‖xi,F (k)‖2

µ(k) =
‖p̂(k)‖2

‖p̂(k)‖2+C

w(k + 1) = w(k) + µ(k)
∑N−1

i=0

xi(k)ei,D(k)

‖xi(k)‖2+ǫ

end

Table 2. Summary of VSS-SPU-NSAF algorithm

Fork = 0, 1, 2, . . .

ei,D(k) = di,D(k) − wT (k)xi(k)

p̂(k) = αp̂(k − 1) + (1 − α)
∑N−1

i=0

xi,F (k)ei,D(k)

‖xi,F (k)‖2

µ(k) =
‖p̂(k)‖2

‖p̂(k)‖2+C

wF (k + 1) = wF (k) + µ(k)
∑N−1

i=0

xi,F (k)ei,D(k)

‖xi,F (k)‖2+ǫ

end

3 COMPUTATIONAL COMPLEXITY

Table III shows the number of multiplications, divi-
sions, and comparisons of different adaptive algorithms.
The computational complexity of NSAF for each input
sampling period is exactly3M + 3NK + 1 multiplica-
tions and 1 division, whereK is the length of the channel
filters of the analysis filter bank,M is the number of fil-
ter coefficients, andN is the number of subbands. SPU-
NSAF needs2M+SL+3NK+1 multiplications, 1 divi-
sion, andO(B) + Blog2(S) comparisons when using the
heapsort algorithm [10]. The proposed VSS-NSAF needs
3M multiplications and 1 division more than conventional
NSAF. Using SPU approach in VSS-NSAF leads to the re-
duction in number of multiplications. The number of mul-
tiplications is2M + 4SL + 3NK + 1 in this algorithm.
The VSS-SPU-NSAF algorithm needs also 2 divisions and
O(B) +Blog2(S) comparisons.

4 SIMULATION RESULTS

We demonstrate the performance of the proposed algo-
rithm by several computer simulations in a system identifi-
cation scenario. In first simulation, we use the real acous-
tic impulse response with lengthM = 256 as shown in
Fig. 2 (a) [11]. The same length is used for the adap-
tive filter. The colored Gaussian signal is used for the
input signal. The input signal is obtained by filtering a
white, zero-mean and unit variance Gaussian random se-
quence through a second-order auto regressive (AR(2))
system with transfer functionT (z) = 1

1−0.1z−1−0.8z−2 .
The filter bank used in NSAF was the four subband ex-
tended lapped transform (ELT) [12]. The white zero-mean
Gaussian noise was added to the filter output such that the
SNR = 30dB. In all simulations, we show the normal-
ized MSD,E‖wo−w(k)‖2/‖wo‖2 which is evaluated by
ensemble averaging over 20 independent trials. Also, we
assume that the noise variance,σ2

v , is known a priori [13].
For all simulations we considerα = 0.99, andC = 10−5.
The parameterµmax was set to 1. Table IV shows the val-
ues of the parameters in simulations. In the case of VSS-
SPU-NSAF withS = 2, the parameterµmax was set to
0.8. Fig. 3 compares the convergence of NSAF algorithm
with the proposed VSS-NSAF when the real unknown im-
pulse response should be identified. In NSAF, different
step sizes (1, 0.2 and0.05) were chosen. As we can see, the
proposed VSS-NSAF has both fast convergence and low
steady-state MSD features compared with ordinary NSAF.
Fig. 2 (b) shows the filter coefficients values after adap-
tation based on VSS-NSAF algorithm. This figure proves
that the filter coefficients have been optimally converged to
the impulse response of the car echo path.

Fig. 5 shows the normalized MSD curves for the pro-
posed VSS-NSAF forwo = e−jτr(j), j = 0, · · · ,M−1
where r(j) is a white Gaussian random sequence with
zero-mean and varianceσ2

r of 0.09. In this case, the im-
pulse response length isM = 200, and the envelope decay
rateτ is set to 0.04. The exponential unknown impulse re-
sponse has been presented in Fig. 4 (a). The simulation
results show that for low and large values for the step-size,
the performance of NSAF is deviated. But the VSS-NSAF
has both fast convergence speed and low steady-state MSD
due to the strategy of variable step-size. Again, Fig. 4 (b)
shows good estimation for the filter coefficients after adap-
tation.

In Fig. 7, we presented the results for random unknown
impulse response in Fig. 6 (a). The parameterM is set to
50. The simulation results show that in the case of ran-
dom unknown system, the performance of VSS-NSAF is
again better than NSAF algorithm with different step-sizes.
Fig. 6 (b) shows the filter coefficients after adaptation in
this case. As we can see, the VSS-NSAF has good ability
to predict the coefficients of unknown impulse response.
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Table 3. Computational complexity of the Family of VSS-NSAFAlgorithms

Algorithm Multiplications Divisions Additional Multiplications Comparisons

NSAF [7] 3M + 3NK + 1 1 - -

SPU-NSAF [8] 2M + SL + 3NK + 1 1 - O(B) + Blog2(S)

Proposed VSS-NSAF 3M + 3NK + 1 2 3M −

Proposed VSS-SPU-NSAF 2M + SL + 3NK + 1 2 3SL O(B) + Blog2(S)

Fig. 8 compares the MSD curves of VSS-NSAF, and
VSS-SPU-NSAF algorithms when the real unknown im-
pulse response should be identified. The number of blocks
(B) was set to 4 and various values forS were selected.
By increasing the parameterS, the performance of VSS-
SPU-NSAF will be closed to the VSS-NSAF algorithm.
Furthermore, the computational complexity of VSS-SPU-
NSAF is lower than VSS-NSAF due to partial updates of
filter coefficients.

Table 4. The Values of the Parameters in Simulations

Input signal M SNR µmax α C

Gaussian AR(2) 256, 200, 50 30dB 1 0.99 10−5
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Fig. 2. (a) The impulse response of the car echo path (b) The
filter coefficients after adaptation.

4.1 Simulation results for mean-square stability

Table V shows the stability bounds of SPU-NSAF algo-
rithm for colored Gaussian input signal. These values have
been obtained from Equations (61) and (63) (Appendix B).
We justified these values by presenting some simulation re-
sults. Fig. 9 shows the simulated steady-state MSE curves
of SPU-NSAF algorithm as a function of the step-size for
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Fig. 3. The MSD curves of VSS-NSAF and conventional NSAF
for real unknown impulse response.
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Fig. 4. (a) The impulse response of exponential unknown system
(b) The filter coefficients after adaptation.
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Fig. 7. The MSD curves of VSS-NSAF and conventional NSAF
for random unknown impulse response.
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Fig. 9. Simulated steady-state MSE of SPU-NSAF algorithm
with B = 4 andS = 2, 3, 4 as a function of the step-size for
colored Gaussian input signal (AR(2)).

colored Gaussian input. The parameterB was set to 4 and
different values forS (2, 3 and 4) were selected. The step-
size changes from 0.04 toµmax for each parameter adjust-
ment. By increasing the parameterS, the stability bounds
of SPU-NSAF will be increased. As we can see the theo-
retical values from Table V are good estimation for stabil-
ity bounds of NSAF, and SPU-NSAF algorithms.

5 CONCLUSION

In this paper we presented the new variable step-size
NSAF algorithm. This algorithm had fast convergence
speed and low steady-state MSD compared with ordinary
NSAF algorithm. To reduce the computational complex-
ity of VSS-NSAF, the VSS-SPU-NSAF was proposed. We
demonstrated the good performance of the presented VSS
adaptive algorithms in system identification scenario by
several simulation results.

APPENDIX A FINDING AN APPROXIMATION
FOR C

In proposed VSS-NSAF, positive constantC is related

to
∑N−1

i=0 σ2
vi,D

E
[

1
‖xi(k)‖2

]
. For a high-order adaptive fil-

ter, the fluctuations of‖xi(k)‖2 from one iteration to the
next can be assumed to be small, so the following approx-
imation can be acceptable:

E

[
1

‖xi(k)‖2
]

≈ 1

E [‖xi(k)‖2]
(41)

and

E
[
‖xi(k)‖2

]
≈ ‖xi(k)‖2 (42)

We know that‖xi(k)‖2 = xT
i (k)xi(k) andxT

i (k)xi(k) ≈
Mσ2

xi
for M ≫ 1. Therefore

C ≈
Nσ2

vi,D

Mσ2
xi

≈ N

M.SNR
(43)

Following the same approach for the parameterC in VSS-
SPU-NSAF algorithm leads toC ≈ N

SL.SNR .

APPENDIX B MEAN-SQUARE STABILITY
ANALYSIS OF THE FAMILY
OF SPU-NSAF

Now, we introduce the general filter vector update
equation to analyze the mean-square stability of the family
of SPU-NSAF. The general filter vector update equation to
establish the family of SPU-NSAF is introduced as:

w(k + 1) = w(k) + µC(k)X(k)Z(k)e(k). (44)

whereC(k), andZ(k) matrices are obtained from Table VI
ande(k) = d(k)−XT (k)w(k). In (44),F is theK ×N
matrix whose columns are the unit responses of the chan-
nel filters of the analysis filter bank, whereN is the num-
ber of subbands andK is the length of the channel filters.
The matrixd(k) is defained asd(k) = [d(kN), d(kN −
1), . . . , d(kN − (P − 1))]T . Also, the matrixX(k) is ob-
tained byX(k) = [x(kN),x(kN − 1), . . . ,x(kN − (P −
1))] wherex(kN) = [x(kN), x(kN − 1), . . . , x(kN −
M + 1)]T . In Table V, the matrixA(k) is theM × M
diagonal matrix with the1 and0 blocks each of lengthL
on the diagonal and the positions of 1’s on the diagonal de-
termine which coefficients should be updated in each sub-
band at every adaptation. These positions are obtained by
indexes of (10) or (11). To find the theoretical stability
bound, we first study the transient behavior of the adap-
tive algorithms. The transient behavior of an adaptive filter
algorithm is determined by the evolution of the expected
squareda priori error in timen, i.e.E{e2a(k)}, which is:

E{e2a(k)} = E{w̃T (k)x(k)xT (k)w̃(k)}. (45)

where w̃(k) = w◦ − w(k) is the weight-error vector.
Employing the commonindependence assumption[2], we
have:

E{e2a(k)} = E{w̃T (k)Rw̃(k)} = E{‖w̃(k)‖2R}, (46)

where the autocorrelation matrix isR = E{x(k)xT (k)}.
Thus, to obtain the learning curve, we need to find
E{‖w̃(k)‖2R} as a function ofk. We can recursively ob-
tainE{‖w̃(k)‖2Σ}, whereΣ is a positive definite symmet-
ric matrix whose dimension is commensurate with that of
w̃(k). If we substitute (5) intoe(k) = d(k)−XT (k)w(k),
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Table 5. Stability bounds of SPU-NSAF algorithm with different parameters for colored Gaussian input

Algorithm 2

λmax(E{DT (n)XT (n)})
1

λmax(M−1N)

1

max(λ(H)∈ℜ+)
µmax

SPU-NSAF (B = 4, S = 1) 3.6393 0.2443 1.3811 0.2443

SPU-NSAF (B = 4, S = 2) 3.5167 0.8374 2.4469 0.8374

SPU-NSAF (B = 4, S = 3) 3.1530 1.4823 2.4278 1.4823

SPU-NSAF (B = 4, S = 4) 3.0538 1.9109 2.4833 1.9109

Table 6. NSAF, and SPU-NSAF Algorithms

Algorithm C(k) Z(k)

NSAF I F[ǫI + diag{diag{FTXT (k)X(k)F}}]−1FT

SPU-NSAF A(k) F[ǫI + diag{diag{FTXT (k)A(k)X(k)F}}]−1FT

the relation between output estimation error vector, a priori
error vector and the noise vector is:

e(k) = ea(k) + v(k) (47)

whereea(k) = XT (k)w̃(k) is the a priori error vector.
The generic weight error vector update equation can be
stated as:

w̃(k+1) = w̃(k)−µC(k)X(k)Z(k)(XT (k)w̃(k)+v(k)).
(48)

By definingD(k) = ZT (k)XT (k)CT (k), theΣ weighted
norm of both sides of (48) is:

‖w̃(k + 1)‖2Σ = ‖w̃(k)‖2Σ′ + µ2vT (k)XΣ(k)v(k)

+{Cross terms involving one instance of v(k)},(49)

where

Σ′ = Σ− µΣDT (k)XT (k)− µX(k)D(k)

+µ2X(k)XΣ(k)XT (k) (50)

and
XΣ(k) = D(k)ΣDT (k). (51)

Taking the expectation from both sides of (49) yields:

E{‖w̃(k + 1)‖2Σ} = E{‖w̃(k)‖2Σ′}
+µ2E{vT (k)XΣ(k)v(k)}. (52)

We now obtain the time evolution of the weight-error vari-
ance. The expectation of‖w̃(k)‖2Σ′ is difficult to calculate
because of the dependency ofΣ′ on C(k) , Z(k), X(k),
and ofw̃(k) on prior regressors. To solve this problem, we
need to use the following independence assumptions [14]:

1. X(k) is independent and identically distributed se-
quence matrix. This assumption guarantees thatw̃(k)
is independent of bothΣ′ andX(k).

2. w̃(k) is independent ofDT (k)XT (k).

Using these assumptions, the final result is

E{‖w̃(k + 1)‖2Σ} = E{‖w̃(k)‖2Σ′}
+µ2E{vT (k)XΣ(k)v(k)}, (53)

where

Σ′ = Σ− µΣE{DT (k)XT (k)} − µE{X(k)D(k)}Σ
+µ2E{X(k)XΣ(k)XT (k)}. (54)

Looking only at the second term of the right hand side of
(53) we write

E{vT (k)XΣ(k)v(k)} = E{Tr(v(k)vT (k)XΣ(k))}
= Tr(E{v(k)vT (k)}E{XΣ(k)}). (55)

SinceE{v(k)vT (k)} = σ2
vI, equation (53) can be stated

as

E{‖w̃(k + 1)‖2Σ} = E{‖w̃(k)‖2Σ′}
+µ2σ2

vTr(E{XΣ(k)}), (56)

Applying the vec(.) operator [15] on both sides of (54)
yields:

vec(Σ′) = vec(Σ)− µvec(ΣE{DT (k)XT (k)})
−µvec(E{X(k)D(k)}Σ)

+µ2vec(E{X(k)XΣ(k)XT (k)}). (57)

Since in general,vec(PΣQ) = (QT ⊗ P)vec(Σ) [15],
equation (57) can be written as:

σ′ = σ − µ(E{X(k)D(k)} ⊗ I).σ

−µ(I⊗ E{X(k)D(k)}).σ
+µ2(E{(X(k)D(k))⊗ (X(k)D(k))}).σ, (58)
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whereσ′ = vec(Σ′) andσ = vec(Σ). By defining the
M2 ×M2 matrixG as:

G = I− µE{X(k)D(k)} ⊗ I− µI⊗ E{X(k)D(k)}
+µ2E{(X(k)D(k))⊗ (X(k)D(k))}, (59)

equation (58) becomes:

σ′ = G.σ. (60)

The second term of the right hand side of (56) is

Tr(E{XΣ(k)}) = Tr(E{DT (k)D(k)}.Σ). (61)

Definingγ as

γ = vec(E{DT (k)D(k)}), (62)

we have:

Tr(E{DT (k)D(k)}.Σ) = γT .σ. (63)

From the above, the recursion of (56) is

E{‖w̃(k + 1)‖2σ} = E{‖w̃(k)‖2Gσ}+ µ2σ2
vγ

Tσ. (64)

Equation (64) is stable if the matrixG is stable [14].
From (59), we know thatG = I − µM + µ2N, where
M = E{X(k)D(k)} ⊗ I + I ⊗ E{X(k)D(k)}, and
N = E{(X(k)D(k)) ⊗ (X(k)D(k))}. The condition on
µ to guarantee the convergence in the mean-square sense
of the adaptive algorithms is:

0 < µ < min{ 1

λmax(M−1N)
,

1

max(λ(H) ∈ ℜ+)
}. (65)

whereH =

[
1
2M − 1

2N
I 0

]
. Taking the expectation

from both sides of (48) yields:

E{w̃(k + 1)} = [I− µE{DT (k)XT (k)}]E{w̃(k)}. (66)

From (66), the convergence to the mean of the adaptive
algorithm in (44) is guaranteed for anyµ that satisfies:

µ <
2

λmax(E{DT (k)XT (k)}) . (67)
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