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Neurological and psychiatric disorders as a neuroglial 
failure

Abstract

Neuroglia are a diverse non-neuronal population of cells in the central 
and peripheral nervous system. These cells have a variety of functions that 
can all be summed up as the maintenance of homeostasis of the nervous 
system. It is the loss of homeostasis that represents the culprit of all disorders.  
Thus, neuroglia can be envisioned as the pivotal element in all neural dis-
orders, be that neurological or psychiatric.  In this review, we discuss the role 
of glia in homeostasis and defence of the nervous system as well as changes 
in the morpho-functional characteristics of these cells in various disorders. 

Prelude: neurological and psychiatric disorders  
as a homeostatic failure

Last century witnessed a remarkable progress in medicine that made 
most of the somatic diseases cureable; antibiotics conquered infec-

tions, advances in immunology and surgery allowed organ transplanta-
tion, while oncology developed treatments for many types of cancer. 
These successes, however, are in stark contrast with the status of me-
dicinal options in neurology, and especially in disorders of the central 
nervous system (CNS). Indeed, mechanical trauma of the spinal cord 
invariably results in paralysis, the best cure for stroke is represented by 
cooling of the brain (known already to ancient Egyptians), and neuro-
degenerative diseases inexorably proceed to dementia (Alzheimer’s dis-
ease), or trigger rapid death (motor neurone disease, also referred to as 
amyotrophic lateral sclerosis). Similarly hopeless is the realm of psychi-
atric and neurodevelopmental diseases, as neither cure nor preventive 
care exists for major psychiatric disorders, such as schizophrenia and  
major depression, or for neurodevelopmental diseases represented, for 
example, by heterogeneous autistic spectrum disorders. Modern drugs 
acting on the CNS are generally agonists or antagonists of major types 
of neurotransmitter receptors or neurotransmitter metabolic pathways 
that try to modify (by inhibition or activation) the chemical transmission 
that underlies synaptic connectivity within neuronal networks. These 
agents have little spatial specificity, being indiscriminate to the receptors 
of its relevant kind throughout the nervous system and peripheral organs, 
and their action is rather generic, being manifested either in stimulation 
or slackening of nervous activity. When it comes to specific brain and 
chronic CNS disorders, the therapeutic options are simply non-existing. 

The limited cure reflects a fundamental problem: the cellular patho-
biology of neurological disorders is ill defined and cell-based therapy has Received March 14, 2104.
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been developed on the widespread assumption of neu-
rones being the central element in both physiology and 
pathophysiology, with synapses and neurotransmitter re-
ceptors being the chief regulatory pathways in neuronal 
networks. This neurone-centric dogma is almost universal, 
being central for the philosophy of experimental and cli-
nical neurology. 

This assumption of the dominant role of neurones and 
neuronal networks in the initiation and progression of 
neurological disorders, however, is at odds with the gen-
eral logic of disease nature. Indeed, every disease can be 
defined as a homeostatic failure in which various exo- or 
endogenous factors (physical, chemical or genetic) inter-
fere with living tissues and infringe their ability to main-
tain homeostasis, which is the fundamental requirement 
of life. In other words, disease can be defined as a homeo-
static failure and the depth of the failure determines the 
compatibility with life. According to this logic, the mech-
anisms of neurological and psychiatric diseases should be 
sought in homeostatic systems of the nervous system, 
which are represented by neuroglia, the long-time ne-
glected pariah of neurobiology.  

Neuroglia: the general overview

The term Neuroglia (or Nerevenkitt; the closest trans-
lation from Greek and German is “the neural putty”; the 
concept and the name were introduced by Rudolf Vir-
chow in 1856-58 (1-3)) defines a highly heterogeneous 
population of cells responsible for the homeostasis and 
defence of the nervous system. The homeostatic and de-
fensive roles are the systemic and most fundamental func-
tions of neuroglial cells. The neuroglia comprise cells of 
ectodermal (i.e., neural) and mesodermal (myeloid) ori-
gins (4); generally, neuroglia are sub-classified into periph-
eral glia and CNS (the brain and the spinal cord) glia (Fig. 
1). The glia of the peripheral nervous system incorporate 
satellite glial cells that localise in sensory and sympathe tic 
ganglia, the numerous and highly heterogeneous en te ric 
glia, the olfactory ensheathing cells and Schwann cells 
that support and myelinate peripheral axons, and cover 
neuromuscular junctions. The neuroglia of the CNS are 
subdivided into macroglia and microglia. The macroglia 
comprises the astrocytes and cells of oligodendroglial lin-
eage that are further subdivided into oligodendrocytes 
and NG2 glia. The astrocytes or astroglia (astron kutoV; 
astron, star and kytos, a hollow vessel, later cell or the star-
shaped cell, the term introduced by Michael von 
Lehnossek, (5)), encompass protoplasmic and fibrous as-
trocytes of grey and white matter respectively, the radial 
glia of the developing CNS, the close relatives of which in 
the adult CNS are represented by the retinal Müller glia 
and cerebellar Bergmann glia, velate astrocytes of the cer-
ebellum, interlaminar and polarised astrocytes of the pri-
mate cortex, tanycytes (found in the periventricular or-
gans, the hypophysis/pituitary gland, and the raphe part 
of the spinal cord), pituicytes in the neuro-hypophysis, 

and perivascular and marginal astrocytes. Astroglia also 
include several types of cells that line the ventricles or the 
subretinal space, namely ependymocytes, choroid plexus 
cells and retinal pigment epithelial cells. Oligodendro-
cytes (identified and named so by Pío del Río-Hortega 
(6)) are myelinating cells in the white and grey matter of 
the CNS, whereas NG2 cells (discovered by William 
Stallcup and colleagues (7))  belong to the oligodendro-
cyte precursor lineage and may also contribute to the 
homeostasis of the CNS. 

The non-neural subpopulation of neuroglia known as 
microglia are the cells of myeloid origin that represent the 
main defensive and innate immune system of the CNS. 
The microglial cells were discovered and characterised by 
Pío del Río-Hortega in the early 20th century (8, 9). Micro-
glial cells originate from progenitors that derive from 
primitive c-kit+ erythromyeloid precursors, which come 
from the extra-embryonic yolk sac (10). These progenitors 
migrate into developing CNS early in embryogenesis 
(about embryonic day 10 in mice (11)). After entering the 
nervous tissue, microglial precursors undergo a substan-
tial transformation and acquire an idiosyncratic morphol-
ogy, characterised by small cell bodies and several thin 
and motile processes, and physiology, characterised by the 
expression of numerous receptors to neurotransmitters 
and neurohormones concomitant with an expression of 
“immuno-competent” receptors (e.g., Toll-like receptors 
and receptors for chemokines and cytokines (12). Besides 
being the principle elements of CNS defence, microglial 
cells play an important role in the development of the 
nervous system being, for example, pivotal for synaptic 
pruning, phagocytosis of redundant neurones  and shap-
ing synaptically connected neuronal networks (13). 

Neuroglia: the central element of CNS 
homeostasis and defence

The preservation of homeostasis of the nervous system 
is the main function of neuroglia, which functions in-
clude the housekeeping of the neural tissue by astrocytes, 
maintenance of interneuronal “connectome” by oligoden-
droglia-dependent axonal myelination and providing 
defensive homeostasis. Astrocytes perform virtually every 
conceivable homeostatic function (for recent reviews and 
extensive references lists see (4, 14, 15)). For example, as-
troglia are fundamental for structural integrity of the 
CNS,  dividing the grey matter into individual gliovascu-
lar units that couple brain parenchyma to the local circu-
lation. Astrocytes control the emergence of the blood-
brain barrier (by regulating the expression of tight 
junc tions between endothelial cells) and represent its neu-
ral side; similarly, astroglia is central for the formation of 
the cerebrospinal fluid (CSF)-brain barrier. Through as-
troglial endfeet covering 99% of CNS capillary walls 
astrocytes participate in regulated transport of various 
matter through these barriers and contribute to the regu-
lation of local blood flow. Astrocytes, by virtue of multiple 
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plasmalemmal transporters and channels, as well as by 
numerous astroglia-specific enzymes, control CNS ho-
meostasis of ions and neurotransmitters, most notably 
glutamate, g-aminobutyric acid (GABA) and ATP/ade-
nosine, or their precursors,  in particular supplying neu-
rones with glutamine, which is a precursor for both glu-
tamate and GABA. It is important to emphasise that 
glutamine supply is critical for neurotransmission, be-
cause neurones are devoid of enzymes for de novo synthe-
sis of glutamate (and hence GABA for which glutamate 
is a precursor). Astroglia provide for water transport,  me-
tabolism, synaptogenesis and the removal of reactive oxy-
gen species. Astrocytes also contribute to systemic homeo-
stasis, being involved in central chemoception, circadian 
rhythm and regulation of sleep (16). Oligodendrocytes 
provide CNS myelination; they are involved in a complex 
bidirectional communication with axons and contribute 
to periaxonal ion and transmitter homeostasis, to axonal 
metabolic support, and are able to dynamically influence 
the action potential propagation (17-19).

Another fundamental function of neuroglia is the for-
mation of brain defence system. First, neuroglial cells 
protect nervous tissue through their homeostatic mecha-
nisms, which are, for example,  fundamental for contain-
ing excitotoxic damage (by removing excess of glutamate 
and buffering extracellular K+), supporting brain metabo-
lism in conditions of ischemia through mobilising glyco-
gen, and supplying neurones with energy substrates as well 
as secreting numerous trophic and neuroprotective factors 
(20, 21). Furthermore, insults to the brain trigger evolu-
tionarily conserved glial response, generally defined as re-
active gliosis, which includes reactive astrogliosis, prolife-
rative response of NG2 cells and the activation of microglia 
(12, 22-25). The gliotic response is, fundamentally, a de-
fensive reaction responsible for neuroprotection, isolating 
injured area through the formation of glial scar, removing 
pathogens, dying cells and cellular debris, and remodel-
ling the nervous tissue after the resolution of pathology. 

Reactive astrogliosis, which is activated in most of the 
pathological processes in the CNS is manifested by a com-
plex biochemical remodelling of astrocytes, their hyper-
trophy and proliferation and up-regulation of intermedi-
ate filaments, i.e., cytoskeletal proteins glial fibrillary 
acidic protein (GFAP), vimentin and nestin (23, 26). A 
substantial increase in GFAP immunoreactivity is re-
garded as a specific marker for astrogliotic response. Im-
portantly, reactive astrogliosis is a controlled, multi-stage 
and diverse process, which may involve heterogeneous cell 
populations with distinct neuroprotective capabilities. 
Furthermore, the manifestation of astroglial reactivity is 
context-specific and different pathologies are associated 
with distinct reactive astroglial phenotypes (27, 28). In-
hibition of reactive astrogliosis generally reduces neuronal 
viability and worsens the outcome of neurological pathol-
ogy (24). Finally, reactive astrocytes are instrumental for 
post-pathology neural tissue regeneration and repair, con-

tributing, for example, to the rewiring of neuronal net-
works, lesion-induced neurogenesis and reconstitution of 
blood-brain barrier (26, 29). 

Broadly, reactive astrogliosis is classified into isomor-
phic (i.e. preserving morphology) or anisomorphic (i.e., 
changing the morphology). In isomorphic gliosis, astro-
glial hypertrophy, physiological and biochemical changes 
proceed without altering normal astroglial morphological 
domain organisation, which is endowed by minute over-
lap between individual cells at their very periphery (30). 
Isomorphic astrogliosis is neuroprotective, fully reversible 
and it facilitates neurite outgrowth and synaptogenesis. 
In anisomorphic gliosis, astrocytes became hypertrophic 
and start to proliferate; glial territorial domains are dis-
rupted, astrocytic processes intermingle and finally a per-
manent glial scar is formed. The glial scar effectively seals 
the damaged area and prevents axonal growth, because of 
chondroitin and keratin secreted by reactive astrocytes 
(24, 31). 

The NG2 glia also respond to various types of CNS 
pathology by increased proliferation and morphological 
changes. The processes of NG2 cells in the affected re-
gions become shorter and thicker; this is also accompa-
nied by a substantial increase in NG2 (i.e., chondroitin 
sulphate proteoglycan 4) expression. The reactive NG2 
cells can also proliferate and, at least in spinal cord, the 
NG2 cells can generate oligodendrocytes that may remy-
elinate pathologically affected axons  In the spinal cord, 
activated NG2 cells generate new oligodendrocytes that 
remyelinate the demyelinated lesions (32, 33). Arguably, 
NG2 cells may also contribute to scar formation by secret-
ing chondroitin sulphate proteoglycan 4. 

Another important component of neuroglial defence 
is represented by microglia. Insults to the nervous tissue 
initiate the activation of microglia, which is a multi-stage 
controlled process progressing through different stages 
and phenotypes with a variety of morphological, bio-
chemical, functional and immunological changes and 
producing a variety of phenotypically distinct types of 
activated microglia. Responses of microglia to pathology 
are multi-faceted. For example, localised insults trigger 
rapid converging of microglial processes to the site of in-
jury (34, 35). Stronger and more persistent lesions induce 
morphological remodelling; microglial somata enlarge 
and processes become fewer and thicker. Microglial cells 
alter their expression of various enzymes and receptors, 
and begin to secrete immune response molecules. At even 
stronger insults, microglial cells enter proliferative stage, 
become motile, acquire macrophage-like morphology, 
migrate and accumulate around the sites of damage and 
finally transform into phagocytes (12, 25, 36). 

Neuroglial reactivity is a central element of CNS re-
sponse to damage and chronic pathologies. Contributions 
of activated neuroglia can, however, be not only neuro-
protective, but also deleterious. This reflects an intrinsic 
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dichotomy of every homeostatic system. The very same 
molecular cascades that underlie neuroprotection can also 
contribute to neurotoxicity. Overstimulation of astrocytes 
can induce the excessive release of glutamate through 
various release pathways and this release can add to the 
glutamate toxicity and eventually neuronal death. Abnor-
mal water transport through astroglial aquaporins is a 
leading mechanism of cellular oedema, whereas deficient 
astroglial K+ buffering contributes to spreading depres-
sion. Similarly, over-activation of microglia results in the 
release of neurotoxic factors and phagocytosis that can 
exacerbate neuronal damage. 

General pathology of neuroglia: 
Reactivity versus atrophy and asthenia

Neuroglial reactivity in neurological disorders could 
be considered as dedicated defensive response. At the 
same time, an opposite process, a loss of function, atrophy 
or asthenia of glial cells can be directly involved in path-
ological progression. Evidence for the loss of function of 
neuroglial cells that accompany different neurological 
conditions begun to accumulate in recent years. Astro-
cytes, for example, show signs of morphological atrophy 
at the early stages of several neurodegenerative conditions 
(37). In diverse neurotoxic impairments of the CNS, as-
trocytes lose their ability to control extracellular gluta-
mate, which may be a leading mechanism for ensuing 
excitotoxicity and neuronal death. Similarly, atrophy or 
death of astroglia is observed in a variety of neuropsychi-
atric disorders. In demyelinating conditions, oligodendro-
cytes fail in remyelination, whereas a loss of function of 
microglia is involved in neurodevelopmental diseases and 
is observed in neurodegeneration and in tumorous growth 
in the nervous system (see (21, 38) and references therein).     

Specific gliopathology in neurological 
and psychiatric diseases

Genetic astrogliopathology: Alexander disease

The inherited gliopathology, associated with sporadic 
mutations in the GFAP encoding gene, was described in 
1949 by Stewart Alexander (39). Here, the impaired func-
tion of astroglia affects brain development and results in 
severe deficit of white matter manifested by profound leu-
kodystrophy. Histopathologically, Alexander disease is as-
sociated with an appearance of cytoplasmic inclusions in 
astroglial cells known as Rosenthal fibres; these corkscrew-
shaped inclusions are formed by GFAP and stress proteins. 
The pathogenesis of Alexander disease remains unknown 
and the prognosis is pessimistic with most of the patients 
dying in early childhood or in adolescence (40).  

Neurodevelopmental disorders

The glial impairment in neurodevelopmental disorders 
such as autistic spectrum disorders (ASD) begun to be con-
sidered only very recently (see (41) for details and refer-

ences). Many forms of ASD reflect abnormal formation of 
neuronal networks and disbalanced neurotransmission. 
These could result from environmental factors (e.g., expo-
sure to heavy metals or other toxins), oxidative stress, hor-
monal impairments or early neuroinflammation in combi-
nation with genetic predisposition. Astrocytes are the main 
source for reactive oxygen species scavengers such as gluta-
thione or ascorbic acid, and hence astroglial weakness can 
lie at the core of oxidative damage to nervous tissue. Astro-
cytes are also involved in the regulation of neurogenesis and 
neuronal migration in early postnatal period and hence 
astroglial weakness can contribute to the malformation of 
neuronal networks. Astroglia are critical for synaptogenesis 
(42), and hence for shaping the synaptically connected neu-
ronal networks. Astroglia-derived cholesterol is one of the 
critical elements of the synaptogenesis and abnormalities of 
cholesterol metabolism have been detected in ASD (43); 
these abnormalities may reflect impaired astroglial function 
and could be linked to oxytocin- mediated signalling path-
ways acting through oxytocin receptors expressed in astro-
glia. Finally, ASD is associated with neuro-immune altera-
tions such as an increase in the levels of numerous cytokines 
(44), which are mainly secreted my microglia. Microglial 
cells and astrocytes are also implicated in the pathogenesis 
of Rett syndrome (45, 46) and trichotillomania (47).    

Toxic encephalopathies

Astrocytes play a primary role in neurotoxic damage 
to the brain. Astroglial cells are primary targets for heavy 
metal induced brain damage in Minamata disease (poi-
soning with methylmercury), and in manganese, lead or 
aluminium toxic encephalopathies (21, 48-50). In all 
these toxicities, astroglial cells accumulate heavy metals 
through astroglial-specific transporters, which in turn af-
fect the plasmalemmal glutamate transporters. Decrease 
in the activity of the latter results in chronic elevation of 
extracellular glutamate with ensuing glutamate neurotox-
icity and neuronal death. Similarly, astrocytes appear as 
a primary target in hepatic encephalopathy, which ac-
companies liver failure. Here, the brain is being poisoned 
by ammonia, concentration of which markedly increases 
in the blood and in the CNS following liver insufficiency; 
the symptoms of ammonia toxicity include confusion, 
memory deficits, lethargy, somnolence and, in the termi-
nal stages, coma. Astrocytes are chiefly responsible for 
ammonia detoxification; ammonia is metabolised by glu-
tamine synthetase, astroglia-specific enzyme catalising 
the condensation of glutamate and ammonia to form glu-
tamine (51). Increased activity of glutamine synthetase in 
response to elevated ammonia concentration overloads 
astrocytes with glutamine, impairs K+ buffering and in-
hibits glutamate transporters. All these result in osmotic 
shock and cell swelling, brain oedema and glutamate ex-
citotoxicity (52, 53). 

Ischaemia and stroke 

In ischaemic damages to the CNS, neuroglial cells are 
intimately involved into pathological progression, con-
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tributing to both neuroprotection and neurotoxicity (54-
56). Normal astrocytes are substantially more resistant to 
hypoxia than neurones and oligodendrocytes, and hence 
they can survive in conditions of limited oxygen supply 
that is characteristic for ischaemic penumbra. Here, astro-
glial performance is critical for neuroprotection, through 
removal of glutamate, K+ buffering, release of reactive 
oxygen species scavengers and supplying stressed neurones 
with lactate. Removal of astrocytes greatly increases neu-
ronal vulnerability in experiments in vitro (57).  Such 
astroglia-dependent neuroprotection is critical for con-
taining the spread of neuronal death through penumbra, 
which in turn defines post-ischaemic neurological deficit. 
Astrocytes, however, could exert fundamentally different 
effects, mediating neurotoxicity, especially in conditions 
of severe and prolonged ischeamia.  The astroglia-medi-
ated neurotoxicity can be mediated through the release 
(instead of removal) of glutamate via, e.g., the reversal of 
glutamate transporters or glutamate diffusion through 
astroglial hemichannels. Astroglial cells can increase ex-
tracellular acidosis as a by-product of anaerobic glycolysis; 
this could be seen in experimental conditions whereby an 
increase in glucose levels exacerbated the ischemic neuro-
nal damage. Finally, astrocytes can mediate neuronal 
death through propagating aberrant astroglial Ca2+ waves 
causing distal (to the infarction core) release of glutamate 
and other neurotoxic factors  (58).

Neuropsychiatric diseases 

The causes, nature and pathogenesis of neuropsychiatric 
diseases remain generally enigmatic, albeit there is a recent 
shift towards the role for disbalance of neurotransmission 
and in particular deficient glutamatergic mechanisms that 
include altered glutamate homeostasis and possible endog-
enous inhibition of N-methyl-D-aspartate (NMDA) glu-
tamate receptors (59, 60). These alterations may certainly 
be centered on neuroglia which is indispensable for gluta-
mate turnover, catabolism and synthesis. Morphological 
studies have confirmed neuroglial alterations such as re-
duced density and atrophic changes in astroglia and oligo-
dendroglia to be prominent in all three major psychiatric 
disorders, that is in schizophrenia, bipolar disorder and 
major depressive disorder; incidentally, no signs of apparent 
neuroglial reactivity were identified (61). The pathological 
remodelling of astroglial biochemistry may also be relevant 
for the progression of schizophrenia. Astrocytes are the 
main producers of kynurenic acid (through astroglial-
specific enzyme kynurenine aminotransferase II, or KAT 
II (62)); kynurenic acid acts as an endogenous inhibitor of 
NMDA receptors, and the levels of kynurenic acid are in-
creased in the cortex and in the CSF of patients with schi-
zo phrenia (63). Finally, astroglia and kynurenic acid may 
be a critical link between Toxoplasma gondii infection and 
an increased risk for schizophrenia. It appeared that T. 
gondii selectively infects astrocytes, which results in an 
increased production of kynurenic acid; this may account 
for the increased risk of schizophrenia (64).   

Epilepsy

The pathological cellular substrate of epilepsy is repre-
sented by a synchronous slow  depolarisation of neurones 
within an epileptic focus, known as a paroxysmal depo-
larization shift, which in turn is mediated by the activa-
tion of ionotropic glutamate receptors. Epilepsy, in its 
various forms, is usually associated with prominent reac-
tive astrogliosis, which often underlies the formation of 
glial scar. Astroglial reactivity develops at the early stages 
of the epileptic disorders (which has been observed in 
both human post-mortem tissues and in animal models) 
and proceeds in anisomorphic fashion so that reactive 
astrocytes in epileptic tissue lose their domain organisa-
tion (65). Specific feature of astroglial reactivity in epi-
lepsy is represented by (i) an increased expression of iono-
tropic and metabotropic glutamate receptors, (ii) aberrant 
calcium signalling; (iii) a decreased presence of inward 
rectifier K+ channels and aquaporins and (iv) a decreased 
expression and activity of glutamate transporters and glu-
tamine synthetase. All these changes result in aberrant K+ 
buffering and deregulated glutamate/GABA homeostasis, 
which may affect neuronal excitability and contribute to 
the generation of seizures (66-69).

Neurodegenerative diseases

Neuroglia play much more important role in neurode-
generation than has been previously thought, and likely 
it does play the leading role in some (if not in all) forms 
of neurodegenerative diseases. Sporadic neurodegenera-
tive process (in contrast to acute neurodegeneration that 
is a consequence of trauma or ischemic attack), occurs 
almost exclusively in the CNS of humans; Alzheimer’s 
disease (AD), Huntington disease (HD), Parkinson dis-
ease, motor neurone disease (MND)/ amyotrophic lat-
eral sclerosis (ALS) or other forms of dementia do not 
affect animals. This specificity to humans remains an un-
solved conundrum that represents a substantial obstacle 
to experimental studies of these diseases. In the recent de-
cade, numerous animal models of neurodegenerative dis-
eases, that transgenically insert disease-associated human 
genes into mice, have been developed (70-73). It has to be 
remembered, however, that all these models, although 
reproducing certain parts of human pathologies and often 
showing disease-specific histopathology, remain imper-
fect replicas of the naturally occurring diseases. 

In MND/ALS (also known as Lou Gehrig’s disease in 
the US in memory of a baseball player who suffered and 
died from this pathology) astrocytes are the first cells to 
undergo pathological remodelling. In a mouse model of 
MND/ALS (which expresses a human mutant superoxide 
dismutase 1, or SOD1, associated with a familial form of 
the disease) astroglial cells in the spinal cord undergo 
degeneration and become atrophic; these cells have defi-
cient plasmalemmal glutamate transporters and hence 
cannot contain the excitotoxic build-up of extracellular 
glutamate (74) that is arguably the leading cause for con-
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sequent neuronal death. Furthermore, the MND/ALS 
progression could be mimicked by astroglia-specific ge-
netic deletion of glutamate transporter 1 in mice (of 
which excitatory amino acid transporter 2, EAAT2, is a 
human analogue) (75), whereas selective silencing of the 
SOD1 mutant gene in astrocytes markedly delayed  the 
progression of MND /ALS (76, 77).

Impairment of the astrocytic ability to clear extracel-
lular glutamate appears as a key pathogenetic mechanism 
for Wernicke’s encephalopathy that represents an organic 
substrate for Korsakoff’s psychosis (78, 79). In this disor-
der, the expression of astroglial-specific glutamate trans-
porters EAAT1/EAAT2 in humans is decreased by 60 - 
70% of the physiological norm. A similar decrease in 
glu ta mate transporters was observed in astrocytes from 
the beriberi (thiamine deficiency) rat model (80, 81). Here, 
the failure of astroglial glutamate uptake causes profound 
neurotoxicity, rapid neuronal death with consequent psy-
chotic abnormalities, cognitive deficiency and death.  

In AD, which is arguably one of the most common 
cases of dementia in the developed world, all types of 
neuroglia are affected and are most likely, linked to path-
ological progression. AD is characterised by  conspicuous 
atrophy of brain tissue and histopathological hallmarks 
in the form of the extracellular deposits of b-amyloid pro-
tein, known as senile plaques, and intra-neuronal accu-
mulation of abnormal tau-protein filaments, known as 
neuronal tangles (82, 83). Astrocytes in AD show two 

types of apparently opposing changes: the relatively early 
and region-specific atrophy and, at the later stages of the 
disease characterised by the formation of senile plaques,  
region-specific reactivity (37, 84, 85). Morphological at-
rophy, detected as a decrease in astroglial profiles positive 
to astroglia-specific proteins GFAP, S100b and  glutamine 
synthetase, has been observed in entorhinal and  prefron-
tal cortices, and the hippocampus of several AD animal 
models (86-91);  it also seems to exist in post-mortem 
human tissues (Rodriguez & Verkhratsky own observa-
tions). The early dystrophy of astroglial cells can be patho-
logically relevant because reduced astroglial synaptic 
coverage could impair the synaptic strength and synaptic 
maintenance. Moreover, this reduced astroglial coverage 
may also influence b-amyloidogenesis. The latter is appar-
ently regulated by glutamatergic transmission; in particu-
lar, the activation of synaptic NMDA receptors favours 
non-amyloidogenic processing of amyloid precursor pro-
tein, whereas the stimulation of extra synaptic NMDA 
receptors stimulates b-amyloid production (92). Reduced 
astroglial perisynaptic coverage facilitates glutamate spill-
over from the synaptic cleft and hence may increase acti-
vation status of extra-synaptic NMDA receptors and thus 
favours b-amyloid production.   

At the later stages of the AD, the appearance of senile 
plaques presents a signal for reactive astrogliosis, and, in-
deed, an accumulation of reactive hypertrophic astrocytes 
around b-amyloid deposits have been detected in post-

Figure 1. Classification and main functions of neuroglia (see text for further explanations). 
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mortem human tissues as well as in AD animal models 
(85, 87). The reactive astrocytes show an increased expres-
sion of GFAP and S100b, along with a reduced expression 
of glutamine synthetase, which indicates an impairment 
of glutamate homeostatic function (93). In addition, reac-
tive astrocytes localised in senile plaques display aberrant 
Ca2+ signalling (94). Astroglial reactivity is region-specif-
ic, and it is absent in entorhinal and prefrontal cortices of 
AD mouse model (89, 90), which may contribute to a 
higher vulnerability of these brain portions to AD-like 
pathology. 

Progression of AD also affects oligodendroglia and 
myelination; oligodendrocytes show atrophic changes 
(95) and reduced densities (96) in AD-affected tissues, 
which may result in a decreased myelination in the CNS. 
AD pathology also affects microglia; in the early, pre-
plaque stages, a substantial increase in the microglial den-
sities was observed in AD mice; at the later stages, acti-
vated microglia is associated with senile plaques (97, 98). 
Importantly, however, the activated microglia in AD 
brains show a loss of function, manifested in the impair-
ment of phagocytosis (99). 

Astroglia are also affected in non-AD type dementias, 
such as fronto-temporal dementia, Pick’s disease, fronto-
temporal lobar degeneration, thalamic dementia, or -as-
sociated dementia in which both astroglial atrophy and 
reactive astrogliosis have been identified (100, 101). Pri-
mary astroglial pathology, represented by both gliotic and 
dystrophic changes, is observed in thalamic dementia, in 
which the loss of astroglial homeostatic functions induc-
es widespread neuronal loss, hippocampal sclerosis and 
white matter lesions (102). Loss of function (due to muta-
tions) of astroglia-specific protein NPC-1, which appears 
to function as a transporter in the endosomal-lysosomal 
system, contributes to the Niemann-Pick disease type C 
(103). In Huntington’s (HD) disease decrease in astro-
glial glutamate transporters and possibly in the produc-
tion of ascorbic acid may contribute to neurotoxicity 
(104). It should be noted that HD causes preferential loss 
of a subset of neurones in the brain, although the hun-
tingtin protein is expressed broadly in various neural cell 
types. Recently, it has been demonstrated that full-length 
mutant huntingtin expression perturbs astrocyte glio-
transmitter release. Hence, BACHD astrocytes show 
augmented exocytotic glutamate release with unaltered 
Ca2+ dynamics.  These astrocytes have a biochemical foot-
print that would lead to increased availability of cyto-
solic glutamate, i.e., augmented de novo glutamate syn-
thesis due to an increase in the level of the astrocyte 
specific mitochondrial enzyme, pyruvate carboxylase. 
This work identified a new mechanism in astrocytes that 
could lead to increased levels of extracellular glutamate in 
HD and thus may contribute to excitotoxicity in this dev-
astating disease (105). Similarly, a loss of astroglia-depen-
dent neuroprotection may contribute to the demise of 
dopaminergic neurones in Parkinson’s disease (106). 

Conclusions: Translational outlook

Neurological and psychiatric disorders have been al-
most entirely considered from the neurone-centric point 
of view, with neurons being the principal, if not the sole, 
cellular element of disorderly process. However, it is neu-
roglia, but not neuronese that control the nervous system 
homeostasis, the dysregulation of which is the common 
denominator in all diseases. Recently, it is becoming clear 
that neuroglial cells play an active role in pathophysiolog-
ical processes and that understanding the underlying 
mechanisms shall provide novel targets for much needed 
therapeutic intervention. 
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