Dermatophyte Infections in Primorsko-Goranška County, Croatia: a 21-year Survey

Marija Kaštelan, Vesna Ulješinović-Gudelj, Larisa Prpić-Massari, Ines Brajac

Department of Dermatovenereology Clinical Hospital Centre Rijeka, Medical Faculty University of Rijeka; 1Private practice, Policlinic Medico, Rijeka, Croatia

Corresponding author: Prof. Marija Kaštelan, MD, PhD
Department of Dermatovenereology
Clinical Hospital Centre Rijeka
Medical Faculty University of Rijeka
Krešimirova 42
51000 Rijeka, Croatia
marijakastelan@yahoo.com

SUMMARY This study examined the frequency of dermatophytoses in the Primorsko-Goranška County, a north-western part of Croatia, over a period of 21 years (1988-2008). All fungal samples were microscopically examined with 20% potassium hydroxide (KOH) solution. Fungal infections were confirmed in 26.9% cases. Out of these, dermatophytes were isolated in 38.3%, Candida spp. infection in 55.1% cases, while non-dermatophyte molds were identified in 6.6% isolates. The most frequently isolated dermatophyte was Trichophyton (T.) mentagrophytes var. interdigitalis (55.4%), followed by Mycosporum (M.) canis (36.9%), T. violaceum (3.2%), M. gypseum (2.2%), and T. verrucosum (1.3%). Epidermophyton (E.) floccosum (0.9%) and T. rubrum (0.1%) were identified only sporadically. The most common dermatophytosis diagnosed in the 21-year period was tinea pedis (26.2%) followed by tinea capitis (21.8%) and tinea corporis (20.1%). Toenail onychomycosis (14.5%) was more common than fingernail onychomycosis (2.0%). T. mentagrophytes var. interdigitalis was the major pathogen causing tinea pedis (86.6%) as well as toenail onychomycosis (93.9%), while M. canis was most frequently isolated in tinea capitis (98.6%), tinea corporis (62.1%), and tinea faciei (40.2%). With regard to age and sex, T. mentagrophytes var. interdigitalis infections were predominant in middle-aged men. M. canis affected mostly children up to 9 years with a slight predominance in girls.

Data from epidemiological trend analysis such as presented in our study are important for evidence-based public health measures for the prevention and control of dermatophytoses.

KEY WORDS: dermatophytes, epidemiology, tinea, Croatia, Primorsko-Goranška County

INTRODUCTION

Dermatophyte infections are very common worldwide. In different geographic areas, their distribution varies depending on lifestyle, population migration, and socioeconomic conditions (1-3). In recent decades, an important change in the epidemiological pattern of dermatophyte infections took place in most European countries, including Croatia (1-5). In Central and Western Europe, tinea pedis and toenail onychomycosis caused by Trichophyton (T.) rubrum dominate in the dermatophyte spectrum (1-3,6,7). In contrast, Microsporum (M.) canis is the major cause of dermatophyte infections in Slovenia and Italy (8-10), and tinea corporis and tinea capitis caused by M. canis are the most common clinical forms of derma-
tophytoses in other Mediterranean countries (9-12). Because of these discrepancies, analyzing the epidemiological situation and pathogenic spectrum of dermatophyte infections in Croatia during the past decades is an interesting topic. In this study, we examined the frequency of dermatophytosis in the Primorsko-Goranska County (with Rijeka as the capital city), a north-western part of Croatia, over the period of 21 years (1988-2008).

METHODS

Skin scrapings as well as hair and nail samples were collected from patients with clinically suspected dermatomycosis in the 21-year period between January 1, 1988 and December 31, 2008. The specimens were analyzed in the mycological laboratory at the Department of Dermatovenerology, Clinical Hospital Centre Rijeka. A total of 52578 patients with suspected dermatomycosis were examined in this period. All fungal samples were prepared in 20% potassium hydroxide (KOH) solution and analyzed with direct microscopy. Part of the specimens were cultivated on Sabouraud maltose agar with added penicillin and streptomycin and further incubated at 27°C for 4 weeks. The isolated fungi were identified by their macroscopic and microscopic characteristics.

RESULTS

In the 21-year period, fungal infections were confirmed in 14787 (26.9%) cases (Table 1). Dermatophytes were isolated in 5668 (38.3%), Candida spp. infection in 8145 (55.1%) cases, while non-dermatophyte molds were identified in 974 (6.6%) isolates.

Anthropophilic T. mentagrophytes var. interdigitalis and zoophilic M. canis dominated in the spectrum of dermatophytes (Table 2). The most frequently isolated dermatophyte was T. mentagrophytes var. interdigitalis (55.4% of dermatophyte isolates), followed by M. canis (36.9%), T. violaceum (3.2%), M. gypseum (2.2%), and T. verrucosum (1.3%). Antropophilic fungi E. floccosum (0.9%) and T. rubrum (0.1%) were identified only sporadically.

The most common dermatophytosis diagnosed in the study period was tinea pedis (26.2%) followed by tinea capitis (21.8%) and tinea corporis (20.1%); Table 3). Toenail onychomycosis (14.5%) was more common than fingernail onychomycosis (2.0%). Tinea inguinallis (7.7%) and tinea manus (6.0%) were diagnosed with almost the same frequency, whereas tinea faciei was only seen in rare cases.

T. mentagrophytes var. interdigitalis, the most frequently isolated dermatophyte in this region, was the major pathogen causing tinea pedis (86.6%) as well as toenail onychomycosis (93.9%; Table 4). The same fungus was also very often identified in tinea inguinallis (77.8%), tinea manus (67.7%), tinea faciei (47.4%), and tinea corporis (30.9%). M. canis was most frequently isolated in tinea capitis (98.6%) and tinea corporis (62.1%) as well as in tinea faciei (40.2%). M. gypseum was found in some cases of tinea faciei (12.4%) and rarely in tinea corporis (3.2%) and tinea pedis (2.2%). E. floccosum was predominant in groins, while T. violaceum was isolated on trunk, hands, and inguinal region. T. verrucosum was an infrequent cause of tinea corporis and tinea pedis while T. rubrum was only rarely identified.

With regard to age and sex, T. mentagrophytes var. interdigitalis infections predominated in middle-aged men. M. canis affected mostly children up to 9 years with a slight predominance in girls. 67.3% of patients with M. canis infection were aged less than 9 years while 14.8% were from 10 to 19 years old. T. violaceum infections were predominant among adults (23.6%) ranging in age from 50 to 59 years. M. gypseum and E. floccosum were likewise most often identified among adult patients.

DISCUSSION

The distribution of dermatophytes in European countries has changed significantly within the last few decades (1-3). In our 21-year epidemiologic survey, fungal infections were confirmed in 26.9% cases, of which 38.3% had dermatophytoses while 55.1% had Candida spp. infection. This decrease in the frequency of dermatophyte isolates has already been noticed in the region of Rijeka in the post war
The same epidemiological situation has been observed in the Padua region, Italy, with higher incidence of Candida spp. infection compared to dermatophyte one (13). In Bosnia, our neighboring country, a decline in the rate of dermatophytoses has been noticed in the post war period as well (14,15). The same epidemiological situation has been observed in Greece and Poland, with a decline in dermatophyte incidence in the last twenty years (16,17). However, in other European countries dermatophytes are still dominant within the fungal spectrum (1-3).

The most frequently isolated dermatophyte in our survey was T. mentagrophytes var. interdigitalis with a frequency of over 50% of all dermatophyte isolates. The same epidemiological situation was observed in other parts of Croatia as well (5,18-22). In the region of Rijeka, T. mentagrophytes var. interdigitalis dominated in the pathogenic spectrum of dermatophytes since 1957 (23). The ratio of T. mentagrophytes var. interdigitalis isolates in this survey was much higher than in other European countries such as Germany (11.6%), Slovakia (9.4%), Czech Republic (4.7%), Slovenia (7.9%), Greece (14.4%) and Italy (10.6%) (3-6,12). However, in northern Poland, like in our region, T. mentagrophytes var. interdigitalis is still the most prevalent dermatophyte with the frequency of 41.6% (24). The same finding was reported in Cagliari, Italy,

where T. mentagrophytes var. interdigitalis was the predominant dermatophyte with the frequency of 49.6% (25). Higher incidence of this fungus has also been noted in Finland (24.2%) in the previous decades (26).

In our survey, the most common among all clinical forms of dermatophytoses was tinea pedis (26.2%), followed by tinea capitis (21.8%) and tinea corporis (20.1%). These findings are similar to those in some Mediterranean and central European countries (4-11). In contrast, in the Zagreb area, onychomycoses were the predominant clinical types of infection; a similar situation has been noted in the island of Crete, Greece as well (12,18). In central Europe, tinea pedis and toenail onychomycosis, mainly caused by T. rubrum, account for more than 50% of all dermatophytes (2,3,6,7). In contrast, in Slovenia and northern Italy, tinea corporis is the most prevalent clinical form mainly due to high prevalence of M. canis infections in these parts of Europe (8-10). Interestingly, in Italy, tinea pedis constituted only 6.8% of all clinical forms of dermatomycosis (10). In our region, tinea pedis and toenail onychomycosis are dominated by T. mentagrophytes as the causal pathogen. In contrast to our findings, in Greece, most of Italy, and some central European countries, T. rubrum is the dominant agent causing tinea pedis (6-12). In Slovenia, T. mentagrophytes var. interdigitalis was isolated 2 to 4 times less frequently in tinea pedis than T. rubrum (8). However, T. rubrum is responsible for tinea pedis in most of Italy, in the region of Cagliari, T. mentagrophytes var. interdigitalis is the causative agent in almost 51.5% cases of tinea pedis (27).

The low isolation rates of T. rubrum in our survey have been already observed in the region of Rijeka, although in the past 20 to 30 years T. rubrum infections were more frequently noticed in this region (4,23). However, higher isolation rates of T. rubrum were found in other parts of Croatia: in Split (21.5%) and in the Zagreb area (10%) (5,18). In comparison with other European countries with high incidence

Table 3. Frequency of dermatophytosis in the Primorsko-goranska County (1988-2008)

<table>
<thead>
<tr>
<th>Dermatophyte</th>
<th>Tinea pedis</th>
<th>Tinea capitis</th>
<th>Tinea corporis</th>
<th>Tinea inguinialis</th>
<th>Tinea manus</th>
<th>Fingernail onychomycosis</th>
<th>Tinea faciei</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. mentagrophytes</td>
<td>1486 (26.2)</td>
<td>1237 (21.8)</td>
<td>1140 (20.1)</td>
<td>821 (14.5)</td>
<td>436 (7.7)</td>
<td>337 (6.0)</td>
<td>114 (2.0)</td>
<td>5668 (100.0)</td>
</tr>
<tr>
<td>M. canis</td>
<td>771 (13.7)</td>
</tr>
<tr>
<td>T. violaceum</td>
<td>228 (4.1)</td>
</tr>
<tr>
<td>M. gypseum</td>
<td>281 (5.0)</td>
</tr>
<tr>
<td>T. verrucosum</td>
<td>97 (1.7)</td>
</tr>
<tr>
<td>E. floccosum</td>
<td>97 (1.7)</td>
</tr>
<tr>
<td>T. rubrum</td>
<td>97 (1.7)</td>
</tr>
</tbody>
</table>

Table 4. Distribution of isolated dermatophytes by body location

<table>
<thead>
<tr>
<th>Dermatophyte</th>
<th>Tinea</th>
<th>Tinea</th>
<th>Tinea</th>
<th>Tinea</th>
<th>Tinea</th>
<th>Fingernail</th>
<th>Toenail</th>
<th>Onychomycosis</th>
<th>Onychomycosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. mentagrophytes</td>
<td>46</td>
<td>352</td>
<td>33</td>
<td>228</td>
<td>1287</td>
<td>771</td>
<td>110</td>
<td>3144</td>
<td></td>
</tr>
<tr>
<td>M. canis</td>
<td>39</td>
<td>708</td>
<td>9</td>
<td>66</td>
<td>43</td>
<td>1</td>
<td>1</td>
<td>2087</td>
<td></td>
</tr>
<tr>
<td>T. violaceum</td>
<td>1</td>
<td>25</td>
<td>40</td>
<td>17</td>
<td>84</td>
<td>14</td>
<td>2</td>
<td>183</td>
<td></td>
</tr>
<tr>
<td>M. gypseum</td>
<td>12</td>
<td>43</td>
<td>3</td>
<td>17</td>
<td>32</td>
<td>15</td>
<td>1</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>T. verrucosum</td>
<td>-</td>
<td>5</td>
<td>8</td>
<td>7</td>
<td>33</td>
<td>18</td>
<td>-</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>E. floccosum</td>
<td>-</td>
<td>7</td>
<td>37</td>
<td>-</td>
<td>6</td>
<td>1</td>
<td>-</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>T. rubrum</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1237</td>
<td>97</td>
<td>1140</td>
<td>436</td>
<td>337</td>
<td>1486</td>
<td>821</td>
<td>114</td>
<td>5668</td>
</tr>
</tbody>
</table>
of *T. rubrum* isolates, Poland, particularly the northern part, was reported to have lower rates of *T. rubrum* isolates with a frequency of 15.5% (24).

M. canis was the second most common among all dermatophytes in our survey, with a frequency of 36.8%. 98.6% of the isolates were from the patients with tinea capitis, mostly children up to 9 years old. These findings are similar to those in other Croatian regions (5,18-22). In the Primorsko-Goranska area, *M. canis* was noted for the first time in 1974 with two isolated cases and a tendency of steadily increasing frequency over following decades (23). An increased frequency of *M. canis* was first noticed in Mediterranean and south European countries and it seems the infection spread to northern Europe from there (28). The high incidence of *M. canis* infection was also observed in Croatia’s neighboring countries: Bosnia (90.4%), Slovenia (46.8%), and Italy (50%), where *M. canis* was reported to be the most prevalent dermatophyte (8-10,15). In contrast, a very low isolation rate of *M. canis* has been observed in southwest Poland (5.1%) and in the Kraków district (1.7%) (17,29).

The isolation rate of geophilic *M. gypseum* (2.2%) and antropophilic *Epidermophyton floccosum* (0.9%) has been low in this region and in other parts of Croatia as well (4,5,18-22). A similar epidemiological situation has been also observed in other European countries (2,3,6-12). In the 1930s *E. floccosum* was reported to be the most prevalent causative agent of fungal infections in Germany (2,3,30). Since then, the frequency of *E. floccosum* declined to below 1% in 1990 (2,3). However, in some European countries such as Poland, Greece, and Italy, *E. floccosum* still constitutes 10% of all isolates (9-12,24,31). It is interesting to note that in Iran and some other Islamic countries, *E. floccosum* is still the predominant cause of dermatophytoposes with almost 31.4% isolates (32,33).

CONCLUSION

The distribution and frequency of dermatophytes in our survey differs in some points from the epidemiological pattern in other European countries. The most prevalent dermatophyte is still *T. mentagrophytes*; however, the ratio of *M. canis* is increasing, similarly to other Mediterranean countries. Data from epidemiological trend analysis such as presented in our study are important for evidence-based public health measures for the prevention and control of dermatophytoposes.

References