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 This paper presents a linear cellular automation 
(LCA) method for predicting the dynamic failure 
(DF) mode of both single-layer latticed shell and 
single-layer cylindrical latticed shell subjected to 
ground motions. The LCA model of the shell 
obtains the state values of cells/nodes including the 
nodal displacements state value and the nodal 
domain logarithmic strain energy density 
(NDLSED) state value through its finite element 
analysis (FEA). Meanwhile, the concepts of nodal 
domain and nodal domain similarity are derived 
based on the qualitative analysis of shells. Then, 
similar nodal domains between two shells are 
matched through the proposed criterion. Finally, 
the DF mode of an object shell is mapped using the 
criterion for projecting the formative values of a 
base shell to similar nodal domains in the object 
shell. Case studies show that the LCA method 
could be used for predicting the DF mode of an 
object shell. Consequently, the LCA method would 
explore an LCA application in analyzing shells, 
which costs much less time than the FEA method 
for calculating the DF shell mode. 
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1 Introduction 
 
The latticed shell structures develop rapidly all over 
the world due to their aesthetic qualities, large space 
and sound mechanical performance. An outstanding 
example is that the latticed shells successfully 
survived during the 1995 destructive Kobe 
earthquake in Japan, which clearly demonstrated 
excellent seismic performance. [1]. This further 
aroused researchers’ interest in the analysis of shell 

structures under dynamic loads. Early thin shell 
structures might have been empirical and 
conceptual products constructed by human bionic 
practice. Then, a remarkable performance of this 
type of structures has led to the construction of 
many modern large span shell structures around the 
world. Recently, the development of construction 
materials, advanced analytical methods and modern 
construction techniques seems to have encouraged a 
wide use of this type of structures, particularly in 
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the seismic areas. However, the following issues 
still need to be addressed:  

(1) A hot issue is to identify and model the failure 
mechanism of large-span single-layer shells under 
the strong seismic loading [2-4]. Commonly, 
structural instability is believed to be the main 
cause of failure in shell structures subjected to 
seismic excitations. But, structural instability is so 
complex in its mechanism that it is difficult to 
determine the corresponding load and mode [5]. 

(2) The finite element analysis (FEA) is widely 
used in structural analysis and design at present. 
But, the FEA computation of shell structures 
undergoing whole seismic processes costs a lot of 
time, particularly, the post-processing of huge 
calculation data. Hence, alternative convenient and 
highly efficient methods are expected to address the 
computing cost. 

(3) As Kunieda and Kitamura [1] indicated, the 
analysis of shell structure is still needed to verify 
whether the existing shell structures were too 
strongly designed. or not.  

(4) The existing design codes around the world 
also lack sufficient guidance to support a confident 
and reliable design approach. 

(5) Results obtained from FEA simulations and 
tests of shells ought to be further investigated or 
modeled to discover new knowledge. 
In view of the issues mentioned above, an 
exploration of both modeling and predicting 
methods is needed to further new analytical 
techniques, to apply the test and numerical results 
and to reduce the computing time of shell 
structures. Zhou et al. [6] successfully tried and met 
this expectation in mapping the cracking pattern of 
masonry wall panels using cellular automata, which 
provides a reference basis for predicting the 
dynamic failure (DF) modes of shells. 
This paper conducts a linear cellular automaton 
(LCA) modeling of a shell structure, because the 
shell structure itself is a latticed form and the 
structural nodes are similar to cells in a LCA model. 
Thus, it is appropriate to develop the concepts of 
nodal domain and nodal domain similarity, as well 
as the criteria for matching nodal domain similarity 
for shell structures. Finally, the LCA method is 
proposed to predict the DF modes of object shell 
structures based on the DF mode of a based shell.  
 
 
 

2 Concepts proposed in the LCA method  
 
Based on the cellular automata developed by 
Neuman [7], Margolus and Toffoli [8], the concepts 
for the LCA method are introduced as follows:  
Nodal domain: A node and its six neighbouring 
nodes are defined as a nodal domain, as shown in 
Fig. 1. Nodal state value: The normalized FEA 
displacements of all nodes are defined as nodal state 
values, for the shell under a unit load (here, the 
amplitude of acceleration equaling 0.1m/s2 is 
regarded as the unit load). In other words, nodal 
state values are set as the state values of any cells in 
the LCA model of the shell. 
Nodal domain similarity: It is defined as nodal 
domain similarity when two nodes with their 
neighbourhoods have the same or similar node state 
values [6, 9]. 
DF mode: the DF mode is composed of all the 
normalized nodal displacements or nodal domain 
logarithmic strain energy density (NDLSED) once 
the shell has become instable. 
Base shell: A typical shell whose DF mode is 
known from the FEA numerical simulation result or 
testing data. The normalized DF mode provides a 
basis or reference for predicting the DF mode of an 
object shell.  
Object shell: A shell whose DF mode needs to be 
predicted. Here, the FEA numerical simulation 
results of the object shell are available to verify the 
LCA method. 
 
3 Database preparation 

 
3.1 Verification of the FEA program  

 
Testing and FEA models are shown in Fig. 2. 
Details of the testing process are not shown due to  
the page limits. The lab test of the shell model was 
 

   
(a)     (b) 

 
Figure 1. Nodes in the nodal domain; (a) the ith 

node and its neighbourhoods in the object 
shell, (b) the kth node and its 
neighbourhoods in the base shell. 
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(a)   (b) 

 
Figure 2. The testing & FEA Shell Models; (a) The 

testing model, (b) The FEA model. 
 
Table 1. The testing and FEA frequencies. 

 Test model 
(Hz) 

FEA model 
(Hz) 

Error 
（ %）  f1 22.16 22.18 0.09 

f2 24.29 24.12 0.69 
 
conducted in the structural and earthquake-resistant 
testing center of the school of civil engineering at 
Harbin Institute of Technology in order to validate 
the FEA program. Table 1 lists the first and second 
natural frequencies (f1, f2) obtained from the testing 
and the FEA simulation. Table 1 indicates that the 
FEA frequencies are very close to the lab testing 
ones. 
 
3.2 Database  
 
After validating the FEA program, the database for 
shells shown in Fig. 3 is established as a basic 
component for the LCA method. The database 
consists of two parts:  

(1) The normalized FEA results of the base and 
object shells under unit loading case;  

(2) The normalized FEA (or testing) nodal 
displacements and NDLSED once the base shell has 
become instable.  

 
4 The proposed LCA method 
 
4.1 The LCA model of the shell 
 
The shell can be constructed as a LCA model. The 
LCA is a subclass of cellular automata consisting of 
a lattice of sites on a cylinder evolving according to 
a linear local interaction rule [10]. The shell nodes 
could be considered as the cells of the LCA model. 
The time and spatial expression of the LCA model 
is set to correspond to the sections (1) and (2): 

(1) The linear relationship exists between seismic 
intensity and displacement response of the shell 
before its plastic state. The nodal displacement of 

the shell with viscous damping under harmonic 
excitations [11] can be expressed as Eq. (1): 
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where An is a constant; P0 is loading amplitude; Kn 
is generalized stiffness. If the excitation is in the 
same seismic wavelength but with different 
amplitudes, P01 and P02, the ratio of the nodal 
displacements corresponding to two different 
seismic amplitudes can be given as Eq. (2): 
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Figure 3. The FEA model of the shell; (a) The 
single-layer latticed shell, (b) The single-
layer cylindrical latticed shell. 

 
Eq. (2) indicates that all nodal displacements are 
linearly related to the amplitude of ground motion, 
coinciding with the linear property in the LCA 
mode of the shell. Thus, a node in the state I(i+1) 
can be updated by itself and its neighbourhoods in 
the state I(i): 
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(2) The spatial property of the LCA model has 
existed in the database in which the fine FEA 
simulation has given out an implicit relationship 
between a cell and its neighbourhoods.  
Actually, Eq. (3) also embodies three LCA 
properties, parallelism, locality and homogeneity. 
For the property of parallelism, the state values of 
individual cells can be synchronously updated. For 
the property of locality, the state value of a cell 
depends on the state values of itself and 
neighbouring cells. For the property of 
homogeneity, the same rules can be applied to each 
cell.  
 
4.2 The LCA state value 
 
For nodal displacements, the cell state value in the 
LCA state mode is given as Eq. (4): 
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where Si is the ith nodal (or cell) state value; ui

s is 
the ith nodal displacement under the unit load 
calculated by the FEA; max(ui

s) is the maximum 
among all the nodal displacements; N is the nodal 
number. 
The NDLSED is defined as a nodal domain 
normalization parameter of the logarithmic strain 
energy density. For the ith nodal domain shown in 
Fig. 4, the computational processes can be 
described as follows: 
The strain energy of the element connected to the 
ith node is given by: 
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Figure 4. The ith nodal domain of single-layer 
shell. 

where Ei is the strain energy of the ith element; N is 
the number of integration points; {σ} is the stress 
vector; {εel} is the elastic strain vector; νj is the 
volume of the ith integration point; Ee

pl is the plastic 
strain energy.  
Then, the strain energy density of the ith element 
and the strain energy density of the ith nodal 
domain can be determined: 
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where I j

i is the strain energy density of the jth 
element in the ith nodal domain; I i is the strain 
energy density of the ith nodal domain. 
The NDLSED is  
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nodal domain logarithmic strain energy density in 
the single-layer shell. 
 
4.3 The criterion for matching nodal domain 

similarity 
 
For all the nodal domains in the base shell or the 
object shell, the criterion for matching nodal 
domain similarity is given by Eq. (9) 
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where S[i] refers to the ith nodal state values; Q 
refers to the neighbour nodes of a node; Nobject and 
Nbase are the nodal numbers of the object and base 
shells, respectively; rem(e, 6) is the remainder of 
the integer variables e and a constant integer 6 (the 
nodal number for a nodal domain). Ei(k,e,j) 
represents two processes:  

(1) Finding the minimum of the state value errors  
corresponding to six different orientations of two 

nodal domains, as shown in Fig. 1;  
(2) Finding the minimum of the state value errors 

between one nodal domain in the object shell and 
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all the nodal domains in the base shell. Thus, each 
nodal domain in the object shell can find its similar 
nodal domain on the base domain. 
 
4.4 The criterion for projecting state values of 

DF mode 
 

When the failure of the base shell occurs, the 
normalized nodal displacements uf

base or NDLSED 
log(I i) are called as the formative values of DF 
mode and all of them are composed of the DF mode 
of the shell. Thus, a criterion can be given to project 
the formative values of the base shell to the similar 
nodes in the object shell, as shown by Eq. (10): 
 
 ( ) ( )f f
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where uf

object(i) is the formative value of the ith 
nodal on the object shell. uf

base(k) is the formative 
value of the kth nodal on the base shell. Eq. (10) 
means that the formative values uf

base(i) on the base 
shell are assigned to the similar nodes in the object 
shell. Furthermore, all the formative values uf

object(i) 
of the nodes on the object shell are normalized 
again by Eq. (11): 
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Finally, all the normalized formative values f object 
are composed of the DF mode of the object shell. 
 
4.5 The LCA procedure  
 
Based on the LCA model of the shell, the method 
can be established to predict the DF mode of the 
object shell. Fig. 5 shows the procedure of the LCA 
method:  

Step1. Build the LCA models for both object and 
base shells. Then, the state values in the LCA 
models are obtained from the database;  

Step2. Find the nodal similarity domains between 
the base and object shells, using the state values 
obtained and the rule given by Eq. (9); 

Step3. Construct the DF mode of the base shell 
utilizing the displacement values at the instability  

state of the shell;  
Step4. Map the DF mode of the object shell 

through a criterion given by Eq. (10). 

 
 
Figure 5. The LCA method for predicting the DF 

mode of single-layer shell. 
 
5 Similarity between DF modes 
 
Eq. (12) below is introduced to evaluate the 
similarity between the DF modes of the base and 
object shells. In other words, Eq. (12) is used to 
verify the accuracy of the LCA method: 
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refers to the ith nodal formative value of the object 
shell from the FEA or testing data; fi

P represents the 
ith nodal formative value predicted by the LCA 
method; n is the number of the nodes in the object 
shell. 
 
6 Numerical examples 
 
Figures 6 and 7 give out the calculating results of 
the shells using the LCA method and the fine FEA 
method. Figure 6 shows the dynamic instability 
mode of single-layer latticed shell under harmonic 
ground motion. Figure 7 shows the dynamic 
strength failure mode of the single-layer cylindrical 
latticed shell under TAFT wave. Two cases are 
considered as:  

Case 1. The DF mode of a base shell is used to 
predict the DF mode of the object shells with 
different configurations, for the same dynamic 
loading case;  

Case 2. The DF mode of the base shell under a 
seismic frequency is used to predict the DF mode of 
the same shell under different seismic frequencies.  
From Fig. 6 and Fig. 7, it can be seen:  

Database:  Displacement responses and failure modes of 
single-layer shells simulated by the fine FEA 

The LCA numerical 
model of base shell 

The LCA numerical 
model of object shell 

Finding nodal domain similarity 
between base and object shells 

Map the failure mode 
of object shell 

Criterion for projecting the 
failure mode of base shell 
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(1) The DF modes of the object shells predicted 
by the LCA methodare very close to those simulated 
by fine FEA models;  

(2) The average similarity in these examples is 
91.26%;  

(3) The normalized displacements of both base 
and object shells in their DF states are also close to 
each other. More examples are not shown here due 
to space constraints;  

(4) The LCA method (5sec) spends much less 
computing time than that taken by the fine FEA 
simulation (more than 160h), as verified by the Big-
O notation [13].  
For the LCA method:  
 

 T(n)=O(n2) (13) 
 
For the FEA method: 
 
 T(ne)=n1×n2×n3×n4×n5×n6=O((ne)

6) (14) 
 
where n is the nodal number, n1 is the iterative 
number of mechanical constitutive relations for 
materials; n2 is the integral point on the cross 
section of the elements; n3 is the number of 
elements; n4 is the maximal substeps in each step of 
the input seismic wave; n5 is the input number of 
the seismic wave; n6 is the change number of the 
amplitude of the seismic wave. 
 

     

The dynamic instability  
mode of the base shell 

The dynamic instability  
mode of the object shell 

The dynamic instability 
mode of the object shell 

predicted by LCA method 

Displacements of object 
and predicted shells 

Similarity 

The base and object shells have different ratios of rise-span. 
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The base and object shells have different spans. 
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The base and object shells have different member cross-sections. 
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The base and object shells undergo different frequencies of harmonic ground motions. 
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Note 

The shell is notated based on its span (m), roof weight (×10kg/m2) and ratio of span-rise. 
For D40203a, D: shell shell, 40: the shell span (40 m), 20: the roof weight (200 kg/m2), 3: the ratio 
of the span-rise, a: the cross section of the member.  CPU: i5-2000@ 2.8GHz; Memory: 1.48GHz, 
3.24GB 

 
Figure 6. The dynamic instability modes of shells and comparison of mode similarity. 
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The NDLSED modes of 
the base shells 

The NDLSED modes of 
the object shells 

The NDLSED modes 
predicted by LCA method 

The NDLSED of object and 
predicted shells 

Similarity 

0.5

0.6

0.7

0.8

0.9

1

0.7

0.7

 
S15122 

0.5

0.6

0.7

0.8

0.9

1

 S15123 0.5

0.6

0.7

0.8

0.9

1

0.7

0.7

  

90.05% 

0.5

0.6

0.7

0.8

0.9

1

0.7

0.7

 S15122 
0.5

0.6

0.7

0.8

0.9

1

 S15125 0.5

0.6

0.7

0.8

0.9

1

 

80.4% 

0.5

0.6

0.7

0.8

0.9

1

0.7

0.7

 S15122 
0.5

0.6

0.7

0.8

0.9

1

 S15182 0.5

0.6

0.7

0.8

0.9

1

 

85.09% 

Note 

The shell is notated based on its span (m), roof weight (×10 kg/m2) and ratio of span-rise. 
For S15122a, S: the single-layer cylindrical latticed shell, 15: the longth of the shell (15 m), 12: the 
roof weight (120 kg/m2), 2: the ratio of the span-rise, a: the cross section of the member. 

 

Figure 7. The strength failure modes of shells and comparison of mode similarity. 
 
7 Conclusion 
 
(1) The LCA technique is applicable to modelling 
the configuration of a large-span single-layer shell. 
In the proposed LCA method, the concepts of nodal 
domain and nodal domain similarity as well as the 
criteria for matching nodal domain similarity and 
projecting the formative values of the base shell 
could reveal the relationship between the nodal 
domain similarity and the local working behaviour 
of the shell to an extent. 
(2) The LCA method further explores the 
application of the existing FEA (or testing) results 
and a new way to model the output of the FEA 
simulation. 
(3) The LCA method can save significant time in 
the prediction of the DF mode of the object shell 
when compared with the fine FEA method.     
(4) The LCA method is firstly applied to predict 
the strength failure mode of the single-layer 
shell based on the NDLSED. 
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