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Resistance to antibiotics in bacterial population has widened the
interest of scientific community for development of novel therapeu-
tic compounds. Penicillins and cephalosporins which share the
b-lactam structural moiety form the most abundant group of anti-
biotics on the market. Their recently developed tricyclic analogues
have shown remarkable bioactivity towards broad spectrum of bac-
terial species. In a series of 52 tricyclic carbapenems represented
by the 180’dimensional »spectrum-like« representation we studied
the structure-activity relationships by application of an artificial
neural network. The molecular structure representation by spec-
tral intensity values served as inputs into the counter-propagation
artificial neural network (CP-ANN). SIMPLEX optimization was
carried out to obtain the best ANN model and a genetic algorithm
approach was subsequently used to simultaneously minimize the
number of variables. Thus, a search for the substituents that pre-
dominantly influence the experimental bioactivity was performed.
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The constructed CP-ANN model yielded bioactivity values predic-
tions with a correlation coefficient of 0.88, with their values exten-
ded over 4 orders of magnitude. The list of substituents selected by
our automatic procedure can be compared with the data obtained
by protein crystallography of the b-lactam inhibitors in complex
with D,D-peptidase enzyme.

Key words: QSAR, tricyclic carbapenem derivatives, antibiotic ac-
tivity, articial neural networks, genetic algorithms.

INTRODUCTION

Resistance to antibiotics is currently one of the major issues in modern
therapy of infectious disease.1,2 Since the discovery of penicillin more than
half a century ago the b-lactam structures have played the central role in
the most important antibiotics on the market. The nonselective and abun-
dant use of antibiotics has caused the spread of bacterial resistance to anti-
biotics of penicillin and cephalosporin core structural moieties. Recently dis-
covered carbapenem b-lactams with additional 5,6 or 7-membered ring
fused to the penicillin 5-membered ring as a scaffold which posess interest-
ing and broad spectrum antibiotic activity has prompted us to apply artifi-
cial intelligence methodology to study quantiative structure-activity rela-
tionship in this series in order to get insight into which structural features
of these analogues relate to their bioactivity.

The goal of producing high-affinity ligands to target protein molecules
requires the understanding of relationship between chemical structure and
their properties called structure-activity relationships (SAR).3 Several me-
thods have been instrumental in explicit understanding of SARs, most nota-
bly molecular modeling4,5 and comparative molecular field analysis (COMFA).6

Alternatively, principles of artificial inteligence have been put to valuable
use for such purpose.7 In particular, artificial neural networks as source of a
model for SAR coupled with the concept of evolutionary programming (ge-
netic algorithms) as model optimisation technique has recently been put for-
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Figure 1. Schematic representation of a tricyclic carbapenem. The substituted ring C
is fused to carbapenem nucleus A and B.



ward and used in a variety of examples such as spectroscopy applications,8,9

combinatorial library optimisations for medicinal and organic chemistry10

and SAR in various inhibitor-enzyme systems such as protein tyrosine ki-
nase and thrombin.11,12 In this work we extend the methodology with two
novel algorithmic steps: (i) the spectrum like chemical structure representa-
tion was used to provide a uniform variable dimensionality and enhance the
ease of variable manipulation by uniform length vector like description of
molecules and (ii) SIMPLEX method was used to optimise the ANN model
i.e. the selection of variables was optimized. The genetic algorithm approach
was used in the final step (iii) to reduce the number of variables and obtain
the correlation of substituent position on the molecular scaffold which was
correlated with the bioactivity of the series of analogues. These steps are de-
scribed in more detail in the Methods section below. The resulting ANN mo-
dels and their variable reduction by the use of GA are given in the Results
and Discussion section where we also compare the computed bioactivity val-
ues with their experimental counterparts for the test and control set of com-
pounds which were previously not used in either training or testing proce-
dures.

METHODS

The method used in the present work is described below and consists of the fol-
lowing steps:

Data Set Preparation

A complete search of the CAS Registry database13,14 was first carried out to iden-
tify all tricyclic carbapenems with a measured antibiotic activity.15–37 74 compounds
had data on structure and measured antibiotic activity of a total of 65 different bac-
terial strains was published. The antibiotic activity expressed as MIC (minimal in-
hibitory concentration) and measured for the bacterial strain Clostridium perfring-
ens 615E was chosen as our data base since the bioactivity data were available for
the largest number of, and structurally most diverse set of compounds. In Table I the
biological and structural data on 52 compounds were collated.15–34

Structurally, the compounds belong to 12 different tricyclic skeletons represen-
ted in Figure 2 which have the ring C (see Figure 1) fused to the carbapenem nu-
cleus and are substituted with substituents R1-R6. The fused ring can have a hete-
roatom substituted at various positions of this ring (rings C3-C10). In column 2 of
Table II the value of index i represents the type of ring C as given in Figure 2

Chemical Structure Representation

3D structures of compounds can be alternatively represented by the recently in-
troduced spectral representation.38 Such representation is reversible, unique and
uniform and due to its vectorial bit-like nature is particularly suitable for further
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use in artificial network models and genetic algorithms which require a uniform
number of variables (descriptors) for each chemical structure. The structure of a
molecule with N atoms in three dimensions where N can vary depending on the com-
pound structure is transformed to a m-dimensional vector with components of vari-
able intensity but of constant length m. The intensity is a function of position of a
given atom relative to the chosen origin and charge on the atom. The compounds in
our data set are particularly amenable for use of this representation since a large
part of the molecule is identical in all compounds and the structure of the molecules
in the set relatively rigid. This property is desirable since it simplifies the choice of
the origin and eliminates the need for extensive and error-prone dihedral angle opti-
mization procedures for each compound.

Compound Structure Optimization

A standard AM1 method as available in the computer program package Spar-
tan39 was utilized to compute the minimal energy geometry of all the molecules.
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Figure 2. Schematic representation of 12 different rings C present in our data set of
52 tricyclic carbapenems.
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TABLE I

Antibiotic activity expressed as MIC values in strain C. perfringens 615E for the
data set of 52 tricyclic carbapenems (Refs 15–34). In column 2 the value of index

i represents the type of ring C as given in Figure 2.

No. i
MIC
g mL-1�

R1 R2 R3 R4 R5 R6

1 1 �0.01 H H H H OCH2CH2F H

2 1 �0.01 H H H H OCH2CH2I H

3 1 0.01 H H H H NHCH2-C6H5 H

4 1 0.03 H H H H OCH3 H

5 1 0.03 H H H H OCH3 H

6 1 0.03 H H H H OCH2CH2OCH3 H

7 1 0.03 H H H H OCH2CH2C�N H

8 1 0.03 H H H H OCH2CH2CH2OH H

9 1 0.03 H H H H OCH2CH2N=N+=N– H

10 1 0.03 H H H H OCH2CH2N=N+=N– H

11 1 0.03 H H H H NHCH2-C6H4-p-NO2 H

12 1 0.03 H H H H NHCH2-C6H4-p-SO2-
-NHCH2CH=CH2

H

13 1 0.03 H H H H NHCH(CH3)-C6H4-p-NO2 H

14 1 0.06 H H H H OCH2CH2OH H

15 1 0.06 H H H H OCH2CH2CH2NH2 H

16 1 0.06 H H H H OCH2CH2CH2N=N+=N– H

17 1 0.06 H H H H NHCH2-C6H4-p-F H

18 1 0.10 H H H H H H

19 1 0.10 H H H H N(CH3)CH=NH H

20 1 �0.12 H H H H N(CH3)C(=O)NH2 H

21 1 �0.12 H H H H N(CH3)C(=O)NHC2H5 H

22 1 �0.12 H H H H N(CH3)C(=O)NH(t-Bu) H

23 1 �0.12 H H H H N(CH3)C(=O)NHCH2CH2OH H

24 1 0.12 H H H OCH3 H H

25 1 0.12 H H H H OCH2CH2NH2 H

26 1 0.12 H H H H OCH2CH2NHCH=NH H

27 1 0.12 H H H H OCH2CH2NHC(=N+H)CH3 H

28 1 0.25 H H H H OCH2CH2N(CH3)3 H

29 1 0.50 H H OCH3 H H H

30 1 0.50 H H H H NHCH=NCH3 H

31 1 0.60 H H H H NHCH2-C6H3(m-NO2-p-Cl) H



Mullikan charge distribution was computed in each molecule to supplement the spe-
ctral representation of compounds as described above and in Ref. 38. The width of
lines in the spectral representation of compounds is dependent on atomic charges.

Application of an Artificial Neural Network Yields
a Nonreduced QSAR Model

ANN Training Step

In house written CP-ANN and genetic algorithm packages40 were used for these
tasks.

The spectral values for the m-dimensional vector served as inputs for a coun-
ter-propagation artificial neural network41 (CP-ANN). We have chosen m = 180 in
order to compromise between the number of atoms in the compounds of the series (N
< 60) and the number of variables used for correlation of bioactivity with structure.
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TABLE I (cont.)

No. i
MIC
g mL-1�

R1 R2 R3 R4 R5 R6

32 1 2.00 OCH3 H H H H H

33 1 2.00 H H OCH3 H H H

34 1 2.00 H H CH2CH2CH3 H H H

35 1 4.00 H H CH2CH2OH H H H

36 1 8.00 H OCH3 H H H H

37 2 1.00 H H H OCH3 H H

38 2 1.00 H H H H H H

39 2 2.00 OCH3 H H H H H

40 2 4.00 H H H H OCH3 H

41 2 >32.00 H H H H OCH2CH2OCH3 H

42 9 0.09 H H H H SCH3 H

43 9 0.03 H H H H H H

44 3 0.06 H H H H H H

45 11 0.12 H H H H OCH3 H

46 7 0.25 H H H H H H

47 5 0.50 H H H H H H

48 10 0.50 H H H H H CH2CH=CH2

49 4 1.00 H H H H H H

50 8 1.00 H H H H H H

51 12 1.00 H H H H H H

52 6 2.00 H H H H H H



This method was demonstrated previously to give better results than the similar
back-propagation ANN if the number of items in the database is small as is the case
with a small number of molecules n = 52 in our data set.

The leave-one-out cross-validation (LOO CV) test trained the network using the
data for n-1 compounds and predicted the experimental antibiotic activity value for
the n-th compound. This procedure was repeated n times yielding the list of n pre-
dictions. These predictions were ordered by difference between the experimental and
computed bioactivity D. The first 22 compounds with largest absoute value of � were
put in the training set taking into account the fact that the training set should con-
tain as many compounds as possible to fully cover the entire information space and
the remaining 30 compounds were sequentially stored in training, test and predic-
tion set, respectively. In order to carry out the subsequent genetic algorithm (GA)
procedure the compounds were thus divided into three groups: (i) a training set com-
prising 32 inhibitors, (ii) a test set of 10 inhibitors and (iii) a prediction set of 10 in-
hibitors. The initially removed prediction set provided a means to test the quality of
the final model and did not influence either the determination of CP ANN model pa-
rameters like number of training epochs, number of neurons, maximal and minimal
learning rates, etc., or the next step of the procedure in which the selection of vari-
ables with GA is performed (step (e) below).35

The CP-ANN procedure was performed on the training set of 32 molecules and
the antibiotic activity values in the test set of N = 10 compounds were predicted by
the network as described below. During the training the weights of the winning neu-
ron and close neighbours are corrected in small steps and thus in the last cycle they
are completely adapted to the input object. By training the network we obtained a
model whose prediction ability is determined by checking it with the test objects.

ANN Testing Step

The testing procedure is as follows: each test object X first finds (Figure 3) in the
upper (Kohonen) layer the most similar neuron. The corresponding weight at the po-
sition jx, jy in the lower (output) layer gives the predicted target value.

The difference between target T and the predicted property P is squared and
summed over all objects of the test set to give the PRESS (predicted residual errors
sum of squares) measure of error. The regression equation linking theoretical and
predicted properties is also determined. The correlation coefficient r derived from
this equation represents the quality measure of the proposed model.

Representation Reduction by Use of GA Approach

In the last step of the present algorithm the complete representation of all com-
pounds in the data set was reduced to its most relevant part by the use of a genetic
algorithm.

A genetic algorithm consists of three basic processes mimicking Darwinian evo-
lution: crossover, mutation and selection. In the crossover step, new chromosomes
are generated by mixing those of the parents. In the mutation step, individual bits of
the chromosome are exchanged at random and, in the selection step the best chro-
mosomes are identified for the next round.

This last step should yield the lowest possible number of bits in the compound
vector representation which gives a satisfactory prediction for biological activity for
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each individual compound in the data set. The number of input parameters (180)
representing the spectrum like code determines the length of the chromosome in
bits. In our specific example the 180 components which represent each molecule in
its spectrum-like representation were reduced to a few which provide the maximal
influence on the experimentally determinded antibiotic activity of the compound.

The following selection procedure was implemented: each bit in the allele could
take a value of 0 or 1. A value of 1 was used to assign the spectral intensity value at
a point in the model while the value of 0 described the lack of taking into account
this value in a substituent of the compound.

A pool of 100 chromosomes was tested using a random choice of the points on the
surface. For each chromosome a CP-ANN model was obtained and simultaneously
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Figure 3. Schematic representation of a counter-propagation artificial neural network
(CP ANN) used for predicting biological property (target T) from molecular structure
(X) represented with 180 values of »spectrum like« intensity as described in the text
above. During the training the weights (W) of the winning neuron (the winning neu-
ron is determined with the position (jx, jy) in the Kohonen layer according to the simi-
larity between the object (Xi, i = 1…180) and the neuron's weights (Wjx jyi, i = 1…180))
are adapted step by step, in learning cycles, to the compounds of the object.



the reduction of vector length was performed. These vectors with reduced length in
the training set of compounds were used for training the CP-ANN. The quality of
each such chromosome representation was again determined by PRESS in the test
set. The best chromosomes were crossed over (mutated) and in the new pool of 100
chromosomes the new pattern representation was tested for quality. This procedure
was repeated 200 times and thus in each generation a more representative pattern
was obtained. Finally, the resulting optimized model CP-ANN incorporates the abil-
ity to predict the antibiotic activity of the compound.
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Figure 4. Schematic representation of GA procedure. The 180-dimensional chromosomes
are ordered according to the fitness function obtained from a CP-ANN model (PRESS of bi-
ological activity expressed as log MIC value of 10 test compounds). The cross-over event
is shown on the first two chromosomes. Black and white squares indicate values 1 or 0
for individual choromosomes' compounds (genes). In order to present the difference be-
tween two parent chromosomes which produce two offspring chromosomes the white
genes of one of them were labeled gray. See Ref. 12 and text for additional explanation.



In order to systematically vary the variables which determine the genetic algo-
rithm (size of ANN, the representation length, number of iterations (epochs), speed
of learning, number of generations in the algorithms, choice of bits out of 180 possi-
ble and mutation probability) SIMPLEX optimization was used. This method proved
very useful for simultaneous optimization of a small number of variables.7

Five ANN and GA parameters were adjusted in the course of Simplex optimiza-
tion: number of neurons in the ANN (range from 4�4 to 8�8), learning rate constant
(from 0.1 to 0.9), number of epochs for training (from 160–640), number of starting
bits in each chromosome turned on (from 3–30) and elitist rate (number of survivals
from 3–30). Other parameters were constant: numbers and selection of objects in the
training, test, and control sets for ANN modeling, number of 180-bit chromosomes in
the pool (100), number of generations in each GA run (200), probabilities for muta-
tion (0.005), cross-over was made exactly once at each 180 genes (bits) long chromo-
some.

For each Simplex point, defined by the above five parameters, a complete GA op-
timization consisting of 200 generation of the 100 chromosome pool each having 180
bits was made. The fitness function from which the survival chance of each chromo-
some was calculated was the RMS of the particular CP ANN model determined by
the differences between the predictions and actual activities on the control set of 10
compounds. Each CP ANN model was based on different number of intensities in the
spectrum-like representation. The selection of the intensities is determined by the
bits turned »on« in the chromosome which in turn depends on the cross-over, muta-
tion and selection procedure during the next chromosome pool generation of the GA.

In order to determine one optimization criterion of a single Simplex point 20,000
CP ANN models were generated and tested. For each GA run all CP ANNs have the
same number of neurons, but different numbers of weight. Hence, the number of
weights to be adjusted varied from 3�3�3 = 27 to 3�3�30 = 270 in the case of the
smallest 3�3 ANN to 8�8�3 = 192 to 8�8�30 = 1920 in the case of the largest 8�8
ANN, respectively. To achieve the convergence for each ANN at least 160 epochs of
training containing of 32 spectra were employed.

The GA and ANN computer routines were integrated into a single home made
PC resident Fortran program. Due to its extreme simplicity the Simplex determina-
tion of the parameters for each next point were made by hand. Altogether 252 Sim-
plex points or simplex movements from six different starting positions were tested.
The contraction of simplex close to the local optima was made by a factor of 0.5.45

This means that in the entire optimization procedure about 5,000,000 CP ANN
models were inspected.

RESULTS AND DISCUSSION

Model Optimization Using the ANN Approach

In Figure 5 the spectrum-like representation for is shown for molecule 1
of the data set. The unreduced length of this representation gives the com-
plete chemical structure of the molecule as a 2D plot in which intensities of
each component give the presence or absence of a substituent in given posi-
tion on the tricylic skeleton.
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The selection of most relevant variables for the structure-activity rela-
tionship using a combination of ANN and GA algorithms as outlined above
in the Methods section has two goals: (i) to reduce the dimension of the rep-
resentation vectors (in our case, from 180 to 10–20) and (ii) to correlate the
selected variables with a possible biochemical mechanism underlying anti-
biotic bioactivity of the tricylic carbapenem analogues in the series.

The accuracy of the results shows that this approach can result in a va-
luable description of the relationship between structure and bioactivity.

Figure 6 shows how selection of the training set on the basis of CV-LOO
(leave one out) was performed on the experimental data set of 52 molecules
and with 180 long representation of their structure. In order to select the
compounds for the training set in an optimal way, a compound causing a
large prediction error in LOO CV should be included in the training-set
since it contains structural and property information that is more important
in comparison with other compounds from the data set.

The final model is thus sensitive to the elimination of such unique com-
pounds from the training set. The same division of the compounds into
training and test sets was used to calculate the optimization criterion in the
GA step which was then applied in order to select variables from the 180-di-
mensional structure representation vectors.
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Figure 5. The spectrum-like representation for molecule 1 of the data set (see also
Table I: R5 = OCH2CH2F).



Thus, this intermediate CP ANN model generated from the non-reduced
180 dimensional structure representation provides the proof of concept that
antibiotic activity for compounds in the test set can be predicted with the
reasonable accuracy. It has to be stressed that these results are not describ-
ing the final CP ANN model. The ANN parameters are further changed dur-
ing the GA procedure and these parameters then describe the final CP ANN
model for the reduced representation.

Reducing the Representation Using GA

By application of the genetic algorithm procedure a selection of the vari-
ables (vector components) with the largest influence on the prediction abil-
ity is obtained, i.e. those having the largest influence on antibiotic activity
of the compounds .

The optimization criterion in the GA algorithm was the correlation of
the experimental MIC values for 10 test compounds with those predicted by
a CP ANN model which was trained with 32 compounds. As shown in the
Table II, 12 to 19 variables (denominated as »bits«, see also description of a
genetic algorithm procedure in the Methods section) out of 180 were se-
lected. The corresponding correlation coefficients are also shown in the Ta-
ble II.
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Figure 6. Selection of the training set on the basis of CV-LOO (leave one out) on the
set of 52 molecules.



The best correlation was obtained if the molecular structure was repre-
sented by the 15 variables. This reduced model gave the following statistical
values for the training and test set, respectively:

Rtrain = 0.99, RMStrain = 0.22, Rtest = 0.88, RMStest = 0.68 and

(RMStrain / Rtrain ) � (RMStest / Rtest ) = 0.17 .

Using the resulting reduced representation the final correlation results
are given in Figure 7. The correlation of experimental biological activity
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TABLE II

Summary of reduced representations given by GA procedure for the 20 experi-
ments performed in the present work. The reduced representations are chosen

with 12 to 19 bits from the full spectral length of 180 bits.

No Rtrain RMStrain Rtest RMStest Bits
RMS

R
RMS

R
train

train

test

test

�

1 0.990 0.220 0.876 0.678 15 0.17

2 0.995 0.196 0.775 0.802 12 0.20

3 0.968 0.394 0.923 0.520 16 0.23

4 0.996 0.162 0.648 0.979 13 0.25

5 0.989 0.227 0.788 0.972 12 0.28

6 0.901 0.909 0.943 0.437 16 0.47

7 0.981 0.575 0.818 0.911 16 0.65

8 0.981 0.575 0.818 0.911 17 0.65

9 0.981 0.577 0.818 0.910 16 0.65

10 0.956 0.534 0.800 1.012 14 0.71

11 0.997 0.205 0.926 3.628 16 0.81

12 0.980 0.563 0.787 1.187 14 0.87

13 0.998 0.159 0.807 5.183 17 1.02

14 0.993 0.257 0.939 4.298 19 1.19

15 0.400 1.176 0.926 0.507 14 1.61

16 0.484 1.149 0.915 0.690 13 1.79

17 0.643 1.009 0.970 1.541 15 2.49

18 0.511 1.183 0.988 1.714 14 4.01

19 0.524 1.559 0.402 1.784 17 13.20

20 0.516 1.253 0.212 1.331 15 15.17



with computed bioactivity is shown for the training set (N = 32, symbol �,)
and for the test set (N = 11, symbol �). The final predictions for the non-bi-
ased set of 10 compounds (prediction set) which were excluded from any op-
timization since the start of the procedure are given in Figure 7 with sym-
bols �.

The reduced representation is expressed as a chromosome with the best
fit value given by the PRESS value. In our case the chromosome with the
best fit value of 0.17 has 15 genes turned to 1, which means that 15 of the
selected variables contain a large amount of information for predicting the
biological activity of the compounds under investigation. These 15 variables
were analysed and found to originate from atoms present in substituents at
position R4 and R5. Not all substituents determined by GA from the reduced
representation were represented with equal frequency. Those that appeared
the most frequently in the reduced representations (the data are given for
the best 7 representations) are shown in Figure 8.

Thus, by conversion of the most populated angular frequencies in the
spectrum-like structure representation yielded by this computational proce-
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Figure 7. Correlation between computed and experimental bioactivity for the data
set of 52 tricyclic carbapenems: predicted values are given by using the model based
on the reduced representation obtained by the GA (see also Table II).
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Figure 8. The most relevant directions with respect to the skeleton of the tricyclic
carbapenem (coordinate system is shown in the insert). Seven best representations
are shown. The important directions are in the 1st (0–90 degrees) and 4th (270–360
degrees) quadrant. See text for discussion.

Figure 9. Molecule 41 with best bioactivity MIC > 32.0 �mol in the series as repre-
sented with the spectral-like and reduced representation obtained by the GA proce-
dure.



dure into three dimensional molecular structure we obtain a valuable in-
sight into structure-activity relationship of tricyclic carbapenems. Molecule
41 with best bioactivity MIC > 32.0 �mol in the series as represented with
the spectral-like and reduced representation obtained by the GA procedure
is shown in Figure 9. The substituent OCH2CH2OCH3 in position R5 covers
spectral directions in the 1st and 4th quadrant and the position of this sub-
stituent in three-dimensional space is shown in Figure 8 above.

Furthermore, such procedure appears to provide a valuable model for
design of novel tricyclic carbapenems based on correlating the experimental
antibiotic bioactivities with their structure.35,45

CONCLUSIONS

We have used a variety of the artificial inteligence armory to obtain the
model for correlation of experimental antibiotic bioactivity in a series of 52
tricyclic carbapenems with their threedimensional structure. A combination
of ANN and GA based on spectrum-like representation of molecules in the
data set yields good statistical values for this description. Such a model can
be used for design of novel inhibitors of the target enzyme in question, D,D
peptidase, whose active site is inhibited in order to stop the formation of the
outer cell membrane in the bacterial cells.
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ABBREVIATIONS

ANN – artificial neural network
CP – counter-propagation
GA – genetic algorithm
PRESS – predicted residual errors sum of squares
MIC – minimal inhibitory concentration
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Kvantitativni odnos strukture i aktivnosti troprstenih karbapenema:
Primjena metoda umjetne inteligencije za predvi|anje bioaktivnosti

Mira Lebez, Tom [olmajer i Jure Zupan

Rezistencija bakterija na antibiotike privukla je pa`nju znanstvenika koji rade
na razvoju novih terapeutskih spojeva. Najve}a skupina antibiotika na tr`i{tu su
penicilini i cefalosporini koji imaju istu b-laktamsku strukturnu jedinicu. Njihovi ne-
davno otkriveni troprsteni analozi pokazali su izvanrednu bioaktivnost prema {iro-
kom spektru bakterijskih vrsta. U nizu od 52 troprstenih karbapenema prikazanim
pomo}u 180'dimenzionalne »spectru nalik« reprezentacije autori su studirali odnos
strukture i aktivnosti s pomo}u neuronske mre`e. Prikaz molekulske strukture s po-
mo}u vrijednosti spektralnih intenziteta poslu`ili su kao ulazni podatci za neuron-
sku mre`u (CP-ANN). SIMPLEX optimizacija provedena je da se dobije najbolji ANN
model, a zatim je upotrijebljen geneti~ki algoritam za simultano smanjivanje broja
varijabli. Tako je provedeno traganje za supstituentom koji prete`no utje~e na ekspe-
rimentalnu bioaktivnost. Dobiveni CP-ANN model predvi|a bioaktivnosti s koefici-
jentom korelacije od 0,88, u rasponu vrijednosti od preko 4 reda veli~ine. Lista sups-
tituenata koju su autori dobili njihovim automatskim postupkom usporediva je s
podatcima dobivenima proteinskom kristalografijom b-laktamskih inhibitora u kom-
pleksu s enzimom D,D-peptidazom.
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