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In a recent work �Chem. Phys. Lett. 333 (2001) 319–321� Nikoli},
Trinajsti}, and Randi} put forward a novel modification mW of the
Wiener index. We now show that mW possesses the basic properties
required by a topological index to be acceptable as a measure of the
extent of branching of the carbon-atom skeleton of the respective
molecule (and therefore to be a structure-descriptor, potentially ap-
plicable in QSPR and QSAR studies). In particular, if Tn is any
n-vertex tree, different from the n-vertex path Pn and the n-vertex
star Sn, then mW(Pn) < mW(Tn) < mW(Sn). We also show how the con-
cept of the modified Wiener index can be extended to weighted mo-
lecular graphs.

Key words: Wiener index, modified Wiener index, weighted modi-
fied Wiener index, branching, chemical graph theory.

INTRODUCTION

In connection with QSPR and QSAR studies, hundreds of molecular-
structure-descriptors have been considered in the chemical literature.1

Many of these are defined via the molecular graph2,3 and are usually re-
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ferred to as topological indiced, TIs.2,4–7 The Wiener index W (= the sum of
distances between all pairs of vertices of the molecular graph) is the oldest
topological index.8 Its applicability for predicting physico-chemical and
pharmacologic properties of organic compounds is well documented and was
outlined in quite a few reviews;9–12 there is also a recent survey13 on the
mathematical research on W.

In the last 10–15 years a remarkably large number of modifications and
extensions of the Wiener index was put forward and studied by mathemati-
cal chemists.14–33 In the case of acyclic systems many of these modifications
coincide with the original Wiener index14–20 or are linearly related with
it.21–26 No surprise that numerous relations exist between these distance-
based TIs.34–38

The »modified Wiener index« mW, recently proposed by Nikoli}, Trinajs-
ti}, and Randi},33 has a few noteworthy properties, which distinguish it
among the plethora of other TIs of the same kind:

(i) mW is not integer-valued (in contrast to practically all other Wiener-
type indices);

(ii) mW is an additive function of edge-contributions;

(iii) the relative magnitude of these edge-contributions is in harmony
with chemical intuition (in contrast to what is found in the case of the origi-
nal Wiener index).

In this paper we add to this list also the following:

(iv) mW correctly reflects the extent of branching of the carbon-atom ske-
leton of an alkane;

(v) mW can in a natural manner be extended to weighted molecular
graphs (representing chemical species different from hydrocarbons).

For trees, the modified Wiener index is defined as follows:33

mW = mW(G) =
1

1 2n e n ee ( ) ( )�
� (1)

where n1(e) and n2(e) are the number of vertices lying on the two sides of the
edge e, and the summation goes over all edges of the respective (acyclic) mo-
lecular graph. Recall that if this graph has n vertices, then n1(e) + n2(e) = n
and the number of edges is n–1. Formula (1) should be compared with rela-
tion (2):

W = W(G) = n e n e
e

1 2( ) ( )�� (2)
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which was discovered already by Wiener8 and which is applicable to all
trees, but not to cycle-containing graphs.

Eq. (1) may be understood as a sum of increments, each associated with
a particular edge of the molecular graph. Clearly, the contribution of the
edge e, denoted by mWe = mWe(G), is equal to 1/�n1(e)n2(e)�.

The quantities n1(e) and n2(e) may be defined in a somewhat more for-
mal manner:18,35 Let G be an arbitrary graph and let its edge e connect the
vertices u and v. Then n1(e) is the number of vertices of G whose distance to
u is smaller than the distance to v. Similarly, n2(e) is the number of vertices
of G whose distance to u is greater than the distance to v. If so, then the
modified Wiener index, Eq. (1), is a well-defined quantity for all graphs G.

In the work33 as well as in this paper the considerations will be restric-
ted to trees.

There is no general agreement about what »branching« is and how the
extent of branching of the carbon-atoms skeleton of an organic molecule can
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Figure 1. The trees encountered in Eqs. (3) and (4) and in Theorems 1 and 2. The
star and path graphs depicted are S9 and P7.



be represented by some scalar quantity; more details on this matter can be
found elsewhere.39–42 Anyway, certain conditions that a measure of branch-
ing must obey are out of dispute.

First, in order that a topological index TI be acceptable as a measure of
branching it must satisfy the inequalities

TI(Pn) < TI(Tn) < TI(Sn), n = 5, 6, ... (3)

where Pn and Sn are the n-vertex path graph and star, respectively (see Fig-
ure 1), and where Tn is any n-vertex tree, different from Pn and Sn. Indeed,
among n-vertex trees Pn is the least branched and Sn the most branched
species.

Second, if T and T* are graphs whose structure is depicted in Figure 1,
then one requires that the inequality

TI(T*) < TI(T) (4)

holds irrespective of the actual form of the fragment R. This is because the
vertex v0 in T* is more branched (has greater degree) than the vertex v0 in T
whereas the other structural details in T and T* are the same.

Of course, if in Eqs. (3) and (4) all < signs are exchanged by >, then the
respective TI is equally suitable to measure branching.

In what follows we show that Eqs. (3) and (4) are obeyed by mW.

PROOF OF EQ. (3) FOR THE MODIFIED WIENER INDEX

Theorem 1. If Tn is an arbitrary tree on n vertices, different from Pn and
Sn, then

mW(Pn) < mW(Tn) < mW(Sn) (5)

holds for all n � 5.

Proof. (a) The inequality mW(Tn) < mW(Sn)

Any n-vertex tree has n – 1 edges and, consequently, there are n – 1 sum-
mands on the right-hand side of Eq. (1). Each of these summands is of the
form 1/�p(n–p)� for some p = 1, 2,..., � �n / 2 . Clearly, p is the number of verti-
ces lying on one side of the respective edge.

Now, an elementary result from arithmetics reads:

1 1 2 2 3 3
2 2

� � 	 � � 	 � � 	 � � � 	 


�

�

��
� �







��
( ) ( ) ( )n n n

n n
. (6)
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Bearing this in mind, we see that if there is a tree, such that p = 1 for all
of its edges, then this tree will necessarily have maximal mW-value. It is im-
mediate to realize that the star is such a tree, and that no other tree has
this property.

(b) The inequality mW(Pn) < mW(Tn)

Suppose that the relation (4) is obeyed by the modified Wiener index,
i.e., that mW(T*) < mW(T) holds for all trees (cf. Figure 1). In any n-vertex
tree T, except the path graph Pn, there is a branching vertex v0 (a vertex
whose degree is greater than two), to which (at least) two unbranched
chains are attached. The transformation T � T* decreases the degree of
vertex v0 and decreases the number of unbranched chains attached to it. In
the same time, it also diminishes the value of mW. If T* = Pn, then we are
done. If T* � Pn, then T* must possess another branching vertex to which
(at least) two unbranched chains are attached and the previous transforma-
tion may be repeated. By it the value of mW will further be diminished. Ulti-
mately we arrive at the tree without branching vertices i.e., at Pn, which
therefore has the minimal value of the modified Wiener index.

Thus in order to complete the proof of the left-hand side inequality in
Eq. (5), it remains to demonstrate that Eq. (4) holds for the modified Wiener
index.

PROOF OF EQ. (4) FOR THE MODIFIED
WIENER INDEX

Theorem 2. If T and T* are trees with equal number (n) of vertices,
whose structure is shown in Figure 1, then for any a > 0 and b > 0, such
that a < n – a – b, and for arbitrary R,

mW(T*) < mW(T). (7)

In any tree T, different from Pn it is possible to find a vertex v0 (cf. Fig-
ure 1), with properties required in the statement of Theorem 2.

Proof. Label the vertices of the trees T and T* as indicated in Figure 1.
Consider the difference mW(T*) – mW(T). Bearing in mind Eq. (1) and the
structure of the trees T and T*, we see that the contributions of all edges
will cancel out, except of the edges involving the vertices v0, v1, v2,..., va.
Thus, if ei is the edge connecting the vertices vi–1 and vi, then

mW(T*) – mW(T) = � �m
e

m
e

i

a
W W

i i
( *) ( )T T�

�
�

1

. (8)
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Inspection of Figure 1 readily yields

mWei
(T*) =

1
1 1( )( )a b i n a b i� � � � � � �

mWei
(T) =

1
1 1( )( )a i n a i� � � � �

.

Now, if

(a – i + 1)(n – a + i – 1) < (a + b – i + 1)(n – a – b + i – 1) (9)

holds for all values of i = a, a – 1,..., 1, then the relation (7) will follow from
(8). For i = a, i = a – 1,..., i = 1 relation (9) reduces to

1(n – 1) < (b + 1)(n – b – 1)

2(n – 2) < (b + 2)(n – b – 2)

......

a(n – a) < (a + b)(n – a – b).

In view of Eq. (6), the first and second among the above inequalities are
certainly obeyed. In order that all these inequalities be obeyed it is neces-
sary that also the last one holds. This will happen if a < n – a – b, i.e., if the
branch which is moved in the transformation T � T* has fewer vertices
than the fragment R.

Inequalities (9) are tantamount to

mWei
(T) > mWei

(T*), i = 1, 2, ..., a

which in view of (8) imply Eq. (7).

This completes the proofs of both Theorem 2 and Theorem 1.

WEIGHTED MODIFIED WIENER INDEX

A vertex-weighted graph Gw is a graph in which to every vertex v a posi-
tive real number w(v) is assigned. Then the weighted modified Wiener index
of such a weighted graph is defined as

mW(Gw) =
1

s e s eu ve ( ) ( )
� (10)
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where e is an edge connecting the vertices u and v, su(e) is the sum of weights
of the vertices of Gw lying closer to u than to v, sv(e) is the sum of weights of
the vertices of Gw lying closer to v than to u, and the summation goes over
all edges of Gw.

The definition used here is clearly a generalization of the definition of
the (non-weighted) modified Wiener index.33 More precisely, if the weights
of all vertices are equal to unity, then mW(Gw) coincides with the ordinary
modified Wiener index.

Theorem 2 can now be generalized to vertex-weighted trees. For a set of
vertices A let w(A) be the sum of weights of all vertices from A.

Theorem 3. Let the trees T and T* be defined and labeled as before (see
Figure 1). Let A = �v1, v2,...,va� and B = �u1, u2,...ub� be the vertex sets of the
two paths attached to the vertex v0 and C the vertex set of the fragment R,
formally C = V(T) – A – B. Then

mW( )Tw* < mW(Tw) (11)

provided w(A) < w(C).

Proof. Recall the labelling of the vertices of the trees T and T* as indi-
cated in Figure 1. As in the proof of Theorem 2 consider the difference
mW(T*) – mW(T). From Eq. (10) and the structure of the trees T and T*, we
see that the contributions of all edges will cancel out, except of the edges ei

connecting the vertices vi–1 and vi for i = 1,2,...,a. Thus,

mW( )Tw* – mW(Tw) = m
e

m
e

i

a
W W

i i
( ) ( )T Tw w* ��

�



���

�
1

. (12)

Let the sum of weights of all vertices be

S w v
v w

�
�
� ( )
V(T )

.

Clearly, for ei in Tw we have (introducing the symbols �i for brevity)

s e w vv i j
j i

a

ii
( ) ( )� �

�
� �

s e S s e Sv i v i ii i�
� � � �

1
( ) ( ) �

while for edges ei in Tw*

s e wv i ii

* ( ) ( )� �� B

s e S wv i ii�
� � �

1

* ( ) ( )� B.
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The contribution of the edge ei can now be written as

m
e w

i i

W
w S wi

( *)
( ( ))( ( ))

T
B B

�
� � �

1
� �

m
e w

i i

W
Si

( )
( )

T �
�

1
� �

.

Now, if

� � � �i i i iS w S w( ) ( ( ))( ( ))� 	 � � �B B (13)

holds for all values of i = 1,2,...,a, then the relation (11) will follow from (12).
The values on the left and right sides of the inequality (13) can be seen as
the values of the real function f (x) = x(S – x). From elementary properties of
the quadratic function f (i.e., x(S – x) < z(S – z) if and only if x < z < S – x), it
follows that Eq. (13) is obeyed for all i provided �i < �i + w(B) < S – �i. As
0 < �i � w(A), a sufficient condition reads w(A) + w(B) < S – w(A), or w(B) <
S – w(A) – w(B). Therefore, Eq. (11) holds if w(B), the weight of the branch
which is moved in the transformation Tw � Tw* , is less than w(C) = S – w(A)
– w(B), the weight of the fragment R.

This concludes the proof of Theorem 3.

Remark. Extremal cases over all trees on a given set of n vertices with
prescribed weights cannot always be obtained using only the transformation
considered in this paper. It is not difficult to observe that among weighted
stars Sn, the extremal species is the star in which the central vertex has the
greatest weight. Among weighted paths the extremal value of mW(Pw) is at-
tained for Pw being the path with maximally weighted end-vertices. (More
precisely, such a path can be constructed by ordering weights, and then
putting the weights in this order as far from the center as possible.)
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SA@ETAK

Potvrda modifikacije Wienerova indeksa

Ivan Gutman i Janez @erovnik

U nedavnom su ~lanku (Chem. Phys. Lett. 333 (2001) 319–321) Nikoli}, Trinajs-
ti} i Randi} predlo`ili novu modifikaciju, mW, Wienerova indeksa. U ovom je ~lanku
pokazano da mW posjeduje osnovna svojstva koja mora imati topologijski indeks da
bi bio prihvatljiv kao mjera grananja ugljikova kostura pojedine molekule (pa da bi
bio primjenjiv u QSPR i QSAR modeliranju). Ako je Tn bilo koje stablo s n ~vorova,
koje se razlikuje od staze Pn s n ~vorova i zvijezde Sn s n ~vorova, tada je mW(Pn) <
mW(Tn) < mW(Sn). Tako|er je pokazano da se koncepcija o modificiranom Wienerovu
indeksu mo`e pro{iriti na vagane molekulske grafove.
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