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Summary 

This paper presents the results of a study investigating methods of wave directionality 
based on wavelet transform. In part 1 of this paper, the theoretical background and 
characteristics of directional wavelet were discussed. Morlet wavelet and Cauchy wavelet 
were examined to test their efficiency in detection of directionality in signals. These wavelets 
were tested on numerical images which were considered to describe the basic characteristics 
of directionality of ocean waves. 
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1. Introduction 

The importance of understanding wave directionality has long been recognized in the 
field of ocean-related science and engineering. It could be a life and death issue to some ship 
operators. For example, a ship operating in the following sea could lead to dangerous situation 
by Paulling (1975) [1] and Renilson (1981) [2].The present authors try to propose a scheme 
which can detect directionality by utilizing directional wavelets by making use of video 
images of waves. To find out the directionality of ocean waves, the necessary data is just one 
frame of video images for the proposed scheme. This simplicity in the input data is possible 
by making use of a directional wavelet. The directional wavelet can be constructed by 
introducing rotation to one of the continuous wavelets. The introduction of rotation makes it 
possible to detect edges and directions in the images to be analyzed. The two-dimensional 
directional wavelet was fully studied by Antoine and Murenzi (1996) [3]. The idea of 
detection of directionality in signals by using directional wavelet has been studied by wavelet 
researchers, Antoine et al.(1999) [4], and Antoine and Murenzi (1996) [3,5]. They illustrated 
the usefulness of angular representation of the continuous wavelet transform (CWT) on the 
problem of disentangling a train of damped plane waves. 

Use was made of directional wavelet to visualize the two dimensional turbulent flow 
around the obstacle by Wisnoe et al. (1993) [6]. The research on texture orientation was done 
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by directional wavelet by Rao and Schunck et. al. (1991) [7]. Multi-directional wavelet was 
proposed by simply superposing the directional wavelet by Watson and Ahumada (1989) [8]. 

Present study adopted the Morlet wavelet and Cauchy wavelet as directional wavelets. 
The Morlet wavelet was fully examined to see its usefulness in detection of directional 
features [3]. It was demonstrated that Cauchy wavelet has excellent angular selectivity. The 
preset paper is organized as follows. The explanation about the CWT will be given in chapter 
2. The description about the directional wavelet will be followed by the theoretical 
explanation on Morlet and Cauchy wavelet. Then, these wavelets will be tested on the 
numerical images which are intended to show some characteristics of water waves. Finally, 
conclusion will be drawn. The applications of the Morlet wavelet and Cauchy wavelet to the 
more complicated numerical data, wave images taken from small wave flume, river wave 
images, and ocean wave images will be presented in Part 2 of this paper. 

2. Continuous wavelet transforms 

The wavelet transform has been successfully applied to many fields, especially in signal 
and image processing by Meyer (1991) [9], Grossman (1985) [10], and Mallat (1989) [11]. 
Let’s begin with the one-dimensional case of the CWT. The CWT of a signal ( )s t  is given by 

*1( , ) ( )s
t bW a b s t dt

aa
ψ

∞

−∞

−⎛ ⎞= ⎜ ⎟
⎝ ⎠∫ , (1) 

Where ψ  is the wavelet function, a  is the scaling parameter, and b  is the transform 
parameter, *  represents a complex conjugate. It can be stated that the CWT is the sum over all 
time of real signal ( )s t  multiplied by the scaled, shifted wavelet function. The parameter a  
and b  vary continuously in the case of CWT. 

A one-dimensional CWT can be easily expanded to a two-dimensional CWT. Its 
formulation is given by 

1 * 1( , ) ( ( )) ( )b x b x xsW a a a s dψ− −= −∫ , (2) 

where b  is the translation parameter and 0a >  is the dilation parameter. The bold-faced 
letters represent vectors in this paper. Assume that ( )xs  is a square integrable function, i.e., 

2 ( )x xs s d= < ∞∫ , (3) 

where  denotes the norm. ( )xs  usually represents the grey level of each pixel in image to 
be processed. The results of a two-dimensional CWT are a function of three parameters, while 
the input is two-dimensional. This makes the analysis versatile. 

 

3. Directional Wavelets 

Rotation is introduced to detect directionality in the signal, as shown below 
1 * 1( , , ) ( ( )) ( )b x b x xsW a a a r s dθθ ψ− −

−= −∫ , (4) 

where - ( cos - sin , sin cos )r x y x yθ θ θ θ θ= +  at 0 2θ π≤ < . 
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By introducing the rotation parameter, the wavelet function now has translation, 
rotation, and dilation. 

We can see that the right hand side of equation (4) is now a function of direction in 
addition to the translation and dilation. Directionality can be introduced on the continuous 
wavelets like Morlet wavelet, multidirectional wavelet, and Cauchy wavelet [3]. The 
directional characteristics of Morlet wavelet and Cauchy wavelet will be described and tested 
later in this paper to see which one is an efficient tool in detecting the directionality of signals. 

The wavelet transform in the wave number domain with the rotation is written as 
follows 

^ ^
( , , ) *( ( )) ( )b kb k k ki

sW a a e r s dθθ ψ⋅
−= ∫ . (5) 

The definition of r θ−  can be found below the equation (4). In the light of Parseval’s 
theorem, the wavelet transform can also be done in the frequency domain. 

 

3.1 Morlet wavelet 

The formulation of Morlet wavelet can be written as 
2

2
0 0

1
/24 2( ) ( )

t
i tt e e eω ϖψ π

− −− −= − . (6) 

The seconded term is added to satisfy the so-called admissibility condition. However, 
for large values of 0ω  the correction term is numerically negligible. Thus, the Morlet wavelet 
can be approximated by the following  

2

0

1
4 2( )

t
i tt e eωψ π

− −−= . (7) 

A Fourier transform of the above wavelet is of the following form 
2

0( )1
4 2( ) e

ω ω

ψ ϖ π
−

− −
= , (8) 

where ( )ψ ϖ  represents the Fourier transform of ( )tψ . 
 

 
Fig. 1 Real and imaginary part of ( )tψ  
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Fig. 2 Fourier transform of ( )tψ  

Figure 1 shows the real and imaginary parts of the Morlet wavelet. Its Fourier transform 
is shown in figure 2. Figure 2 show that the frequency domain is quite confined to a certain 
range. This property can be useful when we evaluate the wavelet transform because the 
integral range can be easily determined. This property was utilized in all the computations in 
this paper.  

Let’s examine the influence of rotation by using the Morlet wavelet without the 
correction term, as follows, 

1 2 2

0

1 ( )
2( ) k xx

x yie e
ε

ψ
−− +⋅= , (9) 

where 0k  is a wave number vector [rad/m, rad/m] and 1ε >  is an anisotropy parameter. Let’s 
try to examine how these parameters affect the shape of the Morlet wavelet. The first example 
was done for 

( 0 , 5 . 6 )k =
, 1ε = , and 0θ = ° .  

(a) (b) 

(c) (d) 
Fig. 3 Morlet wavelet : 0 (0,5.6), 1, 0k ε θ= = = . 
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(a) (b) 

(c) (d) 
Fig. 4 Morlet wavelet : 0 (0,5.6), 10, 45k ε θ= = = . 

 
 

(a) (b) 

(c) (d) 
Fig. 5 Morlet wavelet : 0 (0,11.2), 10, 45k ε θ= = = . 
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(a) (b) 

(c) (d) 
Fig. 6 Morlet wavelet : 0 (11.2,11.2), 10, 45k ε θ= = = . 

 
The real and imaginary parts of the transformation are shown in figures 3(a) and 3(b). The 
phase and magnitude in 3-dimensional plot are shown in figures 3(c) and 3(d). Since 1ε = , 
the base of the convex cone is circle. For (0,5.6)k = , 10ε = , and 45θ = °  values, the results 
are presented in figure 4. It can be seen that the effective base of the Gaussian amplitude is 
changed from circular form to elliptic shape as ε  increases. The base now became narrowed. 
The base of the wavelet has been directed in 45°. Let’s double the y-component of the wave 
number, i.e., (0,11.2)k = . The results are shown in figure 5. Since wave number is doubled, 
the wave length in the signal is reduced by half. Thus, by increasing the magnitude of the 
wave number, one can achieve a finer angular resolution. 

The plot for (11.2,11.2)k = , 10ε = , and 45θ = °  is shown in figure 6. The wave form 
for 45θ = °  is rotated again by 45° due to the orientation in the wave number, which yields a 
90°  total phase. However, the Gaussian amplitude still remains at 45θ = ° . Thus we can select 

0(0, )k k=  since taking only the y-component does not result in the loss of its main directional 
characteristics. Reducing one parameter greatly facilitates the analysis. The expression for 

( )xψ without the x-component of the wave number which is used in the present study is given 
by 

1 2 2

0

1 ( )
2( )x

x yik ye e
ε

ψ
−− +

= . (10) 

What we have seen in the above can be verified in the wave number domain as follows. 
The Fourier transform of the Morlet wavelet is  

2 2
0

1( ) exp( ( ( ) ))
2 x yk k kψ ϖ ε ε= − + − . (11) 
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Fig. 7 Fourier transform of 2-D Morlet wavelet. 

 

Its shape is shown in figure 7 in solid line when ε  and 0k  are taken to be 5.6 and it is 
rotated by 45° . Another line presented in the same figure is the case when 0 11.2k =  and 

10ε = , and rotated by 135° . As can be seen from figure 7, the base of the convex cone 
becomes narrow when ε  increases. By increasing the wave number, one can get more 
tightened base of the cone as we have seen. This will definitely helpful in finding finer 
directionality. However, the amplitude of the cone decreases. This can be easily seen when we 
take a close look at equation (11). The increase of the wave number yields the decrease in the 
functional value due to the presence of the negative sign in the exponent. It means that merely 
increasing the wave number does not always improve the ability to detect the directionality in 
the signals. 

 

3.2 Cauchy Wavelet 

Cauchy wavelet is an alternative tool to the Morlet wavelet in terms of directional 
selectivity. A very readable reference about Cauchy wavelet was published by [5]. Most of 
the notations presented below are adopted from that reference. Let ( , )C C α β≡  be the convex 
cone confined by the two unit vectors eα , eβ , where α β< , β α π− < . The axis of the cone 

is ( )/2eαβ α βζ += . 

The convex cone can be further defined by 

{ }
{ }

2

2

( , ) : arg( )

            : 0

k k

k k ζ e ζ e ζ

C R

R αβ α αβ β αβ

α β α β= ∈ ≤ ≤

= ∈ ⋅ ≥ ⋅ = ⋅ >
, (12) 

where k  represents the wave number vector. We need to introduce the convex dual cone as 
follows 

~ ~ ~
2 ' '( , ) { , 0, ( , )}C C k R k k k Cα β α β

→ →→ →

≡ = ∈ ⋅ > ∀ ∈ , (13) 

xk

yk
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where 
~ ~

/ 2, / 2β α π α β π= + = − . It can be deduced sin( )e e e eα βα β β α
→ → → →

⋅ = ⋅ = − . 

The fact that performing the transformation in the Fourier transform is very convenient 

was mentioned previously. For any 
~
Cη∈ , the Fourier transform of the Cauchy wavelet can 

be written  

{ , }^ ( ) ( ) , ( , )( )
0,

C l m k

lm
k e k e e k Ck

otherwise

η η
α β α βψ

→
− ⋅→ ⎧ ⎫⋅ ⋅ ∈⎪ ⎪= ⎨ ⎬

⎪ ⎪⎩ ⎭
. (14) 

With these notations in mind, the mathematical form of the Cauchy wavelet can be 
written as 

[ ]
[ ]

12
( , )

11

sin( )
( ) ! !

2 ( ) ( )

l ml m
C

im ml

ix l m
x i e x i e

η

α β

β α
ψ

π η η

+ ++ +

++

−
=

⎡ ⎤+ ⋅ + ⋅⎣ ⎦
, (15) 

where ,l m N∈ , N  represents the integer. If l m= , the convex cone is symmetric with respect 
to the axis of the cone. Then the equation (15) can be written as 

[ ]
[ ]

2 11
( , ) 2

1

sin( )( 1)( ) ( !)
2 ( ) ( , )( )

mm
C

mm mx m
x i x i

η β α
ψ

π η σ α β η

++

+

−−
=

+ ⋅ +
, (16) 

where  

cos cos sin( )
( , )

sin( ) sin sin
α β α β

σ α β
α β α β

+⎛ ⎞
= ⎜ ⎟+⎝ ⎠

. (17) 

Let’s examine the functional shape by taking some numerical values for these 
parameters. For 1 (0, / 2)C C π= , /4 (1,1)eπη = = , and 1l m= = , the equation (16) becomes 

1( )
11 2 2

1 1 1( )
2 ( ) ( )

C x
x i y i

ψ
π

=
+ +

. (18) 

This is a very simplified form of the equation. However, this explains us the reason why 
this wavelet is called Cauchy wavelet, since each term is the derivatives of the Cauchy kernel 

1( )z i −+ . Figure 8 shows the functional shape of the wavelet. It is directed 45° as one can 
imagine. Let’s take 4l m= = . The equation for these parameters becomes 

1

5
( ) 2
44 5 5

( 1) 1 1( ) (4!)
2 ( ) ( )

C x
x i y i

ψ
π

−
=

+ +
 (19) 

The functional shape is shown in figure 9. When we compare the figures 8 and 9, we 
can notice that the larger the values of l  and m , the faster the functional values increases. 

To see the asymmetric case of the wavelet, let’s take 2l = , and 4m= . We can see the 
asymmetric shape of the functional form in figure 10. For 10α = − ° , 10β = ° , the functional 
shape is presented in figure 11. Now the convex cone can have more directional selectivity 
due to its narrow area of the cone. 
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Fig. 8 The functional shape of the Cauchy wavelet: 0 , 90 , 45 , 1, 1l mα β θ= = = = =  

 
Fig. 9 The functional shape of the Cauchy wavelet: 0 , 90 , 45 , 4, 4l mα β θ= = = = =  

 
Fig. 10 The functional shape of the Cauchy wavelet: 0 , 90 , 45 , 2, 4l mα β θ= = = = =  

 
Fig. 11 The functional shape of the Cauchy wavelet: 10 , 10 , 0 , 4, 4l mα β θ= − = = = = . 
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4. Comparison of the two directional wavelets 

Let’s examine the efficiency of these wavelets on very simple numerical signals. The 
first signal to be analyzed is shown in figure 12(a). The width of this simple signal was 
chosen far smaller than the length of the convex cone of the wavelets. The results computed 
by the Morlet wavelet and Cauchy wavelet are shown in figures 12(b), and 12(c), 
respectively. The results are presented in polar form of 1 ( , , )0a S a θ−  in coordinates 

1
0( , / 2)k a θ π− + . The / 2π   is added to represent the incident angle of the propagating wave 

while the signals are inclined to0° . As one can imagine that the peaks of the results of the 
transformation occur at 90°  and 270°. We used 10α β= = °  for an angular envelope which 
was recommended by [5]. Thus, when it comes to the Cauchy wavelet in this study, 

10α β= = ° , and 4l m= =  were used. We need to set a threshold to highlight the main 
contribution. There were no thresholds were applied in the results shown in figures 12(b) and 
12(c). The threshold values of 20%, and 30% applied were shown in figures 12(d) and 12(e). 
The results of 30% threshold will be presented hereafter. 

The next signal to be considered is the same as the previous one except the width of the 
signal which is shown in figure 13(a). The width of the convex cone is smaller than the width 
of the signal in here. We can imagine that the efficiency of the detection of the signal will be 
much reduced. The results shown in figures 13(b) and 13(c) confirm this fact. The third 
example is the case when the signal is tilted as shown in figure 14(a). The results are shown in 
figures 14(b) and 14(c). The peaks in here are located at 135  and 315  as expected. The next 
image to be analyzed is presented in figure 15(a). This is equivalent to the case when the two 
waves are propagating with 90°  phase shift. The results are shown in figures 15(b) and 15(c). 
The next test was done on the discrete images as shown in figure 16(a) which corresponds to 
the images of short crested waves. Figures 16(b) and 16(c) show the results. The two 
directional discrete image as shown in figure 17(a) was tested. The results are presented in 
figures 17(b) and 17(c). This test showed that the directional wavelets can detect multi-
directionality in images. 

The application of the Morlet wavelet and Cauchy wavelet to more complicated 
numerical images, and images taken in a wave flume, a river, and an ocean will be presented 
in part 2 of this paper. 

 

 
(a) Numerical signal 
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(b) Morlet wavelet transform of Fig. 12(a)           (c). Cauchy wavelet transform of Fig. 12(a) 

                   
(d) 20% threshold of transformed result           (e) 30% threshold of transformed result 

Fig. 12 Comparison result of Morlet wavelet and Cauchy wavelet transform 
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(b) Morlet wavelet transform of Fig. 13(a)             (c) Cauchy wavelet transform of Fig. 13(a) 

Fig. 13 Comparison result of Morlet wavelet and Cauchy wavelet transform 

      
(a) Numerical signal 

                   
(b) Morlet wavelet transform of Fig. 14(a)             (c) Cauchy wavelet transform of Fig. 14(a) 

Fig. 14 Comparison result of Morlet wavelet and Cauchy wavelet transform 

      
(a) Numerical signal 
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(b) Morlet wavelet transform of Fig. 15(a)             (c) Cauchy wavelet transform of Fig. 15(a) 

Fig. 15 Comparison result of Morlet wavelet and Cauchy wavelet transform 

      
(a) Numerical signal 

                   
(b) Morlet wavelet transform of Fig. 16(a)             (c) Cauchy wavelet transform of Fig. 16(a) 

Fig. 16 Comparison result of Morlet wavelet and Cauchy wavelet transform 

      
(a) Numerical signal 
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(b) Morlet wavelet transform of Fig. 17(a)             (c) Cauchy wavelet transform of Fig. 17(a) 

Fig. 17 Comparison result of Morlet wavelet and Cauchy wavelet transform 

5. Conclusions 

The characteristics of directional wavelets were examined. Directional wavelet can be 
constructed by introducing rotation to directional wavelet. The Morlet and Cauchy wavelet 
were introduced as a directional wavelet. These wavelets were tested on relatively simple 
numerical data. It was shown that Morlet and Cauchy wavelet have excellent directional 
selectivity when the related parameters are chosen appropriately. Once those parameters are 
chosen, the remaining processes of detection of wave direction are straight forward. The 
application of Morlet and Cauchy wavelet to the complicated numerical simulations and video 
images taken in a wave flume, a river, and an ocean will be presented in the part 2 of this 
paper. 
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