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THE PROBLEM OF DIOPHANTUS FOR INTEGERS OF
Q(v-3)

ZRINKA FRANUSIC AND IVAN SOLDO

ABSTRACT. We solve the problem of Diophantus for integers of the
quadratic field Q(v/—3) by finding a D(z)-quadruple in Z[(1++/—3)/2] for
each z that can be represented as a difference of two squares of integers in
Q(+v/—3), up to finitely many possible exceptions.

1. INTRODUCTION AND PRELIMINARIES

Let R be a commutative ring with unity 1 and n € R. The set of nonzero
and distinct elements {a1, a2, as, a4} in R such that a;a;+n is a perfect square
in R for 1 <1 < j <4 is called a Diophantine quadruple with the property
D(n) in R or just a D(n)-quadruple. If n = 1 then a quadruple with a given
property is called a Diophantine quadruple. The problem of constructing such
sets was first studied by Diophantus of Alexandria who found the rational
quadruple {1—16, %, 1?7, %} with the property D(1). Fermat found the first
Diophantine quadruple in the ring of integers Z - the set {1, 3,8, 120}.

The problem on the existence of D(n)-quadruples has been studied in dif-
ferent rings, but mainly in rings of integers of numbers fields. The following
assertion is shown to be true in many cases: There exists a D(n)-quadruple if
and only if n can be represented as a difference of two squares, up to finitely
many exceptions. In the ring Z one part of the assertion is proved inde-
pendently by several authors (Brown, Gupta, Singh, Mohanty, Ramamsamy,
see [6,25,27]), and another by Dujella in [7]. The set of possible exceptions
S ={-4,-3,-1,3,5,8,12,20} is still an open problem studied by many au-
thors. The conjecture is that for n € S there does not exist a Diophantine
quadruple with the property D(n).

In the ring of integers Z well studied is the case of n = —1. There is a
conjecture that D(—1)-quadruple does not exist in Z. That is known as the
D(—1)-quadruple conjecture and it was presented explicitly in [11] for the first
time. While it is conjectured that D(—1)-quadruples do not exist in integers
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16 Z. FRANUSIC AND 1. SOLDO

(see [11]), it is known that no D(—1)-quintuple exists and that if {a,b, ¢, d}
is a D(—1)-quadruple with @ < b < ¢ < d, then a = 1 (see [15]). It is
proved that some infinite families of D(—1)-triples cannot be extended to a
D(—1)-quadruple. The non-extendibility of {1,b, c} was confirmed for b = 2
by Dujella in [10], for b = 5 partially by Abu Muriefah and Al Rashed in [2],
and completely by Filipin in [18]. The statement was also proved for b = 10 by
Filipin in [18], and for b = 17,26, 37,50 by Fujita in [24]. Dujella, Filipin and
Fuchs in [13] proved that there are at most finitely many D(—1)-quadruples,
by giving an upper bound of 10°°3 for the number of D(—1)-quadruples. This
bound was improved several times: to 10256 by Filipin and Fujita ([19]), to
4-10" by Bonciocat, Cipu and Mignotte ([5]) and very recently to 5-105° by
Elsholtz, Filipin and Fujita ([17]).

In the ring of Gaussian integers Z[i] the above assertion was proved in
[9]. Namely, if a + bi is not representable as a difference of the squares of two
elements in Z[i], and in contrary if a + bi is not of such form and a 4 bi ¢
{£2, £1+2i, +4i}, then D(a+ bi)-quadruple exists. Franusié in [20-22] found
that a similar statement is true for rings of integers of some real quadratic
fields, i.e. it can be seen that there exist infinitely many D(n)-quadruples if
and only if n can be represented as a difference of two squares of integers.
To be more precise, assuming the solvability of certain Pellian equation (22 —
dy* = £2 or 22 — dy? = 4 in odd numbers) we are able to obtain an effective
characterization of integers that can be represented as a difference of two
squares of integers in Q(v/d) and then apply some polynomial formulas for
Diophantine quadruples in a combination with elements of a small norm.
Also, in [23] the existence problem in the ring of integers of the pure cubic
field Q(4/2) has been completely solved.

The case of complex quadratic fields is more demanding because the set of
elements with a small norm is poor (while in the real case there exist infinitely
many units). A group of authors ([1,16,28]) worked on the problem of the
existence of D(z)-quadruples in Z[\/—2] and contributed that the problem is
almost completely solved. As a prominent case, there appear the case z = —1,
which could not be solved by the standard method via polynomial formulas. In
[29] and [30] Soldo studied D(—1)-triples of the form {1, b, ¢} and the existence
of D(—1)-quadruples of the form {1,b,¢,d} in the ring Z[/—t],t > 0, for
b=2,5,10,17,26,37 or 50. He proved a more general result i.e. if positive
integer b is a prime, twice prime or twice prime squared such that {1,b,c} is
a D(—1)-triple in the ring Z[v/—t],t > 0, then c has to be an integer. As a
consequence of this result, he showed that for ¢ ¢ {1,4,9,16,25,36,49} there
does not exist a subset of Z[y/—t| of the form {1, b, ¢, d} with the property that
the product of any two of its distinct elements diminished by 1 is a square of
an element in Z[\/—t]. For those exceptional cases of ¢ he showed that there
exist infinitely many D(—1)-quadruples of the form {1,b, —c,d}, ¢,d > 0 in

Ziv=1).



THE PROBLEM OF DIOPHANTUS FOR INTEGERS OF Q(v/—3) 17

In this paper, we verify assertion on the existence of D(z)-quadruples in
complex quadratic field Q(v/—3), i.e. in the corresponding ring of integers
Z[(1 + +v/—3)/2]. In other words, we show the following theorems.

THEOREM 1.1. There exists a D(z)-quadruple in the ring of integers of
the quadratic field Q(+/—3) if and only if z can be represented as a difference
of two squares of integers in Q(~/—3), up to possible exceptions z € {—1, 3, %f
1 1,1
5V—=3,5 +35vV—-3}.

THEOREM 1.2. There ezists a D(z)-quadruple in the ring Z[/—3] if and
only if z can be represented as a difference of two squares of elements in

Z[\/—3], up to possible exceptions z € {—4,—1,3,2 — 2y/—3,2+ 2/-3}.

Although we have mentioned that the case of complex quadratic fields is
rather complicated, observe that the Pellian equation 2% — dy? = 4 is solvable
for d = —3 in Z (the only solution is 1 + \/=3). To begin with, we will
list briefly all statements that we require for the proofs of Theorem 1.1 and
Theorem 1.2.

LEMMA 1.3 ([8, Theorem 1]). Let R be a commutative ring with the unity
1 and m,k € R. The set

(1.1)  {m,m(3k + 1)® + 2k, m(3k + 2)? + 2k + 2,9m(2k + 1) + 8k + 4}
has the D(2m(2k + 1) + 1)-property.

The set (1.1) is a D(2m(2k + 1) + 1)-quadruple if it contains no equal
elements or elements equal to zero.

LEMMA 1.4. If u is an element of a commutative ring R with the unity
1 and {wy,wa, w3, ws} is a D(w)-quadruple in R, then {wiu, wou, wsu, wau}
is a D(wu?)-quadruple in R.

LEMMA 1.5 ([14, Theorem 1)). An integer z € Q(v/—3) can be represented

as a difference of two squares of elements in Z[\/—3| if and only if is one of
the following forms

2m+ 1+ 2nyv=3, 4m + 4nv—=3, 4m + 2+ (4n + 2)v/ -3,
m,n € 7.
LEMMA 1.6 ([14, Theorem 2]). An integer z € Q(v/—3) can be represented

as a difference of two squares of elements in Z[(1 + +/—3)/2] if and only if is
one of the following forms

2m+1+42nv -3, 2m+ (2n+1)v—3, 4m+4nv—-3, 4m+2+ (4n+2)v/ -3,

2m + 1 2n+1
5 + 5 V=3,

m,n € Z.
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LEMMA 1.7 ([22, Lemma 5]). For each M, N € Z, there exist k € Z[(1 +
V/=3)/2] such that
2M +1+2Ny/=3=2m(k + 1)+ 1, where m = § + 31/=3,
AM +3+ (AN +2)v/=3 =2m(2k + 1) + 1, where m = 1 + /=3,
2M + (2N + 1)v/=3 =m(2k + 1) + 1, where m = 1+ /=3,
2M + 1+ (2N + 1)v/=3 =m(2k + 1) + 1, where m = 1 + /=3,
%‘F%\/—_:%(Qkﬁ-l)ﬁ-l, where m =1+ /=3.

By using Lemmas 1.3, 1.4 and 1.7, we effectively construct Diophantine
quadruples for integers of the forms given in Lemmas 1.5 and 1.6. The fol-

SANRENCIES S

lowing assertion gives the nonexistence of a D(z)-quadruple in Z[%ﬂ] if
z cannot be represented as a difference of two squares in Z[(1 + v/—3)/2],
i.e. if and only if z is of the form 4m + 2 + 4ny/=3, 4m + (4n + 2)/=3,
2m + 1+ (2n + 1)v/-3.

LEMMA 1.8 ([22, Theorem 2]). If z has one of the forms

dm +2+4nv =3, dm+ (dn+2)v-3, 2m+ 1+ (2n+ 1)V-3,
where m,n € Z, then a D(z)-quadruple in Z[(1 + /—3)/2] does not exist.
The nonexistence of a D(z)-quadruple in Z[y/—3] if z cannot be repre-
sented as a difference of two squares in Z[v/—3] follows partially from Lemma

1.8 (if z =4m+2+4nv/—3 or z = 4m+ (4n+2)y/—3) and from the following
assertion.

LEMMA 1.9. Let d € Z is not a perfect square. Then there is no D(m +
(2n 4 1)Vd)-quadruple in the ring Z[\/d).

ProOOF. The proof of Proposition 1 in [1] given for d = 2 can be imme-
diately rewritten for an arbitrary d. O

2. D(z)-QUADRUPLES IN Z[1Y=3]
Let us denote the set
Dy = {mu, (m(3k+1)%+2k)u, (m(3k+2)?+2k+2)u, (9m(2k+1)2 48k +4)u}.

According to Lemmas 1.3 and 1.4, Dy is D((2m(2k + 1) + 1)u?)-quadruple
if it contains no equal elements or elements equal to zero. This polynomial
formula combining with specific values of m and u solves our problem, up
to finitely many cases. Our results are listed in the tables of the following
subsections.

2.1. D(2m + 1 + 2n+/—3)-quadruples.

In this subsection, for integers A and B, we will separate the cases of
2 = 4A+ 3+ (4B + 2)y/=3 and z = 4A + 1 + 4B+/=3 to corresponding
subcases.
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z k ‘ m ‘ u ‘ Dy in exceptions of
z
4A1314Bv/—3 A+ BV=3 1 L[ Z[V=3] —1,3
4A+1+(4B+2)v/—3 —ii24 4 1425 /o3 1 1| zZ[2 -
8A+3+(8B+2)v/—3 ASB L ATB /3 [ 1+v=3[1]| z[V=3 3+2V/-3
8A+7+(8B+6)v/—3 | 22 L —AFB /T3 [ 14+v=3 [ 1| z[V=3 —1-2V/-3
BA+7+(8B+2)v/—3 | A=~ + A /3 [1-v3 [ 1] Z[V3] -1+2V/-3
8A+3+(8B+6)v/—3: | 2283 L AP /31— v/=3 | 1| z[/=3 3-2V/-3
8A+5+8BV—3 A+ BJ/-3 2 L[ zZ[V=3] 5, -3
8A+1+(8B+4)vV—3 22-1 4 2BFL /-3 2 1| z[V=3] -
8A+1+8BV-3 A—1+BV/=3 4 1| zZ[V=3] 1,9, -7
8A+5+(8B+4)y/—3 | A—=B-3 4 2Bil /-3 4 1| z[V=3] -

TABLE 1

It is easy to check that for those exceptions of z in Table 1, the polynomial
formula Dy gives the set with two equal elements, or some element is equal
to zero. Therefore, in those exceptions of z (and all further exceptions), we
used the method for the first time described in [8] (but only for quadruples
in Z), to construct D(z)-quadruples with all distinct elements, of the form
{u,v,u+v+2r,u+4v+4r}, for some u,v,r € Z[/=3], or u,v,r € Z[Hzﬂ],
respectively. Except in cases of z = —1,3, we found the following D(z)-
quadruples in Z[v/—3]:

{3+V=3,1—-=3,-2,—-5—3y/=3} is the D(3 + 2y/—3)-quadruple,
{3 —V=3,1+-3,-2,-5+3y/=3} is the D(3 — 2¢/—3)-quadruple,
{1+3y-3,-1+/=3,2,1 —/=3} is the D(—1 — 2y/—3)-quadruple,
{1-3y-3,—-1—+/-3,2,1+ /=3} is the D(—1 + 2y/—3)-quadruple,
{8,1++/=3,1 —+/=3,—4} is the D(5)-quadruple,
{V=3,3v/—=3,8/=3,120y/=3} is the D(—3)-quadruple,

{1, 3,8,120} is the D(1)-quadruple,

{6, -2 — 2¢/=3, -2+ 21/=3, —14} is the D(9)-quadruple,
{2+2V-3,1++/=3,1—+/=3,2 —2/=3} is the D(—T7)-quadruple.

2.2. D(2m + (2n + 1)v/—3)-quadruples.

‘ z ‘ k ‘ m u Dy in exceptions of
z
4A + (4B +3)vV/=3 A+3QB+1 + 7A+QB+1\/_—3 1+\2/—3 1 Z[1+\2/—3] ~J/=3
4A4+24+ (@B+1)y=3| AsBB 4 —AdB m | TVS | g V8 9 /o3
4A+ @B+ 1)yv=3 | A8 4 AaiB o3 | VS ) | gy d) V=3
4A4+2+4+ (UB+3)y=3| A8B-8 L AdBil g | VS | g | g8 o /o3

TABLE 2
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For the exceptions noted in Table 2, we found the following D(z)-
quadruples in Z[@]:
o {1-3y-3,-1,4 - 3v/-3,-2 4+ 1/=3} is the D(—/—3)-quadruple,
o {2+ 3V=3,-T +3V-3,-2,-2 + 1/-3} is the D(2 + V=3)-
quadruple,
° {% + %E, -1, % + %\/*_3, f% — éJTS} is the D(y/—3)-quadruple,
o {3 — 3V-3,-1 - 3V-3,-2,-2 - 1/=3} is the D(2 — V/=3)-

quadruple.
2.3. D(4m + 4n+/—3)-quadruples.

exceptions of

z k m
z

u ‘ Dy in

1++v/=3 Z[—”\i,/:‘] 0
1+v3 ] 2 | —avay3

8A+8B+/—3 # _ #,/_3
8A+4+(8B+4)\/—3 % — #\/__3

SIS

pol—

TABLE 3

The set {1,2 — 2y/=3,5,13 — 4,/=3} is the D(—4 + 4y/—3)-quadruple in
Z[/—3] and it is easy to see that there exits infinitely many D(0)-quadruples.

We obtain a D(8A + 4 + 8 By/—3)-quadruple by multiplying elements of
a D(2m + 1 + 2ny/—3)-quadruple by u = 2 except for z = —4, 12, but

7 1 7 1
LL4+2v03, L - 2/73,1
(g +5V=35-35v=313}
is the D(—4)-quadruple, and
{=2,7+V=3,7—v=3,30}
is the D(12)-quadruple. Also, a D(8A + (8 B+ 4)+/—3)-quadruple is obtained

by multiplying elements of a D(2m + (2n + 1)y/—3)-quadruple by u = 2.
Obviously, the resulting sets are subsets of Z[/—3] (except for z = —4).

2.4. D(4m + 2 + (4n + 2)v/—3)-quadruples.

‘ z ‘ k ‘ m ‘ U ‘ Dy in exceptions of
z
8A+2+(8B+2)v=3| -A-1-By=3 |2 |14y73 | 2201 | —6+2/=3,
242/=3
3 " = k 3 1+ -3 3 14++/-3
8A+6+(8B+6)y/—3 | 24+ 2Bl /73 v 1+v/-3 | 2[—¥ —
8A+2+(8B+6)v—=3 | «(A+1)—(B+1)v/—3 | :¥=2 | 1—y/=3 | 2[2Y=21 | —6-2v/=3,
2-2,/—3
R , : = 1—y/-3 ; 1+v -3
8A+6+(8B+2)y/—3 | 24K 2Bl /73 v 1-v=3 | 2[—%—] —

TABLE 4
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While the polynomial formula D, gives sets with two equal elements, for
those exceptions of z of Table 4, we found the following D(z)-quadruples in
ZY3):

o {(—14+31vV-3,-9-2v-3,-%-1/-3, -8 - 1/-3}isthe D(—6+

2y/—3)-quadruple,

o {(—14+1y=3,-2+3/=3,-1+2/-3,-2 +13,/=3} is the D(2+

2y/—3)-quadruple,

o {—1-1V=3,-9+2V=3,-F +1/=3, -2 +1/-3} is the D(—6—

2v/—3)-quadruple,

o {—1-1y=3,-3-3/=3,-1-2y=3,-1 — 13,/-3} is the D(2 —

2v/—3)-quadruple.

2.5. D(2mtl 4 20kl /2 3) quadruples.

We derive D(22EL 4 208l /~3)_quadruples from D(2m + 1 + 2ny/—3) and
D(2m+ (2n+1)+/—3) -quadruples by multiplying them by 1+‘2/__3 and 1_‘2/__3.

(2.1)

e Multiplying the elements of a D(2m + 1 4+ 2n+/—3)-quadruple by u =

—H\Q/jg we obtain a D((2m + 1 + 2nv/—3)u?)-quadruple except for z =
% - % -3, *% + %\/*3 The number (2m + 1 + 2ny/—3)u? is of the
form 2’42—4'1 + %\/7_3 and for given A, B € Z the equation

24+1 2B+1
(2m + 1+ 2nV/=3)u? = ; + 2+ V-3

has an integer solution (m,n € Z) if and only if —A+ 3B = 1(mod 4)
and A+B = 3(mod 4),i.e. (4, B) mod 4 € {(0,3),(1,2),(2,1),(3,0)}.
Concerning exceptions, the set

15

1 1 5 3 15
V=g V3 -l-2V=d =5 - V=)

represents the D(—% + %J—_S)—quadruple, while we could not find the
D(% — £v/=3)-quadruple.

Multiplying the elements of a D(2m + 1 + 2n+/—3)-quadruple by u =
PT‘/__3 we obtain a D((2m + 1+ 2ny/—3)u?)-quadruple except for z =
% + % -3, f% — %\/7_3 For given A, B € Z the equation (2.1) has
an integer solution if and only if A+ 3B =0 (mod 4) and A— B =0
(mod 4), i.e. (A,B) mod 4 € {(0,0),(1,1),(2,2),(3,3)}. The set

11 5 3 15 15
{55V 3 -5+ 5V B -1+2V=3 — 5 + V=3

is the D(—3 — 2\/=3)-quadruple and we have not detected a D(% +
% v —3)-quadruple.
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e Multiplying the elements of a D(2m + (2n + 1)v/—3)-quadruple by
u = 1+2£ we obtain a D(QATJr1 + %\/—3)—quadruple. For given
A, B € Z the equation

2A+1  2B+1
= +

(2.2) (2m + (2n + 1)V -3)u? 5 5

Ve
has an integer solution if and only if —A+3B =3 (mod 4) and A+ B =
1 (mod 4), i.e. (A,B) mod 4 € {(0,1),(1,0),(3,2),(2,3)}.

e Multiplying the elements of a D(2m + (2n + 1)v/—3)-quadruple by
u = 177\/53 we obtain a D(QAQ—+1 + %m)—quadruple. For given
A,B € Z the equation (2.2) has an integer solution if and only if
A+3B =2 (mod 4) and —A+ B =2 (mod 4), i.e. (4,B) mod 4 ¢
{(0,2),(2,0),(1,3), (3, 1)}-

3. D(z) QUADRUPLES IN Z[v/—3]

In the previous section we see that some D(z)-quadruples that have been
constructed already lie in Z[y/—3] but some of them do not although z can
be represented as a difference of squares in Z[\/—3]. Here we show that this
can be improved.

3.1. D(2m + 1+ 2nv/—3)-quadruples.

z k m u Dy in exceptions of

z
4A+ 1+ (4B +2)v/—3 | ZZZEEL L AL /73 /=3/3 | V=3 | Z[Vv=3] | -3 —2V=3,
—3+2y=3

TABLE 5

The set {—v/—3,—-2++/—3,—2,—-8 4+ 31/—3} is a D(—3 — 24/—3), while
the set {v/—3,—-2 —+/-3,—-2,—8 — 3v/—-3} is a D(—3 4 2v/—3)-quadruple in
Z[v/-3].

3.2. D(dm + 2+ (4n + 2)v/—3)-quadruples.
Since there exist a D(22%tL 4 2t/ 3).quadruple in Z[(1 + +/=3)/2], by

multiplying by 2 the elements of this quadruple we obtain a D(4dm+2+ (4n+

2)yv/—3)-quadruple in Z[/—3], up to z = 2 — 2y/—3, 2 + 2,/-3.
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3.3. D(4dm + 4n+/—3)-quadruples.

We have shown in § 2.3. that D(8m+ (8n+4)v/—3) and D(8m+ 4+ 8n+/—3)-
quadruples in Z[\/—3] are obtained by multiplying by 2 the elements of
D(2m+ (2n+1)y/=3) and D(2m + 1+ 2n+/—3)-quadruples in Z[(1++/—3)/2]
up to the the D(—4)-quadruple whose elements are not in Z[/—3].
The set
{1,9k? — 8k, 9k? — 2k + 1,36k — 20k + 1}

is D(8k)-quadruple ([7]) if & # 0,1, so there exists a D(8m + 8n\/—3)-
quadruple in Z[v/—3].

z k u Dy in exceptions of

z

m
8A+4+ (8B+4)y/—3 | 2A=2B4d 4 A4z oy | V3 9 /3 | 7[y=3] | —12 — 43
—124+4/=3

TABLE 6

It is easy to check that for those exceptions of z in Table 6, the polynomial
formula D, gives the set with two equal elements. Therefore for certain z, we
found the following D(z)-quadruples in Z[v/—3]:

o {2++/-3,2—-2y-3,2—3y=3,6 — 11/=3} is the D(—12 + 4y/-3)-
quadruple,
o {2—/=3,2+2y-3,2+3y=3,6+ 11y/=3} is the D(—12 — 4,/-3)-

quadruple,
o {24+/—3,—2+42/-3,—24+/-3,—10+51/—3} is the D(8)-quadruple.

REMARK 3.1. Concerning the list of possible exceptions given in Theorem
1.1 and Theorem 1.2, we can easily observe that 3 = —1-(v/—3)?, —4 = —1.22,
1+1V/3=-1-(3F3vV-3)?and 2+ 2y/-3 = —-1-(1F/=3)% So, we
are not surprised that the key point lies in an investigation on the existence
of D(—1)-quadruples in rings Z[(1 + v/—3)/2] and Z[/=3]. In an analogy
to D(—1)-quadruple conjecture in the ring of integers and the problem of
existence of D(—1)-quadruples in Z[v/—t],t > 0 studied in [29] and [30], we
might expect that for such z there does not exists a D(z)-quadruple.
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Diofantov problem za cijele brojeve kvadratnog polja Q(v/—3)

Zrinka Franusi¢ i Ivan Soldo

SAZETAK. Rjesavamo Diofantov problem za cijele bro-
jeve kvadratnog polja Q(v/—3) konstruiranjem D(z)-éetvorki u
prstenu Z[/—3] za svaki z koji se moze prikazati kao razlika dva
kvadrata u Q(v/—3), do na konaéno mnogo moguéih izuzetaka.
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