THE PROBLEM OF DIOPHANTUS FOR INTEGERS OF
 $\mathbb{Q}(\sqrt{-3})$

Zrinka Franušić and Ivan Soldo

Abstract

We solve the problem of Diophantus for integers of the quadratic field $\mathbb{Q}(\sqrt{-3})$ by finding a $D(z)$-quadruple in $\mathbb{Z}[(1+\sqrt{-3}) / 2]$ for each z that can be represented as a difference of two squares of integers in $\mathbb{Q}(\sqrt{-3})$, up to finitely many possible exceptions.

1. Introduction and preliminaries

Let R be a commutative ring with unity 1 and $n \in R$. The set of nonzero and distinct elements $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ in R such that $a_{i} a_{j}+n$ is a perfect square in R for $1 \leq i<j \leq 4$ is called a Diophantine quadruple with the property $D(n)$ in R or just a $D(n)$-quadruple. If $n=1$ then a quadruple with a given property is called a Diophantine quadruple. The problem of constructing such sets was first studied by Diophantus of Alexandria who found the rational quadruple $\left\{\frac{1}{16}, \frac{33}{16}, \frac{17}{4}, \frac{105}{16}\right\}$ with the property $D(1)$. Fermat found the first Diophantine quadruple in the ring of integers \mathbb{Z} - the set $\{1,3,8,120\}$.

The problem on the existence of $D(n)$-quadruples has been studied in different rings, but mainly in rings of integers of numbers fields. The following assertion is shown to be true in many cases: There exists a $D(n)$-quadruple if and only if n can be represented as a difference of two squares, up to finitely many exceptions. In the ring \mathbb{Z} one part of the assertion is proved independently by several authors (Brown, Gupta, Singh, Mohanty, Ramamsamy, see $[6,25,27]$), and another by Dujella in [7]. The set of possible exceptions $S=\{-4,-3,-1,3,5,8,12,20\}$ is still an open problem studied by many authors. The conjecture is that for $n \in S$ there does not exist a Diophantine quadruple with the property $D(n)$.

In the ring of integers \mathbb{Z} well studied is the case of $n=-1$. There is a conjecture that $D(-1)$-quadruple does not exist in \mathbb{Z}. That is known as the $D(-1)$-quadruple conjecture and it was presented explicitly in [11] for the first time. While it is conjectured that $D(-1)$-quadruples do not exist in integers

[^0](see [11]), it is known that no $D(-1)$-quintuple exists and that if $\{a, b, c, d\}$ is a $D(-1)$-quadruple with $a<b<c<d$, then $a=1$ (see [15]). It is proved that some infinite families of $D(-1)$-triples cannot be extended to a $D(-1)$-quadruple. The non-extendibility of $\{1, b, c\}$ was confirmed for $b=2$ by Dujella in [10], for $b=5$ partially by Abu Muriefah and Al Rashed in [2], and completely by Filipin in [18]. The statement was also proved for $b=10$ by Filipin in [18], and for $b=17,26,37,50$ by Fujita in [24]. Dujella, Filipin and Fuchs in [13] proved that there are at most finitely many $D(-1)$-quadruples, by giving an upper bound of 10^{903} for the number of $D(-1)$-quadruples. This bound was improved several times: to 10^{356} by Filipin and Fujita ([19]), to $4 \cdot 10^{70}$ by Bonciocat, Cipu and Mignotte ([5]) and very recently to $5 \cdot 10^{60}$ by Elsholtz, Filipin and Fujita ([17]).

In the ring of Gaussian integers $\mathbb{Z}[i]$ the above assertion was proved in [9]. Namely, if $a+b i$ is not representable as a difference of the squares of two elements in $\mathbb{Z}[i]$, and in contrary if $a+b i$ is not of such form and $a+b i \notin$ $\{ \pm 2, \pm 1 \pm 2 i, \pm 4 i\}$, then $D(a+b i)$-quadruple exists. Franušić in [20-22] found that a similar statement is true for rings of integers of some real quadratic fields, i.e. it can be seen that there exist infinitely many $D(n)$-quadruples if and only if n can be represented as a difference of two squares of integers. To be more precise, assuming the solvability of certain Pellian equation $\left(x^{2}-\right.$ $d y^{2}= \pm 2$ or $x^{2}-d y^{2}=4$ in odd numbers) we are able to obtain an effective characterization of integers that can be represented as a difference of two squares of integers in $\mathbb{Q}(\sqrt{d})$ and then apply some polynomial formulas for Diophantine quadruples in a combination with elements of a small norm. Also, in [23] the existence problem in the ring of integers of the pure cubic field $\mathbb{Q}(\sqrt[3]{2})$ has been completely solved.

The case of complex quadratic fields is more demanding because the set of elements with a small norm is poor (while in the real case there exist infinitely many units). A group of authors ($[1,16,28]$) worked on the problem of the existence of $D(z)$-quadruples in $\mathbb{Z}[\sqrt{-2}]$ and contributed that the problem is almost completely solved. As a prominent case, there appear the case $z=-1$, which could not be solved by the standard method via polynomial formulas. In [29] and [30] Soldo studied $D(-1)$-triples of the form $\{1, b, c\}$ and the existence of $D(-1)$-quadruples of the form $\{1, b, c, d\}$ in the ring $\mathbb{Z}[\sqrt{-t}], t>0$, for $b=2,5,10,17,26,37$ or 50 . He proved a more general result i.e. if positive integer b is a prime, twice prime or twice prime squared such that $\{1, b, c\}$ is a $D(-1)$-triple in the ring $\mathbb{Z}[\sqrt{-t}], t>0$, then c has to be an integer. As a consequence of this result, he showed that for $t \notin\{1,4,9,16,25,36,49\}$ there does not exist a subset of $\mathbb{Z}[\sqrt{-t}]$ of the form $\{1, b, c, d\}$ with the property that the product of any two of its distinct elements diminished by 1 is a square of an element in $\mathbb{Z}[\sqrt{-t}]$. For those exceptional cases of t he showed that there exist infinitely many $D(-1)$-quadruples of the form $\{1, b,-c, d\}, c, d>0$ in $\mathbb{Z}[\sqrt{-t}]$.

In this paper, we verify assertion on the existence of $D(z)$-quadruples in complex quadratic field $\mathbb{Q}(\sqrt{-3})$, i.e. in the corresponding ring of integers $\mathbb{Z}[(1+\sqrt{-3}) / 2]$. In other words, we show the following theorems.

THEOREM 1.1. There exists a $D(z)$-quadruple in the ring of integers of the quadratic field $\mathbb{Q}(\sqrt{-3})$ if and only if z can be represented as a difference of two squares of integers in $\mathbb{Q}(\sqrt{-3})$, up to possible exceptions $z \in\left\{-1,3, \frac{1}{2}-\right.$ $\left.\frac{1}{2} \sqrt{-3}, \frac{1}{2}+\frac{1}{2} \sqrt{-3}\right\}$.

Theorem 1.2. There exists a $D(z)$-quadruple in the ring $\mathbb{Z}[\sqrt{-3}]$ if and only if z can be represented as a difference of two squares of elements in $\mathbb{Z}[\sqrt{-3}]$, up to possible exceptions $z \in\{-4,-1,3,2-2 \sqrt{-3}, 2+2 \sqrt{-3}\}$.

Although we have mentioned that the case of complex quadratic fields is rather complicated, observe that the Pellian equation $x^{2}-d y^{2}=4$ is solvable for $d=-3$ in \mathbb{Z} (the only solution is $1+\sqrt{-3}$). To begin with, we will list briefly all statements that we require for the proofs of Theorem 1.1 and Theorem 1.2.

Lemma 1.3 ([8, Theorem 1]). Let R be a commutative ring with the unity 1 and $m, k \in R$. The set

$$
\begin{equation*}
\left\{m, m(3 k+1)^{2}+2 k, m(3 k+2)^{2}+2 k+2,9 m(2 k+1)^{2}+8 k+4\right\} \tag{1.1}
\end{equation*}
$$

has the $D(2 m(2 k+1)+1)$-property.
The set (1.1) is a $D(2 m(2 k+1)+1)$-quadruple if it contains no equal elements or elements equal to zero.

Lemma 1.4. If u is an element of a commutative ring R with the unity 1 and $\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$ is a $D(w)$-quadruple in R, then $\left\{w_{1} u, w_{2} u, w_{3} u, w_{4} u\right\}$ is a $D\left(w u^{2}\right)$-quadruple in R.

Lemma 1.5 ($[14$, Theorem 1$])$. An integer $z \in \mathbb{Q}(\sqrt{-3})$ can be represented as a difference of two squares of elements in $\mathbb{Z}[\sqrt{-3}]$ if and only if is one of the following forms

$$
2 m+1+2 n \sqrt{-3}, 4 m+4 n \sqrt{-3}, 4 m+2+(4 n+2) \sqrt{-3},
$$

$m, n \in \mathbb{Z}$.
Lemma 1.6 ([14, Theorem 2]). An integer $z \in \mathbb{Q}(\sqrt{-3})$ can be represented as a difference of two squares of elements in $\mathbb{Z}[(1+\sqrt{-3}) / 2]$ if and only if is one of the following forms
$2 m+1+2 n \sqrt{-3}, 2 m+(2 n+1) \sqrt{-3}, 4 m+4 n \sqrt{-3}, 4 m+2+(4 n+2) \sqrt{-3}$,

$$
\frac{2 m+1}{2}+\frac{2 n+1}{2} \sqrt{-3},
$$

$m, n \in \mathbb{Z}$.

Lemma 1.7 ([22, Lemma 5]). For each $M, N \in \mathbb{Z}$, there exist $k \in \mathbb{Z}[(1+$ $\sqrt{-3}) / 2]$ such that

1. $2 M+1+2 N \sqrt{-3}=2 m(k+1)+1$, where $m=\frac{1}{2}+\frac{1}{2} \sqrt{-3}$,
2. $4 M+3+(4 N+2) \sqrt{-3}=2 m(2 k+1)+1$, where $m=1+\sqrt{-3}$,
3. $2 M+(2 N+1) \sqrt{-3}=m(2 k+1)+1$, where $m=1+\sqrt{-3}$,
4. $2 M+1+(2 N+1) \sqrt{-3}=m(2 k+1)+1$, where $m=\frac{1}{2}+\frac{1}{2} \sqrt{-3}$,
5. $\frac{2 M+1}{2}+\frac{2 N+1}{2} \sqrt{-3}=\frac{m}{2}(2 k+1)+1$, where $m=1+\sqrt{-3}$.

By using Lemmas 1.3, 1.4 and 1.7, we effectively construct Diophantine quadruples for integers of the forms given in Lemmas 1.5 and 1.6. The following assertion gives the nonexistence of a $D(z)$-quadruple in $\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$ if z cannot be represented as a difference of two squares in $\mathbb{Z}[(1+\sqrt{-3}) / 2]$, i.e. if and only if z is of the form $4 m+2+4 n \sqrt{-3}, 4 m+(4 n+2) \sqrt{-3}$, $2 m+1+(2 n+1) \sqrt{-3}$.

Lemma 1.8 ([22, Theorem 2]). If z has one of the forms

$$
4 m+2+4 n \sqrt{-3}, 4 m+(4 n+2) \sqrt{-3}, 2 m+1+(2 n+1) \sqrt{-3}
$$

where $m, n \in \mathbb{Z}$, then a $D(z)$-quadruple in $\mathbb{Z}[(1+\sqrt{-3}) / 2]$ does not exist.
The nonexistence of a $D(z)$-quadruple in $\mathbb{Z}[\sqrt{-3}]$ if z cannot be represented as a difference of two squares in $\mathbb{Z}[\sqrt{-3}]$ follows partially from Lemma 1.8 (if $z=4 m+2+4 n \sqrt{-3}$ or $z=4 m+(4 n+2) \sqrt{-3})$ and from the following assertion.

Lemma 1.9. Let $d \in \mathbb{Z}$ is not a perfect square. Then there is no $D(m+$ $(2 n+1) \sqrt{d})$-quadruple in the ring $\mathbb{Z}[\sqrt{d}]$.

Proof. The proof of Proposition 1 in [1] given for $d=2$ can be immediately rewritten for an arbitrary d.

$$
\text { 2. } D(z) \text {-QUADRUPLES IN } \mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]
$$

Let us denote the set
$D_{4}=\left\{m u,\left(m(3 k+1)^{2}+2 k\right) u,\left(m(3 k+2)^{2}+2 k+2\right) u,\left(9 m(2 k+1)^{2}+8 k+4\right) u\right\}$.
According to Lemmas 1.3 and $1.4, D_{4}$ is $D\left((2 m(2 k+1)+1) u^{2}\right)$-quadruple if it contains no equal elements or elements equal to zero. This polynomial formula combining with specific values of m and u solves our problem, up to finitely many cases. Our results are listed in the tables of the following subsections.

2.1. $D(2 m+1+2 n \sqrt{-3})$-quadruples.

In this subsection, for integers A and B, we will separate the cases of $z=4 A+3+(4 B+2) \sqrt{-3}$ and $z=4 A+1+4 B \sqrt{-3}$ to corresponding subcases.

z	k	m	u	D_{4} in	exceptions of z
$4 A+3+4 B \sqrt{-3}$	$A+B \sqrt{-3}$	1	1	$\mathbb{Z}[\sqrt{-3}]$	$-1,3$
$4 A+1+(4 B+2) \sqrt{-3}$	$\frac{-1+2 A}{2}+\frac{1+2 B}{2} \sqrt{-3}$	1	1	$\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$	-
$8 A+3+(8 B+2) \sqrt{-3}$	$\frac{A+3 B}{2}+\frac{-A+B}{2} \sqrt{-3}$	$1+\sqrt{-3}$	1	$\mathbb{Z}[\sqrt{-3}]$	$3+2 \sqrt{-3}$
$8 A+7+(8 B+6) \sqrt{-3}$	$\frac{A+3 B+2}{2}+\frac{-A+B}{2} \sqrt{-3}$	$1+\sqrt{-3}$	1	$\mathbb{Z}[\sqrt{-3}]$	$-1-2 \sqrt{-3}$
$8 A+7+(8 B+2) \sqrt{-3}$	$\frac{A-3 B-1}{2}+\frac{A+B+1}{2} \sqrt{-3}$	$1-\sqrt{-3}$	1	$\mathbb{Z}[\sqrt{-3}]$	$-1+2 \sqrt{-3}$
$8 A+3+(8 B+6) \sqrt{-3}:$	$\frac{A-3 B-3}{2}+\frac{A+B+1}{2} \sqrt{-3}$	$1-\sqrt{-3}$	1	$\mathbb{Z}[\sqrt{-3}]$	$3-2 \sqrt{-3}$
$8 A+5+8 B \sqrt{-3}$	$A+B \sqrt{-3}$	2	1	$\mathbb{Z}[\sqrt{-3}]$	$5,-3$
$8 A+1+(8 B+4) \sqrt{-3}$	$\frac{2 A-1}{2}+\frac{2 B+1}{2} \sqrt{-3}$	2	1	$\mathbb{Z}[\sqrt{-3}]$	-
$8 A+1+8 B \sqrt{-3}$	$A-1+B \sqrt{-3}$	4	1	$\mathbb{Z}[\sqrt{-3}]$	$1,9,-7$
$8 A+5+(8 B+4) \sqrt{-3}$	$\frac{4 A-2 B-3}{4}+\frac{2 B+1}{4} \sqrt{-3}$	4	1	$\mathbb{Z}[\sqrt{-3}]$	-

TABLE 1

It is easy to check that for those exceptions of z in Table 1, the polynomial formula D_{4} gives the set with two equal elements, or some element is equal to zero. Therefore, in those exceptions of z (and all further exceptions), we used the method for the first time described in [8] (but only for quadruples in \mathbb{Z}), to construct $D(z)$-quadruples with all distinct elements, of the form $\{u, v, u+v+2 r, u+4 v+4 r\}$, for some $u, v, r \in \mathbb{Z}[\sqrt{-3}]$, or $u, v, r \in \mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$, respectively. Except in cases of $z=-1,3$, we found the following $D(z)$ quadruples in $\mathbb{Z}[\sqrt{-3}]$:

- $\{3+\sqrt{-3}, 1-\sqrt{-3},-2,-5-3 \sqrt{-3}\}$ is the $D(3+2 \sqrt{-3})$-quadruple,
- $\{3-\sqrt{-3}, 1+\sqrt{-3},-2,-5+3 \sqrt{-3}\}$ is the $D(3-2 \sqrt{-3})$-quadruple,
- $\{1+3 \sqrt{-3},-1+\sqrt{-3}, 2,1-\sqrt{-3}\}$ is the $D(-1-2 \sqrt{-3})$-quadruple,
- $\{1-3 \sqrt{-3},-1-\sqrt{-3}, 2,1+\sqrt{-3}\}$ is the $D(-1+2 \sqrt{-3})$-quadruple,
- $\{8,1+\sqrt{-3}, 1-\sqrt{-3},-4\}$ is the $D(5)$-quadruple,
- $\{\sqrt{-3}, 3 \sqrt{-3}, 8 \sqrt{-3}, 120 \sqrt{-3}\}$ is the $D(-3)$-quadruple,
- $\{1,3,8,120\}$ is the $D(1)$-quadruple,
- $\{6,-2-2 \sqrt{-3},-2+2 \sqrt{-3},-14\}$ is the $D(9)$-quadruple,
- $\{2+2 \sqrt{-3}, 1+\sqrt{-3}, 1-\sqrt{-3}, 2-2 \sqrt{-3}\}$ is the $D(-7)$-quadruple.
2.2. $D(2 m+(2 n+1) \sqrt{-3})$-quadruples.

z	k	m	u	D_{4} in	exceptions of z
$4 A+(4 B+3) \sqrt{-3}$	$\frac{A+3 B+1}{2}+\frac{-A+B+1}{2} \sqrt{-3}$	$\frac{1+\sqrt{-3}}{2}$	1	$\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$	$-\sqrt{-3}$
$4 A+2+(4 B+1) \sqrt{-3}$	$\frac{A+3 B}{2}+\frac{-A+B}{2} \sqrt{-3}$	$\frac{1+\sqrt{-3}}{2}$	1	$\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$	$2+\sqrt{-3}$
$4 A+(4 B+1) \sqrt{-3}$	$\frac{A-3 B}{2}-1+\frac{A+B}{2} \sqrt{-3}$	$\frac{1-\sqrt{-3}}{2}$	1	$\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$	$\sqrt{-3}$
$4 A+2+(4 B+3) \sqrt{-3}$	$\frac{A-3 B-3}{2}+\frac{A+B+1}{2} \sqrt{-3}$	$\frac{1-\sqrt{-3}}{2}$	1	$\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$	$2-\sqrt{-3}$

Table 2

For the exceptions noted in Table 2, we found the following $D(z)$ quadruples in $\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$:

- $\left\{\frac{1}{2}-\frac{3}{2} \sqrt{-3},-1, \frac{1}{2}-\frac{1}{2} \sqrt{-3},-\frac{3}{2}+\frac{1}{2} \sqrt{-3}\right\}$ is the $D(-\sqrt{-3})$-quadruple,
- $\left\{\frac{1}{2}+\frac{1}{2} \sqrt{-3},-\frac{7}{2}+\frac{1}{2} \sqrt{-3},-2,-\frac{23}{2}+\frac{1}{2} \sqrt{-3}\right\}$ is the $D(2+\sqrt{-3})-$ quadruple,
- $\left\{\frac{1}{2}+\frac{3}{2} \sqrt{-3},-1, \frac{1}{2}+\frac{1}{2} \sqrt{-3},-\frac{3}{2}-\frac{1}{2} \sqrt{-3}\right\}$ is the $D(\sqrt{-3})$-quadruple,
- $\left\{\frac{1}{2}-\frac{1}{2} \sqrt{-3},-\frac{7}{2}-\frac{1}{2} \sqrt{-3},-2,-\frac{23}{2}-\frac{1}{2} \sqrt{-3}\right\}$ is the $D(2-\sqrt{-3})-$ quadruple.
2.3. $D(4 m+4 n \sqrt{-3})$-quadruples.

z	k	m	u	D_{4} in	exceptions of z
$8 A+8 B \sqrt{-3}$	$\frac{-A+3 B-2}{2}-\frac{A+B}{2} \sqrt{-3}$	$\frac{1}{2}$	$1+\sqrt{-3}$	$\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$	0
$8 A+4+(8 B+4) \sqrt{-3}$	$\frac{-A+3 B-1}{2}-\frac{A+B+1}{2} \sqrt{-3}$	$\frac{1}{2}$	$1+\sqrt{-3}$	$\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$	$-4+4 \sqrt{-3}$

Table 3

The set $\{1,2-2 \sqrt{-3}, 5,13-4 \sqrt{-3}\}$ is the $D(-4+4 \sqrt{-3})$-quadruple in $\mathbb{Z}[\sqrt{-3}]$ and it is easy to see that there exits infinitely many D (0)-quadruples.

We obtain a $D(8 A+4+8 B \sqrt{-3})$-quadruple by multiplying elements of a $D(2 m+1+2 n \sqrt{-3})$-quadruple by $u=2$ except for $z=-4,12$, but

$$
\left\{1, \frac{7}{2}+\frac{1}{2} \sqrt{-3}, \frac{7}{2}-\frac{1}{2} \sqrt{-3}, 13\right\}
$$

is the $D(-4)$-quadruple, and

$$
\{-2,7+\sqrt{-3}, 7-\sqrt{-3}, 30\}
$$

is the $D(12)$-quadruple. Also, a $D(8 A+(8 B+4) \sqrt{-3})$-quadruple is obtained by multiplying elements of a $D(2 m+(2 n+1) \sqrt{-3})$-quadruple by $u=2$. Obviously, the resulting sets are subsets of $\mathbb{Z}[\sqrt{-3}]$ (except for $z=-4$).
2.4. $D(4 m+2+(4 n+2) \sqrt{-3})$-quadruples.

z	k	m	u	D_{4} in	exceptions of z
$8 A+2+(8 B+2) \sqrt{-3}$	$-A-1-B \sqrt{-3}$	$\frac{1+\sqrt{-3}}{4}$	$1+\sqrt{-3}$	$\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$	$-6+2 \sqrt{-3}$ $2+2 \sqrt{-3}$
$8 A+6+(8 B+6) \sqrt{-3}$	$-\frac{2 A+3}{2}-\frac{2 B+1}{2} \sqrt{-3}$	$\frac{1+\sqrt{-3}}{4}$	$1+\sqrt{-3}$	$\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$	-
$8 A+2+(8 B+6) \sqrt{-3}$	$-(A+1)-(B+1) \sqrt{-3}$	$\frac{1-\sqrt{-3}}{4}$	$1-\sqrt{-3}$	$\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$	$-6-2 \sqrt{-3}$, $2-2 \sqrt{-3}$
$8 A+6+(8 B+2) \sqrt{-3}$	$-\frac{2 A+3}{2}-\frac{2 B+1}{2} \sqrt{-3}$	$\frac{1-\sqrt{-3}}{4}$	$1-\sqrt{-3}$	$\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$	-

Table 4

While the polynomial formula D_{4} gives sets with two equal elements, for those exceptions of z of Table 4, we found the following $D(z)$-quadruples in $\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$:

- $\left\{-\frac{1}{2}+\frac{1}{2} \sqrt{-3},-9-2 \sqrt{-3},-\frac{25}{2}-\frac{1}{2} \sqrt{-3},-\frac{85}{2}-\frac{11}{2} \sqrt{-3}\right\}$ is the $D(-6+$ $2 \sqrt{-3})$-quadruple,
- $\left\{-\frac{1}{2}+\frac{1}{2} \sqrt{-3},-\frac{5}{2}+\frac{3}{2} \sqrt{-3},-1+2 \sqrt{-3},-\frac{13}{2}+\frac{13}{2} \sqrt{-3}\right\}$ is the $D(2+$ $2 \sqrt{-3}$-quadruple,
- $\left\{-\frac{1}{2}-\frac{1}{2} \sqrt{-3},-9+2 \sqrt{-3},-\frac{25}{2}+\frac{1}{2} \sqrt{-3},-\frac{85}{2}+\frac{11}{2} \sqrt{-3}\right\}$ is the $D(-6-$ $2 \sqrt{-3})$-quadruple,
- $\left\{-\frac{1}{2}-\frac{1}{2} \sqrt{-3},-\frac{5}{2}-\frac{3}{2} \sqrt{-3},-1-2 \sqrt{-3},-\frac{13}{2}-\frac{13}{2} \sqrt{-3}\right\}$ is the $D(2-$ $2 \sqrt{-3}$)-quadruple.
2.5. $D\left(\frac{2 m+1}{2}+\frac{2 n+1}{2} \sqrt{-3}\right)$-quadruples.

We derive $D\left(\frac{2 m+1}{2}+\frac{2 n+1}{2} \sqrt{-3}\right)$-quadruples from $D(2 m+1+2 n \sqrt{-3})$ and $D(2 m+(2 n+1) \sqrt{-3})$-quadruples by multiplying them by $\frac{1+\sqrt{-3}}{2}$ and $\frac{1-\sqrt{-3}}{2}$.

- Multiplying the elements of a $D(2 m+1+2 n \sqrt{-3})$-quadruple by $u=$ $\frac{1+\sqrt{-3}}{2}$ we obtain a $D\left((2 m+1+2 n \sqrt{-3}) u^{2}\right)$-quadruple except for $z=$ $\frac{1}{2}-\frac{1}{2} \sqrt{-3},-\frac{3}{2}+\frac{3}{2} \sqrt{-3}$. The number $(2 m+1+2 n \sqrt{-3}) u^{2}$ is of the form $\frac{2 A+1}{2}+\frac{2 B+1}{2} \sqrt{-3}$ and for given $A, B \in \mathbb{Z}$ the equation

$$
\begin{equation*}
(2 m+1+2 n \sqrt{-3}) u^{2}=\frac{2 A+1}{2}+\frac{2 B+1}{2} \sqrt{-3} \tag{2.1}
\end{equation*}
$$

has an integer solution $(m, n \in \mathbb{Z})$ if and only if $-A+3 B \equiv 1(\bmod 4)$ and $A+B \equiv 3(\bmod 4)$, i.e. $(A, B) \bmod 4 \in\{(0,3),(1,2),(2,1),(3,0)\}$. Concerning exceptions, the set

$$
\left\{\frac{1}{2}+\frac{1}{2} \sqrt{-3},-\frac{5}{2}-\frac{3}{2} \sqrt{-3},-1-2 \sqrt{-3},-\frac{15}{2}-\frac{15}{2} \sqrt{-3}\right\}
$$

represents the $D\left(-\frac{3}{2}+\frac{3}{2} \sqrt{-3}\right)$-quadruple, while we could not find the $D\left(\frac{1}{2}-\frac{1}{2} \sqrt{-3}\right)$-quadruple.

- Multiplying the elements of a $D(2 m+1+2 n \sqrt{-3})$-quadruple by $u=$ $\frac{1-\sqrt{-3}}{2}$ we obtain a $D\left((2 m+1+2 n \sqrt{-3}) u^{2}\right)$-quadruple except for $z=$ $\frac{1}{2}+\frac{1}{2} \sqrt{-3},-\frac{3}{2}-\frac{3}{2} \sqrt{-3}$. For given $A, B \in \mathbb{Z}$ the equation (2.1) has an integer solution if and only if $A+3 B \equiv 0(\bmod 4)$ and $A-B \equiv 0$ $(\bmod 4)$, i.e. $(A, B) \bmod 4 \in\{(0,0),(1,1),(2,2),(3,3)\}$. The set

$$
\left\{\frac{1}{2}-\frac{1}{2} \sqrt{-3},-\frac{5}{2}+\frac{3}{2} \sqrt{-3},-1+2 \sqrt{-3},-\frac{15}{2}+\frac{15}{2} \sqrt{-3}\right\}
$$

is the $D\left(-\frac{3}{2}-\frac{3}{2} \sqrt{-3}\right)$-quadruple and we have not detected a $D\left(\frac{1}{2}+\right.$ $\frac{1}{2} \sqrt{-3}$)-quadruple.

- Multiplying the elements of a $D(2 m+(2 n+1) \sqrt{-3})$-quadruple by $u=\frac{1+\sqrt{-3}}{2}$ we obtain a $D\left(\frac{2 A+1}{2}+\frac{2 B+1}{2} \sqrt{-3}\right)$-quadruple. For given $A, B \in \mathbb{Z}$ the equation

$$
\begin{equation*}
(2 m+(2 n+1) \sqrt{-3}) u^{2}=\frac{2 A+1}{2}+\frac{2 B+1}{2} \sqrt{-3} \tag{2.2}
\end{equation*}
$$

has an integer solution if and only if $-A+3 B \equiv 3(\bmod 4)$ and $A+B \equiv$ $1(\bmod 4)$, i.e. $(A, B) \bmod 4 \in\{(0,1),(1,0),(3,2),(2,3)\}$.

- Multiplying the elements of a $D(2 m+(2 n+1) \sqrt{-3})$-quadruple by $u=\frac{1-\sqrt{-3}}{2}$ we obtain a $D\left(\frac{2 A+1}{2}+\frac{2 B+1}{2} \sqrt{-3}\right)$-quadruple. For given $A, B \in \mathbb{Z}$ the equation (2.2) has an integer solution if and only if $A+3 B \equiv 2(\bmod 4)$ and $-A+B \equiv 2(\bmod 4)$, i.e. $(A, B) \bmod 4 \in$ $\{(0,2),(2,0),(1,3),(3,1)\}$.

3. $D(z)$ QUADRUPLES IN $\mathbb{Z}[\sqrt{-3}]$

In the previous section we see that some $D(z)$-quadruples that have been constructed already lie in $\mathbb{Z}[\sqrt{-3}]$ but some of them do not although z can be represented as a difference of squares in $\mathbb{Z}[\sqrt{-3}]$. Here we show that this can be improved.
3.1. $D(2 m+1+2 n \sqrt{-3})$-quadruples.

z	k	m	u	D_{4} in	exceptions of z
$4 A+1+(4 B+2) \sqrt{-3}$	$\frac{2 A-2 B+1}{2}+\frac{A+1}{2} \sqrt{-3}$	$\sqrt{-3} / 3$	$\sqrt{-3}$	$\mathbb{Z}[\sqrt{-3}]$	$-3-2 \sqrt{-3}$, $-3+2 \sqrt{-3}$

Table 5

The set $\{-\sqrt{-3},-2+\sqrt{-3},-2,-8+3 \sqrt{-3}\}$ is a $D(-3-2 \sqrt{-3})$, while the set $\{\sqrt{-3},-2-\sqrt{-3},-2,-8-3 \sqrt{-3}\}$ is a $D(-3+2 \sqrt{-3})$-quadruple in $\mathbb{Z}[\sqrt{-3}]$.

3.2. $D(4 m+2+(4 n+2) \sqrt{-3})$-quadruples.

Since there exist a $D\left(\frac{2 m+1}{2}+\frac{2 n+1}{2} \sqrt{-3}\right)$-quadruple in $\mathbb{Z}[(1+\sqrt{-3}) / 2]$, by multiplying by 2 the elements of this quadruple we obtain a $D(4 m+2+(4 n+$ 2) $\sqrt{-3}$)-quadruple in $\mathbb{Z}[\sqrt{-3}]$, up to $z=2-2 \sqrt{-3}, 2+2 \sqrt{-3}$.

3.3. $D(4 m+4 n \sqrt{-3})$-quadruples.

We have shown in § 2.3. that $D(8 m+(8 n+4) \sqrt{-3})$ and $D(8 m+4+8 n \sqrt{-3})-$ quadruples in $\mathbb{Z}[\sqrt{-3}]$ are obtained by multiplying by 2 the elements of $D(2 m+(2 n+1) \sqrt{-3})$ and $D(2 m+1+2 n \sqrt{-3})$-quadruples in $\mathbb{Z}[(1+\sqrt{-3}) / 2]$ up to the the $D(-4)$-quadruple whose elements are not in $\mathbb{Z}[\sqrt{-3}]$.

The set

$$
\left\{1,9 k^{2}-8 k, 9 k^{2}-2 k+1,36 k^{2}-20 k+1\right\}
$$

is $D(8 k)$-quadruple $([7])$ if $k \neq 0,1$, so there exists a $D(8 m+8 n \sqrt{-3})$ quadruple in $\mathbb{Z}[\sqrt{-3}]$.

z	k	m	u	D_{4} in	exceptions of z
$8 A+4+(8 B+4) \sqrt{-3}$	$\frac{3 A-2 B+4}{2}+\frac{A+2}{2} \sqrt{-3}$	$\frac{\sqrt{-3}}{6}$	$2 \sqrt{-3}$	$\mathbb{Z}[\sqrt{-3}]$	$-12-4 \sqrt{-3}$ $-12+4 \sqrt{-3}$

Table 6

It is easy to check that for those exceptions of z in Table 6 , the polynomial formula D_{4} gives the set with two equal elements. Therefore for certain z, we found the following $D(z)$-quadruples in $\mathbb{Z}[\sqrt{-3}]$:

- $\{2+\sqrt{-3}, 2-2 \sqrt{-3}, 2-3 \sqrt{-3}, 6-11 \sqrt{-3}\}$ is the $D(-12+4 \sqrt{-3})$ quadruple,
- $\{2-\sqrt{-3}, 2+2 \sqrt{-3}, 2+3 \sqrt{-3}, 6+11 \sqrt{-3}\}$ is the $D(-12-4 \sqrt{-3})$ quadruple,
- $\{2+\sqrt{-3},-2+2 \sqrt{-3},-2+\sqrt{-3},-10+5 \sqrt{-3}\}$ is the $D(8)$-quadruple.

Remark 3.1. Concerning the list of possible exceptions given in Theorem 1.1 and Theorem 1.2 , we can easily observe that $3=-1 \cdot(\sqrt{-3})^{2},-4=-1 \cdot 2^{2}$, $\frac{1}{2} \pm \frac{1}{2} \sqrt{-3}=-1 \cdot\left(\frac{1}{2} \mp \frac{1}{2} \sqrt{-3}\right)^{2}$ and $2 \pm 2 \sqrt{-3}=-1 \cdot(1 \mp \sqrt{-3})^{2}$. So, we are not surprised that the key point lies in an investigation on the existence of $D(-1)$-quadruples in rings $\mathbb{Z}[(1+\sqrt{-3}) / 2]$ and $\mathbb{Z}[\sqrt{-3}]$. In an analogy to $D(-1)$-quadruple conjecture in the ring of integers and the problem of existence of $D(-1)$-quadruples in $\mathbb{Z}[\sqrt{-t}], t>0$ studied in [29] and [30], we might expect that for such z there does not exists a $D(z)$-quadruple.

Acknowledgements.

This work has been supported by Croatian Science Foundation under the project no. 6422 .

References

[1] F. S. Abu Muriefah and A. Al-Rashed, Some Diophantine quadruples in the ring $\mathbb{Z}[\sqrt{-2}]$, Math. Commun. 9 (2004), 1-8.
[2] F. S. Abu Muriefah and A. Al-Rashed, On the extendibility of the Diophantine triples $\{1,5, c\}$, Int. J. Math. Math. Sci. 33 (2004), 1737-1746.
[3] S. Alaca and K. S. Williams, Introductory Algebraic Number Theory, Cambridge University Press, Cambridge, 2004.
[4] A. Baker and H. Davenport, The equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}$, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
[5] N. C. Bonciocat, M. Cipu and M. Mignotte, On $D(-1)$-quadruples, Publ. Mat. 56 (2012), 279-304.
[6] E. Brown, Sets in which $x y+k$ is always a square, Math. Comp. 45 (1985), 613-620.
[7] A. Dujella, Generalization of a problem of Diophantus, Acta Arith. 65 (1993), 15-27.
[8] A. Dujella, Some polynomial formulas for Diophantine quadruples, Grazer Math. Ber. 328 (1996), 25-30.
[9] A. Dujella, The problem of Diophantus and Davenport for Gaussian integers, Glas. Mat. Ser. III 32 (1997), 1-10.
[10] A. Dujella, Complete solution of a family of simultanous Pellian equations, Acta Math. Inform. Univ. Ostraivensis 6 (1998), 59-67.
[11] A. Dujella, On the exceptional set in the problem of Diophantus and Davenport, Applications of Fibonacci Numbers 7 (1998), 69-76.
[12] A. Dujella, There are only finitely many Diophantine quintuples, J. Reine Angew. Math. 566 (2004), 183-214.
[13] A. Dujella, A. Filipin and C. Fuchs, Effective solution of the $D(-1)$-quadruple conjecture, Acta Arith. 128 (2007), 319-338.
[14] A. Dujella and Z. Franušić, On differences of two squares in some quadratic fields, Rocky Mountain J. Math. 37 (2007), 429-453.
[15] A. Dujella and C. Fuchs, Complete solution of a problem of Diophantus and Euler, J. London Math. Soc. 71 (2005), 33-52.
[16] A. Dujella and I. Soldo, Diophantine quadruples in $\mathbb{Z}[\sqrt{-2}]$, An. Stiint. Univ. "Ovidius" Constanta Ser. Mat. 18 (2010), 81-98.
[17] C. Elsholtz, A. Filipin and Y. Fujita, On Diophantine quintuples and $D(-1)$ quadruples, Monatsh. Math. 175 (2014), 227-239.
[18] A. Filipin, Nonextendibility of $D(-1)$-triples of the form $\{1,10, c\}$, Int. J. Math. Math. Sci. 14 (2005), 2217-2226.
[19] A. Filipin and Y. Fujita, The number of $D(-1)$-quadruples, Math. Commun. 15 (2010), 381-391.
[20] Z. Franušić, Diophantine quadruples in the ring $\mathbb{Z}[\sqrt{2}]$, Math. Commun. 9 (2004), 141148.
[21] Z. Franušić, Diophantine quadruples in $Z[\sqrt{4 k+3}]$, Ramanujan J. 17 (2008), 77-88.
[22] Z. Franušić, A Diophantine problem in $\mathbb{Z}[(1+\sqrt{d}) / 2]$, Stud. Sci. Math. Hung. 46 (2009), 103-112.
[23] Z. Franušić, Diophantine quadruples in the ring of integers of $\mathbb{Q}(\sqrt[3]{2})$, Miskolc Math. Notes 14 (2013), 893-903 .
[24] Y. Fujita, The extensibility of $D(-1)$-triples $\{1, b, c\}$, Pub. Math. Debrecen 70 (2007), 103-117.
[25] H. Gupta and K. Singh, On k-triad sequences, Internat. J. Math. Math. Sci. 8 (1985), 799-804.
[26] B. He and A. Togbé, On the $D(-1)$-triple $\left\{1, k^{2}+1, k^{2}+2 k+2\right\}$ and its unique $D(-1)$-extension, J. Number Theory 131 (2011), 120-137.
[27] S. P. Mohanty and A. M. S. Ramasamy, On $P_{r, k}$ sequences, Fibonacci Quart. 23 (1985), 36-44.
[28] I. Soldo, On the existence of Diophantine quadruples in $\mathbb{Z}[\sqrt{-2}]$, Miskolc Math. Notes 14 (2013), 261-273.
[29] I. Soldo, On the extensibility of $D(-1)$-triples $\{1, b, c\}$ in the ring $\mathbb{Z}[\sqrt{-t}], t>0$, Studia Sci. Math. Hungar. 50 (2013), 296-330.
[30] I. Soldo, $D(-1)$-triples of the form $\{1, b, c\}$ in the ring $\mathbb{Z}[\sqrt{-t}], t>0$, Bull. Malays. Math. Sci. Soc., to appear.

Diofantov problem za cijele brojeve kvadratnog polja $\mathbb{Q}(\sqrt{-3})$

Zrinka Franušić i Ivan Soldo

Sažetak. Rješavamo Diofantov problem za cijele brojeve kvadratnog polja $\mathbb{Q}(\sqrt{-3})$ konstruiranjem $D(z)$-četvorki u prstenu $\mathbb{Z}[\sqrt{-3}]$ za svaki z koji se može prikazati kao razlika dva kvadrata $u \mathbb{Q}(\sqrt{-3})$, do na konačno mnogo mogućih izuzetaka.

Zrinka Franušić
Department of Mathematics
University of Zagreb
Bijenička cesta 30, HR-10000 Zagreb
Croatia
E-mail: fran@math.hr
Ivan Soldo
Department of Mathematics
University of Osijek
Trg Ljudevita Gaja 6, HR-31 000 Osijek
Croatia
E-mail: isoldo@mathos.hr
Received: 31.3.2014.

[^0]: 2010 Mathematics Subject Classification. 11D09, 11R11.
 Key words and phrases. Diophantine quadruples, quadratic field.

