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Summary 

In this study, a novel approach to the low-speed marine diesel propulsion shafting 
design is proposed and examined. The proposed approach is based on the shafting least inertia 
principle, in which the design task is formulated and solved as a constrained nonlinear 
optimization problem. The core of the approach is a cost function, which is defined as a 
weighted sum of the shafting, turning wheel, and tuning wheel inertias, because it is a suitable 
proxy of the propulsion shafting material and production costs. The constraint set is composed 
of the three mandatory constraints, where the crankshaft, intermediate shaft, and propeller 
shaft torsional vibration stresses should be lower than the corresponding stress limits, as well 
as a few additional constraints that help ensure that the plant behavior complies with 
applicable regulatory and operational requirements. For optimization purposes, a Recursive 
Quadratic Programming method is utilized, while the shafting torsional vibration response is 
determined using a standard vibration analysis program with slight modifications. Numerical 
experiments have shown that fast convergence can be achieved. Compared to the classically 
obtained solution, the proposed approach provided more than 8 % reduction in cost function 
as well as significantly reduced design time. 

Key words: inertia; optimum design; propulsion shafting; torsional vibration 

1. Introduction 

The designs of modern merchant ships tend to maximize the cargo space, which thus 
reduces space in other parts of the vessel. When looking for space to minimize, the engine 
room comprising the main engine, auxiliary engines, boilers, and other utilities is the prime 
candidate. However, there are clear limitations to reducing the engine room space. Firstly, 
there are physical limitations in terms of placing all equipment into limited smaller sized 
engine room. Secondly, a limitation is imposed by the minimum length of the propulsion 
shafting that is needed to retain its torsional vibration stress levels within acceptable limits. 

In general, the main engine location is usually selected as the aft-most position allowed 
by the ships aft body geometry; see, for example [1]. This means the least propeller shaft and 
intermediate shaft lengths are involved, Fig. 1. The unfavorable consequence of this approach 
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is the high torsional vibration stress generated on the propulsion shafting [2]. Since modern 
engines are characterized by maximized combustion pressures and therefore, increased  

 
Fig. 1  Typical merchant ship propulsion plant (Note: bearings omitted in order to maintain clarity) 

vibration excitations, the correct design of the propulsion shafting design emerges as one of 
the most challenging tasks during the process of designing the ship's machinery. 

The correct design of the marine diesel propulsion shafting was reviewed in the classic 
work [3], while other important aspects have been covered in greater detailed elsewhere [4-8]. 
Optimization methods in the design of marine diesel propulsion shafting have mostly been 
applied in the field of shaft statics [9-11], whereas dynamic responses have rarely been taken 
into account. All these papers have dealt with the number and optimal positions of the journal 
bearings, implying the already known shafting, turning wheel, and tuning wheel dimensions. 
However, no one paper has researched the selection of these dimensions. The optimal 
selection of shafting dimensions has been the theme of a small poster [12], but no practical 
realization was provided at that time. 

The aim of the present study was to propose a procedure for the selection of the low-
speed marine diesel propulsion shafting dimensions, in which the design task is formulated 
and solved as a constrained nonlinear optimization problem. The proposed procedure takes 
into account the torsional vibration response of the propulsion plant (because this is the most 
influential factor that determines the shafting dimensions), an approach which has not hitherto 
been reported in literature. The applicability of the proposed procedure was examined using a 
case study of the design of a Suezmax tanker propulsion shafting, which was originally 
optimized using a classic trial-and-error approach, [2]. 

The remainder of this paper is organized as follows. In Section 2 the basics of the least 
inertia design approach are provided. Then, in Section 3, the torsional vibration response of 
the propulsion shafting is outlined. In Section 4, the specific characteristics of the numerical 
experiments are reported in more detail. Finally, in Section 5, some conclusions arising from 
the study are discussed. 

2. Least inertia approach 

The marine diesel propulsion shafting of a typical merchant ship usually contains the 
following components: engine crankshaft, intermediate shaft, and propeller shaft, Fig. 1. 
Regarding the dynamic behavior of the shafting, important additional components include the 
turning wheel (connected to the crankshaft aft side), tuning wheel (connected to the 
crankshaft fore side), and the propeller. In cases when a favorable torsional vibration response 
is able to be obtained, the tuning wheel can be removed from the system. For analysis 
purposes, the propulsion shafting is usually simplified to a torsional scheme, as shown in Fig. 
2. 
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Fig. 2  Torsional vibration scheme of the propulsion system 

Shafting inertia and stiffness are the most influential factors that determine the overall 
torsional vibration behavior of the propulsion system. The constant diameter shaft element 
inertia, J, and stiffness, k, are defined with: 

4 ,
32

J l dπ ρ= ⋅ ⋅ ⋅  (1) 

4 ,
32

Gk d
l

π
= ⋅ ⋅  (2) 

where G and ρ are the shaft material shear modulus and density, and l and d are the shaft 
element length and diameter, respectively. According to Eq. (1) and (2), the lower shaft 
inertia implies a smaller diameter and lower stiffness. The opposite is also valid. 

In general, the smaller shafting inertia systems possess a number of advantages: smaller 
shaft diameters imply lower material costs in terms of smaller bearings, stern tubes and oil 
glands, smaller propeller hubs, simplified shaft alignments [13], and reduced propeller-
induced variable thrusts [14], that provoke unfavorable engine room and overall ship hull  
vibrations. However, smaller diameters also imply higher vibration stresses, and thus 
vibration analyses should be carried out with the utmost care and accuracy. In addition, it 
should be clearly realized that the inertia of the turning wheel and tuning wheel has a 
completely opposite influence on the propulsion plant torsional vibration behavior. 
Specifically, the smaller inertia wheels generally increase the vibration torque, and hence 
enlarge the vibration stress. Therefore, it is essential to consider the inertia of the whole 
system, where the shaft inertia and wheel inertias are the constituents. Applied in this way, the 
least inertia approach ensures a balance between the opposite shaft diameter and wheel size 
influences. 

The rationale behind the least inertia design approach is to select those shafting 
dimensions, and thus the accompanied components, that minimize the overall inertia of the 
propulsion system and, at the same time, satisfy all the imposed constraints (e.g. vibration 
stresses should be within the allowable limits). More formally, the least inertia design 
approach for the low-speed propulsion shafting system can be defined as follows. 

2.1 Design variables 

A set of design variables 1 2( , ,..., ) , ,n
nx x x= ∈x x can be assembled in various ways. 

However, in its simplest form, it can be defined as: 
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where ISd  is the intermediate shaft diameter, PSd  is the propeller shaft diameter, FWJ  is the 
turning wheel inertia, and TWJ  is the tuning wheel inertia. 

Figure 1 shows that the intermediate shaft and propeller shaft are actually stepped shafts 
composed of various sections of distinct diameters. However, it can be shown that these 
stepped shaft diameters are not independent, because they are defined by particular relations 
[6]. Therefore, with no substantial loss in accuracy, both shafts can be satisfactorily defined 
by using two unique diameters only, denoted here as ISd  and PSd . 

More generally, the set of design variables can be expanded by introducing both shaft 
lengths, the required material properties, and other parameters that define the propulsion plant 
in greater detail. 

2.2 Cost function 

The definition of the cost function is a cornerstone of the least inertia propulsion 
shafting design approach. The cost function is defined as the sum of the inertias of the 
shafting components. Because some components are predefined, such as the engine crankshaft 
and propeller, they can be omitted from this definition. In addition, wheel inertias are usually 
an order of magnitude greater compared with the shafting inertias. Therefore, some kind of 
inertia scaling is desirable. 

Taking these considerations into account, the cost function can be finally set as: 

( ) S FW FW TW TW ,Sf w J w J w J= ⋅ + ⋅ + ⋅x  (4) 

where SJ  is the shafting inertia, and S FW TW, , and w w w  are the weight factors assigned to the 
shafting, turning wheel, and tuning wheel inertias, respectively. 

It is reasonable to set the weight factor of the shafting inertia equal to unity ( Sw = 1), 
and assign smaller values to the other weight factors (values in the range of 0,01 to 0,1 seem 
to be appropriate). The cost function then implies the corresponding or equivalent shafting 
inertia. Because the shafting production costs are usually strongly correlated with the shaft 
dimensions and the sizes of the accompanied equipment, the proposed cost function becomes 
a suitable proxy of the actual shafting costs. 

It is important to realize the true meaning of the selected weight factors. They are not 
simply pure numbers that scale the contributions of various inertias to the cost function. On 
the contrary, they are an expression of design intent, namely a designer's will, expressed in a 
few simple numbers.  

Lower weight factors minimize the relative importance of the respective property and 
thereby allow for higher values of it. By contrast, higher weight factors stress the relative 
importance of the respective property and thus support its reduction. Further insights into the 
benefits of these weight factors can be obtained by analyzing the results provided in Section 
4. 

2.3 Constraints 

Constraints are set of conditions that, when met, ensure that design feasibility complies 
with the pre-agreed classification rules. Furthermore, they help ensure the plant behavior 
complies with operational requirements. The three mandatory constraints are: 

( )
2,

1 0; 1,2,3,j
j

j j
g j

s
τ
τ

≡ − ≤ =
⋅

x  (5) 
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where jτ  is the peak vibration stress encountered in the whole engine speed range, 2, jτ  is the 
corresponding stress limit, js  is the stress limit factor, and j is the index denoting the 
crankshaft, intermediate shaft, and propeller shaft, respectively. The vibration stress limits, 
Equation (5), applicable to the crankshaft are defined in [5], or in the enginebuilders 
documentation, while the corresponding stress limits for the intermediate shaft and propeller 
shaft are defined in [6]. 

If more specific requirements are called for, the set of constraints can be easily 
expanded through additional constraints. Typical candidates are the peak vibration stress limit 
in the event of irregular firings in one of the engine cylinders, the angular displacement or 
angular velocity limit of the engine crankshaft, and the position of the so-called barred speed 
range (Section 4.3). 

In addition to these explicit constraints, Eq. (5), a number of implicit constraints can be 
expressed in the form of variable bounds. For instance, the diameters of both the propeller 
shaft and the intermediate shaft should be greater or equal to the minimum shaft diameters 
prescribed by classification bodies, [6]. Furthermore, the dimensions of the turning wheel or 
tuning wheel should also be within the bounds stipulated or approved by the enginebuilders. 

3. Shafting torsional vibration response 

The analysis of the torsional vibration response of the propulsion shafting is nowadays a 
well-developed field that has multiple sources that thoroughly treat its computational aspects 
[15-18]. The main equation governing the system response is: 

,ϕ ϕ ϕ+ + =J C K f  (6) 

where J is the inertia matrix, C is the damping matrix, K is the torsional stiffness matrix, ϕ  is 
the displacement vector, and f is the vibration excitation vector. 

Equation (6) is a non-homogenous system of linear ordinary differential equations of 
second order with constant coefficients, which after applying the proper substitution [17], 
transform into a system of algebraic equations with complex coefficients: 

2 ˆˆ ˆ ˆ ,iϕ ϕ ϕ− + + =J C K fΩ Ω  (7) 

where Ω  is the excitation frequency, i is the imaginary unit, and ϕ̂  and f̂  are the vectors of 
the complex angular displacement and excitation amplitudes, respectively. The number of 
equations in Eq. (7) corresponds to the number of lumped masses in the torsional vibration 
scheme, Fig. 2. 

Vibration analysis starts by calculating the natural vibration (eigenvalue problem), [17], 
where the plant's natural frequencies, mode shapes, and critical speeds are determined. Then, 
a forced vibration response is calculated, including working out the angular displacements of 
all system masses. After that, the remaining process is straightforward: the vibration torques 
are calculated using the shaft stiffness properties and finally the vibration stresses are 
determined. 

This analysis process refers to one harmonic of the vibration excitation. Because the 
actual vibration excitation is of the periodic form, a series of responses should be calculated 
and synthesized until the total response is obtained. In addition, the whole process should be 
repeated multiple times for various engine speeds within the operating speed range. 
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4. A Suezmax tanker case study 

The proposed approach was used during the development of a ShaftOpt v1.0 design tool 
that provides the optimum dimensions of a propulsion shafting in terms of its torsional 
vibration behavior. The case study of a 166300 dwt Suezmax oil tanker is used to demonstrate 
the utility of this program. 

 The basic design data are provided in Tables 1 and 2. Other engine-specific data can 
be obtained from the enginebuilders documentation. 

4.1 Optimization problem 

The studied tanker [19] is characterized by a relatively small engine room (22,95m in 
length), with the engine located in the foremost position given the limited engine room space 
available, Fig. 1. 

The design of the propulsion shafting can be defined as an optimization problem where 
the vector of the design variables, Eq. (3), should be determined to minimize the cost 
function, Eq. (4), such that a set of constraint functions, Eq. (5), is satisfied. 

4.2 Optimization method 

For optimization purposes, we use a variant of the Recursive Quadratic Programing 
method (RQP; also known as Sequential Quadratic Programing, SQP), [20]. This method was 
originally developed by Pshenichny [21], and further improved by Lim and Arora [22], and 
Belegundu and Arora [23]. The method possesses a number of favorable properties, including 
a sound theoretical foundation, proof of global convergence with a potential constraint 
strategy, and a good track record of reliability and efficiency [24]. 

Pshenichny's method minimizes a descent function: 

( ) ( ) ( ) ,F f r V= + ⋅x x x  (8) 

Table 1  Main engine particulars 

Diesel engine type 2-stroke  
Rated power 16780 kW 
Rated speed 82 rpm 
Minimum speed 20 rpm 
Number of cylinders 6  
Cylinder bore 700 mm 
Piston stroke 2800 mm 
Mean indicated pressure 20 bar 

Table 2  Propulsion shafting data 

Propeller inertia 141500 kgm2 
Propeller shaft length 8430 mm 
Propeller shaft material UTSa) 600 N/mm2 
Intermediate shaft length 8000 mm 
Intermediate shaft material UTSa) 600 N/mm2 
a) Ultimate Tensile Strength  
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where r is the penalty parameter, and ( )V x  is the maximum constraint violation, defined by: 

( ) ( )
( )

0,

max , 1 to ,

, 1 to 
j

j

V g j m

g j m m

⎛ ⎞
⎜ ⎟

′= =⎜ ⎟
⎜ ⎟⎜ ⎟′= +⎝ ⎠

x x

x

 (9) 

where m′  is the number of equality constraints, m is the total number of constraints, and 
inequality constraints are of the 0jg ≤  form. Since all constraints, Eq. (5), are normalized 

[25], the maximum constraint violation ( )V x  suggests the maximum percentage stress limit 
violation (e.g. ( )V x  = 0,485 means that the peak vibration stress is 48,5% higher than the 
corresponding stress limit). At the optimum, the cost function is equal to the descent function 
value, since the constraint violation for the feasible point should be equal to zero. 

The optimization algorithm is coded in RQPOpt v2.3 general purpose optimization 
software. This algorithm utilizes a specific active set strategy that employs only a fraction of 
the overall total of constraints during the search direction subproblem. In addition, a 
significant feature of the software is an interactive recovery routine that enables further 
progress in cases when no improvement is achieved within the predefined number of line 
search attempts. This routine offers three modes of numerical recovery [25]. The first one is a 
reset of the Hessian matrix of the Lagrangian function, when the Hessian matrix is set to 
unity. The second one is an expansion of the active constraint set, when all constraints are 
included in the set during the search direction subproblem. Finally, the third mode reduces the 
constraint violation irrespective of the possible rise in the cost function. 

4.3 Optimization runs 

In order to better understand the influence of the weight factors related to the cost 
function, Eq. (4), it was decided to perform a series of optimization runs, each with different 
weights prescribed and/or different starting points. 

Table 3 comprises 12 series of the weight factors that were applied to the cost function. 
In all trials, the shafting weight factor was set to unity, while the weight factors for the tuning 
wheel and the turning wheel were varied. Table 3 has four weight factor blocks, each 
containing three options. The first one gives equal weight to both wheels, whereas the second 
and third options give preference to reducing the tuning wheel or the turning wheel, 
respectively. The relative difference between the two weights and the basic one is set to 
±20%. 

Since the optimization problem is not unimodal (at least two local minima are 
expected), for each combination of weight factors three starting points were adopted (Table 
4), thereby raising the total number of optimization runs to 36. 

The Mini starting point (Table 4) resembles the minimum dimensions stipulated by the 
classification bodies [6], or allowed by the enginebuilders. This starting point is deeply 
infeasible, as the maximum constraint violation of 0,485 indicates, Fig.3. In addition to the 
stress response of the shafting vibration, this figure includes two curves that represent the 
stress limits imposed. The lower one (denoted by 1τ ) represents the stress limit for the 
continuous running of the engine, whereas the upper one (denoted by 2τ ) represents the stress 
limit for the transient running of the engine. The 1τ  stress limit can be violated for a limited 
time only, whereas 2τ  should not be violated under any circumstances. The engine speed  
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Table 3  Cost function weight factors 

Series TWw FWw  Sw

A 0,01 0,01 1,0 
B 0,012 0,008 1,0 
C 0,008 0,012 1,0 
D 0,02 0,02 1,0 
E 0,024 0,016 1,0 
F 0,016 0,024 1,0 
G 0,05 0,05 1,0 
H 0,06 0,04 1,0 
I 0,04 0,06 1,0 
J 0,1 0,1 1,0 
K 0,12 0,08 1,0 
L 0,08 0,12 1,0 

 

 
Fig. 3  Intermediate shaft stress response for the first starting point 

range where the actual vibration stress exceeds 1τ  stress limit is referenced as the barred 
speed range. 

The Maxi starting point (Table 4), by contrast, includes the maximum turning wheel and 
tuning wheel allowed by the enginebuilders. The maximum starting diameters of the propeller 
shaft and intermediate shaft are selected as 20% higher values compared with the 
corresponding minimum one. This starting point is feasible, as indicated by ( )V x =0, Table 4. 

Finally, the Midi starting point (Table 4) is assembled of values that are in the middle of 
the previous two. The corresponding maximum constraint violation is equal to 0,106, 
indicating the moderate infeasibility. 

During the evaluation of the constraints, Equation (5), the following stress limit factors 
are used: 1s  = 0,95 and 2s  = 3s  = 0,92. These values provide a safety margin for cases when 
the peak vibration stresses are additionally elevated owing to irregular firings in some of the 
engine cylinders. 
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In order to calculate the torsional vibration response, a TorViC [26] computer code is 
used, although the basic code is slightly modified to enable analysis calls by the optimization 
package. At the source-code level, the analysis program is transformed into the subroutine and 
the subroutine arguments are used to communicate between the optimization and analysis 
programs. All analysis program outputs are suppressed. The ordinary analysis includes a vast 
number of evaluations of the forced vibration response within the whole engine speed range. 
For optimization purposes only, a subset of these response evaluations is carried out, 
depending on the resonances determined in the natural vibration analysis phase. 

Table 4  Starting points 

Point Mark ISd  PSd  FWJ  TWJ  ( )V x  

1 Mini 532 650 13150     0 0,485 
2 Midi 580 720 27000 30000 0,106 
3 Maxi 640 780 42000 60000 0,0 

The specific RQP optimization algorithm parameters used [20] are summarized in Table 
5. 

Table 5  Optimization algorithm parameters 

Pshenichny’s constraint set constant 0δ  0,1 
Penalty parameter 0r  1,0 
Stopping tolerance dε  51,0 10−×  
Constraint violation tolerance cvε  31,0 10−×  
Finite difference parameter Δ  51,0 10−×  

All programs were compiled using a Compaq Visual Fortran 6.6C compiler and carried 
out on a standard PC workstation equipped with a 2,13 GHz dual-core processor, 2 GB RAM, 
and the MS Windows XP Professional SP3 operating system. 

4.4 Results 

All 36 optimization runs completed successfully. However, this was not a 
straightforward process, because a significant number of runs experienced numerical 
difficulties because of failure to find a better point during the line search process. Hence, the 
program's interactive recovery capability was extensively used and the active constraint set 
expansion was utilized in most cases. However, irrespective of whichever recovery measures 
were applied, some optimization runs still finished owing to their inability to progress any 
further. Hopefully, all these runs finished within the feasible region. 

The mid-range approximation feature [20] was not used during the line search process 
because this frequently requires an increased number of iterations. However, variable scaling 
[27] proved favorable in that a significant degree of efficiency improvement was achieved. 
This was expected because the design variables differed in size by nearly two orders of 
magnitude. A typical convergence history is shown in Figure 4. 

The results of each cost function weight factor group (Table 3) were then compared and 
the best-run results are shown in Table 6 (the letters denote the weight factors group, and the 
numbers entail the starting point). Assembled this way, Table 6 represents a collection of the 
optimum results achieved by using various cost function weight factors. 
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Fig. 4  Convergence history for the B-1 case 

Table 6 Optimum results achieved 

Case ISd  PSd  FWJ  TWJ  ( ) )* af x ( )*V x  NIT NFE NGE CPUT 

A−3 536,7 650 13150 57487 3010,0 0,0 6 45 67 38,942 
B−1 542,8 650 42000 34161 3084,0 51,8 10−× 11 75 133 66,956 

C−2 533,2 650 13150 59172 2915,5 41,3 10−× 5 42 70 36,002 

D−2 578,0 650 13150 40405 3629,7 0,0 8 73 125 66,432 
E−1 587,3 650 42000 17129 3705,5 0,0 11 76 148 62,366 
F−2 568,9 650 13150 43765 3514,3 0,0 9 75 125 67,006 
G−2 588,4 650 13150 36793 5127,4 0,0 9 46 90 48,654 
H−1 587,3 650 42000 17129 5330,1 0,0 11 76 154 66,703 
I−3 584,4 650 13150 38162 4917,7 0,0 13 100 169 91,581 
J−3 584,4 650 13150 36793 7624,5 0,0 12 73 119 69,878 
K−3 584,4 650 42000 16762 8001,7 0,0 12 73 119 57,975 
L−3 584,4 650 13150 36793 7151,7 0,0 12 62 104 54,332 
a)Cost functions are not mutually comparable because of the use of different weight factors 
NIT − Number of iterations, NFE − Number of cost function evaluations, 
NGE − Number of constraint function evaluations (each constraint counted separately), 
CPUT − Execution time in seconds, *x  − optimum design vector 

It is worth noting that these cost function values should not be claimed as an advantage 
during the comparison of the optimal solutions provided in Table 6. This is because each table 
entry refers to different definitions of the cost function and thereby represents a solution to 
different optimization problems. Therefore, an engineering judgment is more appropriate. 

At first sight, each set of results in Table 6 seem different. However, when analyzed in 
more detail, these results become more transparent and point to two principal outcomes only, 
depending on the size of the turning wheel. 

The first principal solution is based on the minimum turning wheel ( FWJ = 13150 
kgm2), whereas the second one utilizes the maximum turning wheel that is available ( FWJ = 
42000 kgm2). It is interesting to note that in both cases, the propeller shaft diameter is 
minimal ( PSd = 650 mm). The remaining design variable values (tuning wheel inertia and 
intermediate shaft diameter) strongly depend on the cost function weight factors applied. 
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Fig. 5  Crankshaft stress response for the C−2 case 

 
Fig. 6  Intermediate shaft stress response for the C−2 case 

 
Fig. 7  Propeller shaft stress response for the C−2 case 

If a small turning wheel is preferred, the solution denoted by C−2 is the best choice 
( ISd = 533,2 mm, and TWJ  = 59172 kgm2), because this minimizes the shafting as well as the 
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accompanied equipment costs (e.g. bearings, sterntube, and propeller hub). Figures 5, 6, and 7 
shows the corresponding torsional vibration responses for the crankshaft, intermediate shaft 
and propeller shaft, respectively. 

If, however, a large turning wheel is selected, the solution denoted by B−1 is the next 
most favorable candidate ( ISd = 542,8 mm, and TWJ = 34161 kgm2). 

Table 6 also provides other possibilities that may become interesting depending on a 
shaft diameter and wheel size preferences. 

It is interesting to compare these results with the result derived in the real project 
environment that was obtained using a simple trial-and-error approach [2]. After more than 
two dozen design iterations that took a full month to complete, the final results were ISd = 585 
mm, PSd = 650 mm, FWJ  = 13150 kgm2, and TWJ = 45000 kgm2. When compared with the 
J−3 and L−3 results (the most similar results shown in Table 6), the corresponding cost 
functions become ( )*f x = 8421,6 kgm2 and ( )*f x  = 7784,6 kgm2, respectively, depending 
on the weight factors used. Compared with the classically obtained solution, the proposed 
approach provided a more than 8% reduction in cost function as well as significantly reduced 
development time. 

5. Conclusions 

The proposed procedure is based on the shafting least inertia principle, when shafting 
dimensions are used that minimize the inertia of the propulsion plant while fulfilling the 
torsional vibration stress constraints. 

The benefits of the proposed approach are threefold. First, it can efficiently determine 
feasible designs that fully comply to classification society rules and other design 
requirements. Second, it provides design solutions that have a series of favorable features 
such as lower material and production costs, a simplified shaft alignment, and reduced 
propeller-induced variable trust remedies. Finally, by varying the cost function weight factors, 
it can generate different optimal solutions depending on the designer's preferences. 

Numerical experiments have shown that fast convergence of the resulting nonlinear 
optimization task can be achieved. They have also shown that the proposed procedure 
provides cost-effective designs and reduces design time. 
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