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GENERALIZATIONS AND IMPROVEMENTS OF AN
INEQUALITY OF HARDY-LITTLEWOOD-PÓLYA

Sadia Khalid and Josip Pečarić

Abstract. Some generalizations of an inequality of Hardy-
Littlewood-Pólya are presented. We discuss the n-exponential convexity
and log-convexity of the functions associated with the linear functional de-
fined by the generalized inequality and also prove the monotonicity prop-
erty of the generalized Cauchy means obtained via this functional. Finally,
we give several examples of the families of functions for which the results
can be applied.

1. Introduction and preliminaries

The following theorem is given in the famous Hardy-Littlewood-Pólya
book [2, Theorem 134].

Theorem 1.1. If f is a convex and continuous function defined on [0,∞)
and (ak, k ∈ N) are non-negative and non-increasing, then

(1.1) f

(
n∑

k=1

ak

)
≥ f (0) +

n∑

k=1

[f(kak) − f((k − 1)ak)] .

If f is concave, then the inequality in (1.1) reverses. If f ′ is a strictly increas-
ing function, there is equality only when ak are equal up to a certain point
and then zero.

An example of the above theorem is given below (see [2, p.100]).

Corollary 1.2. Let ak ∈ [0,∞) and the sequence (ak, k ∈ N) is non-
increasing. If s > 1, then we have

(1.2)

(
n∑

k=1

ak

)s

≥
n∑

k=1

ak
s [ks − (k − 1)s] .

If 0 < s < 1, then the inequality in (1.2) reverses.
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Inequality (1.1) is of great interest and has been generalized in many
different ways by various mathematicians.

In order to obtain our main results we need some definitions.

Definition 1.3. A sequence (ak, k ∈ N) ⊂ R is non-increasing in mean
if

(1.3)
1

n

n∑

k=1

ak ≥ 1

n+ 1

n+1∑

k=1

ak, n ∈ N.

A sequence (ak, k ∈ N) ⊂ R is non-decreasing in mean, if opposite in-
equality holds in (1.3).
In a similar way we can define when a finite sequence (ak, k = 1, . . . , n) ⊂ R
is non-increasing in mean or non-decreasing in mean (see [4]).

Remark 1.4. If we denote Sk =
∑k

i=1 ai, k ∈ N, then it is easy to see
that the sequence (ak, k ∈ N) is non-increasing in mean (non-decreasing in
mean) if and only if Sk−1 ≥ (k − 1)ak (Sk−1 ≤ (k − 1)ak) for k = 2, 3, . . . .

In 1995, inequality (1.2) was improved by J. Pečarić and L. E. Persson in
[5] and this improvement is given below:

Theorem 1.5. If the sequence (ak > 0, k ∈ N) is non-increasing in mean
and if s is a real number such that s > 1, then

(1.4)

( ∞∑

k=1

ak

)s

≥
∞∑

k=1

ak
s [ks − (k − 1)s]

holds. If 0 < s < 1, then the inequality in (1.4) reverses.

It is well known and easy to see that if a sequence (ak, k ∈ N) is
non-increasing (non-decreasing), then it is also non-increasing in mean (non-
decreasing in mean) but the reverse implications do not hold in general. This
means that Theorem 1.5 is a genuine generalization of Theorem 1.2. The
following property of a convex function will be useful further (see [7, p.2]).

Definition 1.6. A function f : I → R is convex on I if

(1.5) (x3 − x2) f (x1) + (x1 − x3) f (x2) + (x2 − x1) f (x3) ≥ 0

holds for all x1, x2, x3 ∈ I such that x1 < x2 < x3.

Another characterization of a convex function will be needed later (see
[7, p.2]).

Proposition 1.7. If f is a convex function defined on an interval I and
if x1 ≤ y1, x2 ≤ y2, x1 6= x2, y1 6= y2, then the following inequality is valid

(1.6)
f (x2) − f (x1)

x2 − x1
≤ f (y2) − f (y1)

y2 − y1
.

If the function f is concave, then the inequality reverses.
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By letting x1 = x, x2 = x + h, y1 = y and y2 = y + h, (x ≤ y, h ≥ 0) in
(1.6), we have

(1.7) f(x+ h) − f(x) ≤ f(y + h) − f(y).

The following definition of Wright-convex function is given in [7, p.7].

Definition 1.8. A function f : [a, b] → R is said to be Wright-convex if
for all x, y + h ∈ [a, b] such that x ≤ y, h ≥ 0, (1.7) holds. The function f is
said to be Wright-concave if opposite inequality holds in (1.7).

Remark 1.9. If K ([a, b]) and W ([a, b]) denote the set of all convex func-
tions and the set of all Wright-convex functions defined on [a, b], then K ([a, b])
& W ([a, b]). That is, a convex function is also a Wright-convex function but
not conversely (see[7, p.7]).

Wright-convex functions have interesting and important generalization
for functions of several variables (see [1]). Let Rm denote the m-dimensional
vector lattice of points x = (x1, . . . , xm), xi ∈ R for i = 1, . . . ,m with the
partial ordering

x = (x1, . . . , xm) ≤ y = (y1, . . . , ym)

if and only if xi ≤ yi for i = 1, . . . ,m (see [7, p.13]).

Definition 1.10. A sequence (ak, k ∈ N) ⊂ Rm is non-increasing in
mean if

(1.8)
1

n

n∑

k=1

ak ≥ 1

n+ 1

n+1∑

k=1

ak, n ∈ N,

where ak = (a1
k, . . . , a

m
k ). A sequence (ak, k ∈ N) ⊂ Rm is non-decreasing in

mean, if opposite inequality holds in (1.8).

In [1], H. D. Brunk presented an interesting class of multivariate real-
valued functions defined as follows:

Definition 1.11. A real-valued function f on an m-dimensional rectangle
I ⊂ Rm is said to have non-decreasing increments if

(1.9) f(x + h) − f(x) ≤ f(y + h) − f(y),

whenever x, y + h ∈ I, 0 ≤ h ∈ Rm, x ≤ y. The function f is said to have
non-increasing increments if opposite inequality holds in (1.9).

Remark 1.12. It is easy to see that if a function f is defined on [a, b] ⊂ R
and has non-decreasing increment, then it is a Wright-convex function.

In this paper, we present some generalizations of the Hardy-Littlewood-
Pólya inequality (1.1). First generalization is obtained by using a Wright-
convex function and a sequence (ak, k = 1, . . . , n) ⊂ R which is non-increasing
in mean. Since the class of all Wright-convex functions contains the class of all
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convex functions, our first main result is the generalization of the inequality
(1.1) in the sense that we can obtain (1.1) as a special case of our first main re-
sult. Second generalization is obtained by using a real-valued function defined
on anm-dimensional rectangle I ⊂ Rm, having non-decreasing increments and
a sequence (ak, k = 1, . . . , n) ⊂ Rm, which is non-increasing in mean. We also
discuss the case when the sequence is non-decreasing in mean. Further, we
give the n-exponential convexity and log-convexity of the functions associated
with the linear functional defined by the generalized inequality and we also
deduce Lyapunov-type inequalities for this functional. We prove monotonic-
ity property of the generalized Cauchy means obtained via this functional.
Finally, we give several examples of the families of functions for which the
results can be applied.

2. Main results

Inequality (1.1) was already proved in [2], but we give a new proof in a
more general setting. Our first main result states:

Theorem 2.1. Let ak (k = 1, . . . , n) be real numbers such that ak ≥ 0,
Sk =

∑k
i=1 ai, kak, (k − 1)ak ∈ [a, b] for all k = 2, . . . , n and f : [a, b] → R

be a Wright-convex function.

(i) If the sequence (ak, k = 1, . . . , n) is non-increasing in mean, then we
have

(2.1) f

(
n∑

k=1

ak

)
≥ f (a1) +

n∑

k=2

[f (kak) − f ((k − 1)ak)] .

(ii) If the sequence (ak, k = 1, . . . , n) is non-decreasing in mean, then we
have

(2.2) f

(
n∑

k=1

ak

)
≤ f (a1) +

n∑

k=2

[f (kak) − f ((k − 1)ak)] .

If the function f is Wright-concave, then opposite inequalities hold in (2.1)
and (2.2).

Proof. (i) Since the sequence (ak, k = 1, . . . , n) ⊂ R is non-increasing
in mean, by definition we have, Sk−1 ≥ (k − 1) ak for k = 2, . . . , n. As
f is a Wright-convex function, by setting x = (k − 1) ak, y = Sk−1 and
h = ak (k = 2, . . . , n) in (1.7), and also using the fact that Sk−1 + ak

= Sk (k = 2, . . . , n), we have

f(Sk) − f(Sk−1) ≥ f(kak) − f((k − 1)ak).

Summing over k from 2 to n, we have
n∑

k=2

[f (Sk) − f(Sk−1)] ≥
n∑

k=2

[f(kak) − f((k − 1)ak)],
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which is equivalent to

f(Sn) − f(S1) ≥
n∑

k=2

[f(kak) − f((k − 1)ak)],

and so (2.1) holds.
(ii) Since the sequence (ak, k = 1, . . . , n) ⊂ R is non-decreasing in mean,

by definition we have, Sk−1 ≤ (k − 1)ak for k = 2, . . . , n. As f is a
Wright-convex function, by setting x = Sk−1, y = (k−1)ak and h = ak

(k = 2, . . . , n) in (1.7), we have

f(Sk) − f(Sk−1) ≤ f(kak) − f((k − 1)ak).

Now summing over k from 2 to n and after simplification, we have
(2.2).

If f is a Wright-concave function, then opposite inequality holds in (1.7)
and so opposite inequalities hold in (2.1) and (2.2).

Since the class of Wright-convex (Wright-concave) functions properly contains
the class of convex (concave) functions (see for example [7, p.7]), the following
result is valid.

Corollary 2.2. Let ak (k = 1, . . . , n) be real numbers such that ak ≥ 0,
Sk =

∑k
i=1 ai, kak, (k − 1)ak ∈ [a, b] for all k = 2, . . . , n and f : [a, b] → R

be a convex function.

(i) If the sequence (ak, k = 1, . . . , n) is non-increasing in mean, then (2.1)
holds.

(ii) If the sequence (ak, k = 1, . . . , n) is non-decreasing in mean, then (2.2)
holds.

If the function f is concave, then opposite inequalities hold in (2.1) and (2.2).

The following corollary is an application of Corollary 2.2.

Corollary 2.3. Let f(x) = xs, where x ∈ (0,∞) and s ∈ R.

(i) If the sequence (ak > 0, k = 1, . . . , n) is non-increasing in mean and
s ∈ R such that s < 0 or s > 1, then

(2.3)

(
n∑

k=1

ak

)s

≥ as
1 +

n∑

k=2

ak
s [ks − (k − 1)s]

holds. If 0 < s < 1, then the inequality in (2.3) reverses.
(ii) If the sequence (ak > 0, k = 1, . . . , n) is non-decreasing in mean and

s ∈ R such that s < 0 or s > 1, then

(2.4)

(
n∑

k=1

ak

)s

≤ as
1 +

n∑

k=2

ak
s [ks − (k − 1)s]

holds. If 0 < s < 1, then the inequality in (2.4) reverses.
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The multidimensional generalization is stated as follows:

Theorem 2.4. Let ak ∈ Rm be such that ak ≥ 0 for all k = 1, . . . , n,
Sk =

∑k
i=1 ai, kak, (k − 1)ak ∈ I ⊆ Rm for all k = 2, . . . , n and f : I ⊆

Rm → R be a real valued function having non-decreasing increments.

(i) If the sequence (ak, k = 1, . . . , n) is non-increasing in mean, then we
have

(2.5) f

(
n∑

k=1

ak

)
≥ f(a1) +

n∑

k=2

[f (kak) − f ((k − 1) ak)] .

(ii) If the sequence (ak, k = 1, . . . , n) is non-decreasing in mean, then we
have

(2.6) f

(
n∑

k=1

ak

)
≤ f (a1) +

n∑

k=2

[f (kak) − f((k − 1)ak)] .

If the function has non-increasing increments, then opposite inequalities hold
in (2.5) and (2.6).

Proof. The idea of the proof is the same as in Theorem 2.1.

(i) Since the sequence (ak, k = 1, . . . , n) ⊂ Rm is non-increasing in mean,
by definition we have, Sk−1 ≥ (k − 1)ak for k = 2, . . . , n. By setting
x = (k − 1)ak, y = Sk−1 and h = ak (k = 2, . . . , n) in (1.9), where f
has non-decreasing increments and also using the fact that Sk−1 + ak

= Sk (k = 2, . . . , n), we have

f (Sk) − f (Sk−1) ≥ f (kak) − f ((k − 1) ak) .

Summing over k from 2 to n, we have
n∑

k=2

[f (Sk) − f (Sk−1)] ≥
n∑

k=2

[f(kak) − f((k − 1)ak)],

which is equivalent to

f(Sn) − f(S1) ≥
n∑

k=2

[f(kak) − f((k − 1)ak)],

and so (2.5) holds.
(ii) Since the sequence (ak, k = 1, . . . , n) ⊂ Rm is non-decreasing in mean,

by definition we have, Sk−1 ≤ (k − 1)ak for k = 2, . . . , n. By setting
x = Sk−1, y = (k − 1)ak and h = ak (k = 2, . . . , n) in (1.9), where f
has non-decreasing increments, we have

f (Sk) − f (Sk−1) ≤ f (kak) − f ((k − 1) ak) .

Now summing over k from 2 to n and after simplification, we have
(2.6).
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If f has non-increasing increments, then opposite inequality holds in (1.9) and
so opposite inequalities hold in (2.5) and (2.6).

Consider the inequality (2.1) and define a functional

Φ (f) = f

(
n∑

k=1

ak

)
− f (a1) −

n∑

k=2

[f (kak) − f ((k − 1)ak)] ,(2.7)

where ak (k = 1, . . . , n) are real numbers such that ak ≥ 0, Sk =
∑k

i=1 ai,
kak and (k − 1)ak ∈ [a, b] for all k = 2, . . . , n. If the function f is convex on
[a, b] and the sequence (ak, k = 1, . . . , n) ⊂ R is non-increasing in mean, then
Corollary 2.2 (i) implies that Φ(f) ≥ 0.

Now, we give mean value theorems for the functional Φ. These theorems
enable us to define various classes of means that can be expressed in terms of
a linear functional.

Theorem 2.5. Let ak (k = 1, . . . , n) be real numbers such that ak ≥ 0,
Sk =

∑k
i=1 ai, kak, (k − 1)ak ∈ [a, b] for all k = 2, . . . , n and the sequence

(ak, k = 1, . . . , n) is non-increasing in mean. Suppose that Φ is a linear func-
tional defined as in (2.7) and f ∈ C2 ([a, b]). Then there exists ξ ∈ [a, b] such
that

Φ (f) =
f ′′(ξ)

2
Φ (f0) ,

where f0(x) = x2.

Proof. Analogous to the proof of Theorem 2.2 in [6].

We can prove the following Cauchy type mean value theorem by following the
proof of Theorem 2.4 in [6].

Theorem 2.6. Let ak (k = 1, . . . , n) be real numbers such that ak ≥ 0,
Sk =

∑k
i=1 ai, kak, (k − 1) ak ∈ [a, b] for all k = 2, . . . , n and the sequence

(ak, k = 1, . . . , n) is non-increasing in mean. Suppose that Φ is a linear
functional defined as in (2.7) and f, g ∈ C2 ([a, b]). Then there exists ξ ∈ [a, b]
such that

(2.8)
Φ (f)

Φ (g)
=
f ′′ (ξ)

g′′ (ξ)
,

provided that the denominators are non-zero.

Remark 2.7. (i) By taking f(x) = xs and g(x) = xq in (2.8), where
s, q ∈ R \ {0, 1} are such that s 6= q, we have

ξs−q =
q (q − 1) Φ (xs)

s (s− 1) Φ (xq)
.



80 S. KHALID AND J. PEČARIĆ

(ii) If the inverse of the function f ′′/g′′ exists, then (2.8) gives

ξ =

(
f ′′

g′′

)−1(
Φ(f)

Φ(g)

)
.

3. n-exponential convexity and log-convexity of the functions
associated with the difference of the generalized inequality

We begin this section by recollecting definitions and properties which
are going to be explored here and also some useful characterizations of these
properties. In the sequel, let I be an open interval in R.

Definition 3.1. A function h : I → R is n-exponentially convex in the
Jensen sense on I if

n∑

i,j=1

αiαjh

(
xi + xj

2

)
≥ 0

holds for every αi ∈ R and xi ∈ I, i = 1, . . . , n (see [6]).

Definition 3.2. A function h : I → R is n-exponentially convex on I if
it is n-exponentially convex in the Jensen sense and continuous on I.

Remark 3.3. From the above definition, it is clear that 1-exponentially
convex functions in the Jensen sense are non-negative functions. Also, n-
exponentially convex functions in the Jensen sense are k-exponentially convex
functions in the Jensen sense for all k ∈ N, k ≤ n.

By the definition of positive semi-definite matrices and some basic linear
algebra, we have the following proposition.

Proposition 3.4. If h : I → R is n-exponentially convex in the Jensen

sense, then the matrix
[
h
(

xi+xj

2

)]k

i,j=1
is a positive semi-definite matrix for

all k ∈ N, k ≤ n. Particularly,

det

[
h

(
xi + xj

2

)]k

i,j=1
≥ 0 for every k ∈ N, k ≤ n, xi ∈ I, i = 1, . . . , n.

Definition 3.5. A function h : I → R is exponentially convex in the
Jensen sense if it is n-exponentially convex in the Jensen sense for all n ∈ N.

Definition 3.6. A function h : I → R is exponentially convex if it is
exponentially convex in the Jensen sense and continuous.

Lemma 3.7. A function h : I → (0,∞) is log-convex in the Jensen sense,
that is, for every x, y ∈ I,

h2
(
x+ y

2

)
≤ h (x) h (y)
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holds if and only if the relation

α2h(x) + 2αβ h

(
x+ y

2

)
+ β2h(y) ≥ 0

holds for every α, β ∈ R and x, y ∈ I.

Remark 3.8. It follows that a function is log-convex in the Jensen sense if
and only if it is 2-exponentially convex in the Jensen sense. Also, by using ba-
sic convexity theory, a function is log-convex if and only if it is 2-exponentially
convex.

The following definition of divided difference is given in [7, p.14].

Definition 3.9. The second-order divided difference of a function f :
[a, b] → R at mutually distinct points y0, y1, y2 ∈ [a, b] is defined recursively
by

[yi; f ] = f (yi) , i = 0, 1, 2,

[yi, yi+1; f ] =
f(yi+1) − f(yi)

yi+1 − yi
, i = 0, 1,

[y0, y1, y2; f ] =
[y1, y2; f ] − [y0, y1; f ]

y2 − y0
.(3.1)

Remark 3.10. The value [y0, y1, y2; f ] is independent of the order of the
points y0, y1 and y2. This definition may be extended to include the case in
which some or all the points coincide (see [7, p.16]). Namely, taking the limit
y1 → y0 in (3.1), we get

lim
y1→y0

[y0, y1, y2; f ] = [y0, y0, y2; f ] =
f(y2) − f(y0) − f ′(y0)(y2 − y0)

(y2 − y0)2 , y2 6= y0,

provided that f ′ exists; and furthermore, taking the limits yi → y0, i = 1, 2,
in (3.1), we get

lim
y2→y0

lim
y1→y0

[y0, y1, y2; f ] = [y0, y0, y0; f ] =
f ′′(y0)

2
,

provided that f ′′ exists.

Remark 3.11. Convex functions can be characterized by second order
divided difference (see [7, p.16]): a function f : [a, b] → R is convex if and only
if for all choices of three distinct points y0, y1, y2,∈ [a, b], [y0, y1, y2; f ] ≥ 0.

Next, we study the n-exponential convexity and log-convexity of the func-
tions associated with the linear functional Φ defined in (2.7).

Theorem 3.12. Let Ω = {fs : s ∈ I ⊆ R} be a family of functions defined
on [a, b] such that the function s 7→ [y0, y1, y2; fs] is n-exponentially convex in
the Jensen sense on I for every three mutually distinct points y0, y1, y2 ∈ [a, b].
Let Φ be a linear functional defined as in (2.7). Then the following statements
hold:
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(i) The function s 7→ Φ(fs) is n-exponentially convex in the Jensen sense on

I and the matrix
[
Φ(f sj +sk

2

)
]m

j,k=1
is a positive semi-definite matrix for all

m ∈ N, m ≤ n and s1, . . . , sm ∈ I. Particularly,

det
[
Φ(f sj +sk

2

)
]m

j,k=1
≥ 0, ∀ m ∈ N, m ≤ n.

(ii) If the function s 7→ Φ(fs) is continuous on I, then it is n-exponentially
convex on I.

Proof. The idea of the proof is the same as that of Theorem 3.1 in [6].

(i) Let αj ∈ R (j = 1, . . . , n) and consider the function

ϕ(y) =

n∑

j,k=1

αjαkf sj +sk
2

(y),

where sj ∈ I and f sj +sk
2

∈ Ω. Then

[y0, y1, y2;ϕ] =

n∑

j,k=1

αjαk

[
y0, y1, y2; f sj+sk

2

]

and since
[
y0, y1, y2; f sj+sk

2

]
is n-exponentially convex in the Jensen

sense on I by assumption, it follows that

[y0, y1, y2;ϕ] =

n∑

j,k=1

αjαk

[
y0, y1, y2; f sj+sk

2

]
≥ 0.

And so, by using Remark 3.11, we conclude that ϕ is a convex function.
Hence,

Φ (ϕ) ≥ 0,

which is equivalent to
n∑

j,k=1

αjαkΦ
(
f sj +sk

2

)
≥ 0

and so we conclude that the function s 7→ Φ(fs) is n-exponentially
convex in the Jensen sense on I.
The remaining part follows from Proposition 3.4.

(ii) If the function s 7→ Φ (fs) is continuous on I, then from (i) and by
Definition 3.2, it follows that it is n-exponentially convex on I.

The following corollary is an immediate consequence of the above theorem.
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Corollary 3.13. Let Ω = {fs : s ∈ I ⊆ R} be a family of functions
defined on [a, b] such that the function s 7→ [y0, y1, y2; fs] is exponentially
convex in the Jensen sense on I for every three mutually distinct points
y0, y1, y2 ∈ [a, b]. Let Φ be a linear functional defined as in (2.7). Then
the following statements hold:

(i) The function s 7→ Φ(fs) is exponentially convex in the Jensen sense on

I and the matrix
[
Φ(f sj +sk

2

)
]n

j,k=1
is a positive semi-definite matrix for all

n ∈ N and s1, . . . , sn ∈ I. Particularly,

det
[
Φ(f sj+sk

2

)
]n

j,k=1
≥ 0, ∀ n ∈ N.

(ii) If the function s 7→ Φ(fs) is continuous on I, then it is exponentially
convex on I.

Corollary 3.14. Let Ω = {fs : s ∈ I ⊆ R} be a family of functions
defined on [a, b] such that the function s 7→ [y0, y1, y2; fs] is 2-exponentially
convex in the Jensen sense on I for every three mutually distinct points
y0, y1, y2 ∈ [a, b]. Let Φ be a linear functional defined as in (2.7) and also
assume that Φ(fs) is strictly positive for fs ∈ Ω. Then the following state-
ments hold:

(i) If the function s 7→ Φ(fs) is continuous on I, then it is 2-exponentially
convex on I and so it is log-convex on I and for r, s, t ∈ I such that
r < s < t, we have

(3.2) [Φ(fs)]
t−r ≤ [Φ(fr)]

t−s
[Φ(ft)]

s−r

,

known as Lyapunov’s inequality. If r < t < s or s < r < t, then
opposite inequality holds in (3.2).

(ii) If the function s 7→ Φ(fs) is differentiable on I, then for every
s, q, u, v ∈ I such that s ≤ u and q ≤ v, we have

(3.3) µs,q(Φ,Ω) ≤ µu,v(Φ,Ω),

where

(3.4) µs,q(Φ,Ω) =





(
Φ(fs)

Φ(fq)

) 1
s−q

, s 6= q,

exp

(
d
dsΦ(fs)

Φ(fs)

)
, s = q,

for fs, fq ∈ Ω.

Proof. The idea of the proof is the same as that of Corollary 3.2 in [6].

(i) The claim that the function s 7→ Φ(fs) is log-convex on I is an imme-
diate consequence of Theorem 3.12 and Remark 3.8 and (3.2) can be
obtained by replacing the convex function f with the convex function
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f(z) = log Φ(fz) for z = r, s, t in (1.5), where r, s, t ∈ I such that
r < s < t.

(ii) Since by (i) the function s 7→ Φ(fs) is log-convex on I, that is, the
function s 7→ log Φ(fs) is convex on I. Applying Proposition 1.7 with
setting f(z) = log Φ(fz), we get

(3.5)
log Φ(fs) − log Φ(fq)

s− q
≤ log Φ(fu) − log Φ(fv)

u− v

for s ≤ u, q ≤ v, s 6= q, u 6= v; and therefore, we conclude that

µs,q(Φ,Ω) ≤ µu,v(Φ,Ω).

If s = q, we consider the limit when q → s in (3.5) and conclude that

µs,s(Φ,Ω) ≤ µu,v(Φ,Ω).

The case u = v can be treated similarly.

Remark 3.15. Note that the results from Theorem 3.12, Corollary 3.13
and Corollary 3.14 still hold when two of the points y0, y1, y2 ∈ [a, b] coincide,
say y1 = y0, for a family of differentiable functions fs such that the function
s 7→ [y0, y1, y2; fs] is n-exponentially convex in the Jensen sense (exponen-
tially convex in the Jensen sense, log-convex in the Jensen sense on I); and
furthermore, they still hold when all three points coincide for a family of twice
differentiable functions with the same property. The proofs are obtained by
recalling Remark 3.10 and by using suitable characterizations of convexity.

4. Examples

In this section, we present several families of functions which fulfil the
conditions of Theorem 3.12, Corollary 3.13 and Corollary 3.14 and Remark
3.15. This enables us to construct large families of functions which are expo-
nentially convex.

Example 4.1. Consider the family of functions

Ω1 = {gs : R → [0, ∞) : s ∈ R}
defined by

gs(x) =

{
1
s2 e

sx, s 6= 0,
1
2 x

2, s = 0.

We have d2

dx2 gs(x) = esx > 0, which shows that gs is convex on R for every

s ∈ R and s 7→ d2

dx2 gs(x) is exponentially convex by definition (see also [3]).
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In order to prove that the function s 7→ [y0, y1, y2; gs] is exponentially convex,
it is enough to show that
(4.1)

∑n
j,k=1 αjαk

[
y0, y1, y2; g sj +sk

2

]
=
[
y0, y1, y2;

∑n
j,k=1 αjαkg sj +sk

2

]
≥ 0,

∀ n ∈ N, αj , sj ∈ R, j = 1 . . . ., n. By Remark 3.11, (4.1) will hold if Υ(x) :=∑n
j,k=1 αjαkg sj +sk

2

is convex. Since s 7→ g′′
s (x) is exponentially convex, i.e.,

∑n
j,k=1 αjαkg

′′
sj +sk

2

≥ 0, ∀ n ∈ N, αj , sj ∈ R, j = 1, . . . , n, which shows the

convexity of Υ(x) and so (4.1) holds. Now, as the function s 7→ [y0, y1, y2; gs] is
exponentially convex, s 7→ [y0, y1, y2; gs] is exponentially convex in the Jensen
sense and by using Corollary 3.13, we have s 7→ Φ(gs) is exponentially convex
in the Jensen sense. Since this mapping is continuous (although the mapping
s 7→ gs is not continuous for s = 0), s 7→ Φ(gs) is exponentially convex.
For this family of functions, by taking Ω = Ω1 in (3.4), µs,q(Φ,Ω1) become

µs,q(Φ,Ω1) =





(
Φ(gs)
Φ(gq)

) 1
s−q

, s 6= q,

exp
(

Φ(id·gs)
Φ(gs) − 2

s

)
, s = q 6= 0,

exp
(

Φ(id·g0)
3Φ(g0)

)
, s = q = 0.

By using Theorem 2.6, it can be seen that

Ms,q(Φ,Ω1) = logµs,q(Φ,Ω1)

satisfy a ≤ Ms,q(Φ,Ω1) ≤ b, which shows that Ms,q(Φ,Ω1) is a mean.

Example 4.2. Consider the family of functions

Ω2 = {fs : (0,∞) → R : s ∈ R}

defined by

fs(x) =





xs

s(s−1) , s 6= 0, 1,

− lnx, s = 0,
x ln x, s = 1.

Here, d2

dx2 fs(x) = xs−2 = e(s−2) ln x > 0, which shows that fs is convex for

x > 0 and s 7→ d2

dx2 fs(x) is exponentially convex by definition (see also [3]). It
is easy to prove that the function s 7→ [y0, y1, y2; fs] is exponentially convex.
Arguing as in Example 4.1, we have s 7→ Φ(fs) is exponentially convex.
If r, s, t ∈ R are such that r < s < t, then from (3.2), we have

(4.2) Φ (fs) ≤ [Φ (fr)]
t−s
t−r [Φ (ft)]

s−r
t−r .
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If r < t < s or s < r < t, then opposite inequality holds in (4.2).
Particularly, for r, s, t ∈ R \ {0, 1} such that r < s < t, we have

(4.3)

(
∑

n

k=1
ak)s− as

1−
∑

n

k=2
as

k(ks−(k−1)s)

s(s−1) ≥
[

(
∑

n

k=1
ak)

r− ar
1−
∑

n

k=2
ar

k(kr−(k−1)r)

r(r−1)

] t−s
t−r

×
[

(
∑

n

k=1
ak)t− at

1−
∑

n

k=2
at

k(kt−(k−1)t)
t(t−1)

] s−r
t−r

,

where ak > 0 (k = 1, . . . , n) are real numbers, Sk =
∑k

i=1 ai, kak and (k−1)ak

∈ [a, b] for all k = 2, . . . , n. In fact, for s < 0 or s > 1, (4.3) is the improvement
of the inequality (2.3) and for 0 < s < 1, the inequality in (4.3) reverses.
By taking Ω = Ω2 in (3.4), Ξs,q := µs,q(Φ,Ω2) are of the form

Ξs,q =

(
q(q − 1)

s(s − 1)
.

(∑n

k=1
ak

)s − as
1 −
∑n

k=2
as

k (ks − (k − 1)s)(∑n

k=1
ak

)q − a
q
1 −
∑n

k=2
a

q
k (kq − (k − 1)q)

) 1
s−q

, s 6= q 6= 0, 1,

Ξs,0 =

(
1

s(s− 1)
.
(
∑n

k=1 ak)
s − as

1 −∑n
k=2 a

s
k (ks − (k − 1)s)

ln (na1) − ln (
∑n

k=1 ak)

) 1
s

, s 6= 0, 1,

Ξs,1 =

(
1

s(s−1)

((∑
n

k=1
ak

)s
− as

1 −
∑

n

k=2
as

k (ks − (k − 1)s)
)

∑
n

k=1
ak

(
ln
(∑

n

k=1
ak

)
− k ln (kak)

)
+
∑

n

k=2
ak(k − 1) ln ((k − 1) ak)

) 1
s−1

,

s 6= 0, 1,

Ξ0,1 =

∑n

k=1
ak

(
ln
(∑n

k=1
ak

)
− k ln (kak)

)
+
∑n

k=2
ak(k − 1) ln ((k − 1) ak)

ln (na1) − ln
(∑n

k=1
ak

) ,

Ξs,s = exp

(
1 − 2s

s(s− 1)

)
×

exp

((∑
n

k=1
ak

)s
ln
(∑

n

k=1
ak

)
−
∑

n

k=1
as

k
ks ln (kak) +

∑
n

k=2
as

k
(k − 1)s ln ((k − 1) ak)

(∑
n

k=1
ak

)s
− as

1
−
∑

n

k=2
as

k
(ks − (k − 1)s)

)
,

s 6= 0, 1,

Ξ0,0 =

exp

((
ln
(∑

n

k=1
ak

)
− ln a1

)
ln
(

e2a1

∑
n

k=1
ak

)
−
∑

n

k=2
(ln k − ln (k − 1)) ln

(
e2k(k − 1)a2

k

)

2
(

ln
(∑

n

k=1
ak

)
− ln (na1)

)
)
,
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Ξ1
1,1 = exp




n∑
k=1

ak

(
ln

(
n∑

k=1

ak

)
ln

(
e−2

n∑
k=1

ak

)
− k ln (kak) ln

(
e−2kak

))

2
(∑

n

k=1
ak

(
ln
(∑

n

k=1
ak

)
− k ln(kak)

)
+
∑

n

k=2
ak(k − 1) ln ((k − 1)ak)

)




× exp




n∑
k=2

ak(k − 1) ln ((k − 1)ak) ln
(

e−2(k − 1)ak

)

2
(∑

n

k=1
ak

(
ln
(∑

n

k=1
ak

)
− k ln(kak)

)
+
∑

n

k=2
ak(k − 1) ln ((k − 1)ak)

)


 .

If Φ is positive, then Theorem 2.6 applied for f = fs ∈ Ω2 and g = fq ∈ Ω2

yields that there exists ξ ∈ [a, b] such that

ξs−q =
Φ(fs)

Φ(fq)
.

Since the function ξ 7→ ξs−q is invertible for s 6= q, we have

(4.4) a ≤
(

Φ(fs)

Φ(fq)

) 1
s−q

≤ b

which, together with the fact that µs,q(Φ,Ω2) is continuous, symmetric and
monotonous (by (3.3)) shows that µs,q(Φ,Ω2) is a mean.

If a = 0 and we consider functions defined on [0,∞), then we can obtain
inequalities and means of the same form, but for parameters s and q restricted
to (0,∞). More precisely, we consider the family of functions

Ω̃2 = {f̃s : [0,∞) → R : s ∈ (0,∞)}
defined by

f̃s(x) =

{
xs

s(s−1) , s 6= 1,

x ln x, s = 1,

with the convention that 0 ln 0 = 0.
If r, s, t ∈ (0,∞) \ {1} are such that r < s < t, then from (4.2), we have

(
∑

n

k=1
ak)

s−
∑

n

k=1
as

k(ks−(k−1)s)

s(s−1) ≥
[

(
∑

n

k=1
ak)

r−
∑

n

k=1
ar

k(kr−(k−1)r)

r(r−1)

] t−s
t−r

×
[

(
∑

n

k=1
ak)

t−
∑

n

k=1
at

k(kt−(k−1)t)
t(t−1)

] s−r
t−r

,

which is in fact the improvement of inequality (1.2) for s > 1. For s > 0 and
q > 0, by taking Ω = Ω̃2 in (3.4), Ξ̃s,q =: µs,q(Φ, Ω̃2) are of the same form as
Ξs,q.

Example 4.3. Consider the family of functions

Ω3 = {hs : (0,∞) → (0,∞) : s ∈ (0,∞)}
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defined by

hs(x) =

{
s−x

ln2 s
, s 6= 1,

x2

2 , s = 1.

We have d2

dx2hs(x) = s−x > 0, which shows that hs is convex for all s > 0.

Since s 7→ d2

dx2hs(x) = s−x is the Laplace transform of a non-negative function
(see [3, 8]), it is exponentially convex. It is easy to see that the function
s 7→ [y0, y1, y2;hs] is also exponentially convex. Arguing as in Example 4.1,
we have s 7→ Φ(hs) is exponentially convex.
In this case, by taking Ω = Ω3 in (3.4), µs,q(Φ,Ω3) are of the form

µs,q(Φ,Ω3) =





(
Φ(hs)
Φ(hq)

) 1
s−q

, s 6= q,

exp
(

− Φ(id·hs)
sΦ(hs) − 2

s ln s

)
, s = q 6= 1,

exp
(

− Φ(id·h1)
3Φ(h1)

)
, s = q = 1.

By using Theorem 2.6, it follows that

Ms,q (Φ,Ω3) = −L(s, q) logµs,q (Φ,Ω3)

satisfy a ≤ Ms,q (Φ,Ω3) ≤ b and so Ms,q (Φ,Ω3) is a mean, where L(s, q) is a
logarithmic mean defined by L(s, q) = s−q

log s−log q , s 6= q, L(s, s) = s.

Example 4.4. Consider the family of functions

Ω4 = {ks : (0,∞) → (0,∞) : s ∈ (0,∞)}
defined by

ks(x) =
e−x

√
s

s
.

Here, d2

dx2ks(x) = e−x
√

s > 0, which shows that ks is convex for all s > 0. Since

s 7→ d2

dx2 ks(x) = e−x
√

s is the Laplace transform of a non-negative function
(see [3, 8]), it is exponentially convex. It is easy to prove that the function
s 7→ [y0, y1, y2; ks] is also exponentially convex. Arguing as in Example 4.1,
we have s 7→ Φ(ks) is exponentially convex.
In this case, by taking Ω = Ω4 in (3.4), µs,q(Φ,Ω4) are of the form

µs,q(Φ,Ω4) =





(
Φ(ks)
Φ(kq)

) 1
s−q

, s 6= q,

exp
(

− Φ(id·ks)
2

√
sΦ(ks) − 1

s

)
, s = q.

By using Theorem 2.6, it is easy to see that

Ms,q (Φ,Ω4) = −(
√
s+

√
q) logµs,q (Φ,Ω4)

satisfy a ≤ Ms,q (Φ,Ω4) ≤ b, showing that Ms,q (Φ,Ω4) is a mean.

Remark 4.5. From (3.4), it is clear that µs,q(Φ,Ω) for Ω = Ω1,Ω3 and
Ω4 are monotonous functions in parameters s and q.
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Poopćenja i poboljšanja nejednakosti Hardy-Littlewood-Pólya

Sadia Khalid i Josip Pečarić

Sažetak. U radu su dana neka poopćenja i poboljša-

nja nejednakosti Hardy-Littlewood-Pólya. Diskutirana je n-

eksponencijalna konveksnost i logaritamska konveksnost funkcio-

nala definiranog poopćenom nejednakošću kao i monotonost odgo-

varajućih poopćenih Cauchyjevih sredina.
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